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Abstract

The finite-difference frequency-domain (FDFD) method is a conceptually simple
method to solve time-dependent di�erential equations for steady-state solutions. In

solving Maxwell’s equations in three-dimensional (3D) space, however, the FDFD method
has not been a popular method due to the slow convergence of iterative methods of solving
a large system of linear equations Ax = b constructed by the FDFD method. In this dis-
sertation, we show that the convergence speed can be greatly accelerated for plasmonic and
nanophotonic systems by carefully modifying the properties of A. First, we make the ma-
trix A signi�cantly better-conditioned by using the stretched-coordinate perfectly matched
layer (SC-PML) rather than the more commonly used uniaxial PML (UPML) as an absorb-
ing boundary. Second, we eliminate the high multiplicity of near-zero eigenvalues of A by
utilizing the continuity equation. By combining these two techniques, we achieve 300-fold
acceleration in the convergence of iterative methods for an example 3D plasmonic system.
We also demonstrate successful application of the acceleration techniques to a real-world en-
gineering problem of designing novel integrated optical circuit components, namely broad-
band sharp 90-degree bends and T-splitters, in plasmonic coaxial waveguides.

Topics

• Frequency-domain Maxwell’s equations
• Finite-di�erence method to approximate di�erential equations
• Iterative methods to solve a system of linear equations Ax = b
• Preconditioners to accelerate iterative methods
• Eigenvalues and eigenvectors; singular values and singular vectors
• Plasmonics and nanophotonics
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Denn ich hatte ja längst aus meinen Erfahrungen
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politische Richtung nie nach den Zielen beurteilen
darf, die sie laut verkündet und vielleicht auch
wirklich anstrebt, sondern nur nach den Mitteln,
die sie zu ihrer Verwirklichung einsetzt. Schlechte
Mittel beweisen ja, daß die Urheber an die
Überzeugungskra� ihrer Cese selbst nicht mehr
glauben.

Werner K. Heisenberg (1901–1976)
in Der Teil und das Ganze

For if I had learned one thing from my experiences
during the civil war, it was that one must never
judge a political movement by the aims it so loudly
proclaims and perhaps genuinely strives to attain,
but only by the means it uses to achieve them. Ce
choice of bad means simply proves that those
responsible have lost faith in the persuasive force of
their original arguments.

Werner K. Heisenberg (1901–1976)
in�e Part and the Whole
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Preface

For the last few decades around the dawn of the 21st century, photonics has emerged
as a viable solution to ever increasing demands for faster communication of larger

amounts of data. Because photonics uses electromagnetic waves as information carriers,
e�cient numerical solution of Maxwell’s equations, which govern all electromagnetic phe-
nomena, has become more and more important for designing integrated photonic devices
and discovering novel optical phenomena to further advance photonics technology.

�is dissertation is about one such numerical method to solve Maxwell’s equations: the
�nite-di�erence frequency-domain (FDFD) method [1–3]. �e FDFD method transforms
the frequency-domainMaxwell’s equations into numerically solvable forms using the �nite-
di�erence method. Compared with the other numerical methods to solve the frequency-
domain equations such as the �nite element method (FEM) [4] and method of moments
(MoM) [5Ch. 2], the FDFDmethod has an advantage in its conceptual simplicity, because the
�nite-di�erence method simply approximates derivatives (in the form of dy/dx) by ratios
between two �nite di�erences (in the form of ∆y/∆x). �e conceptual simplicity eventu-
ally leads to e�ciency in parallel computing environment for large three-dimensional (3D)
problems.

�eFDFDmethod can also be comparedwith the �nite-di�erence time-domain (FDTD)
method [6]. Because one method solves the frequency-domain equations and the other
solves the time-domain equations, the two methods have di�erent domains of application.
In terms of implementation, however, they are quite similar in that both use the �nite-
di�erence method. Despite this similarity, the FDFDmethod has been far less popular than
the FDTD method in solving 3D problems. �is dissertation addresses a few di�culties in
implementing an e�cient 3D FDFD solver of Maxwell’s equations, and shows that once it is
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implemented correctly it can be a practical method for solving 3D problems.

Especially, this dissertation aims to apply the FDFDmethod to plasmonic and nanopho-
tonic systems. For these systems, the critical dimensions of objects are typicallymuch smaller
than a wavelength, and �nite-di�erence grid cells smaller than 1/1000 of a wavelength are of-
ten required to represent the electromagnetic �elds interacting with these objects accurately.
Identifying the di�culties arising from this orders-of-magnitude di�erence and providing
techniques to overcome them are the main contributions of this dissertation.

�is dissertation is organized as follows. Chapter 1 introduces the frequency-domain
Maxwell’s equations and carefully formulates a di�erential equation to solve. �en it dis-
cretizes the di�erential equation into a system of linear equations Ax = b using the �nite-
di�erence method. It also reviews iterative methods of solving Ax = b, which are essential
in solving large 3D problems. �ree benchmark problems that have been solved repeatedly
throughout the dissertation are also described here.

Chapter 2 addresses the �rst di�culty in implementing an e�cient 3D FDFD solver:
the ill-conditioned matrix A due to an inappropriate choice of the perfectly matched layer
(PML). PML is an essential absorbing boundary that is widely used in simulation of elec-
tromagnetic wave propagation. �ere are mainly two kinds of PML, and between the two
the more commonly used UPML is shown to ill-condition the matrix A and therefore to
induce slow convergence of iterative methods. �is slow convergence problem is solved by
replacing UPMLwith the less popular SC-PML. A rigorous analysis to prove the superiority
of SC-PML over UPML is provided. For cases where UPML is indispensable, SP-UPML,
which is a combination of UPML and an e�ective diagonal preconditioning scheme, is de-
veloped.

Chapter 3 addresses the second di�culty in implementing an e�cient 3D FDFD solver:
the high multiplicity of near-zero eigenvalues of the matrix A. �e matrix A for plasmonic
and nanophotonic systems has a very highmultiplicity of near-zero eigenvalues, which stag-
nates the convergence of iterativemethods. �is stagnation problem is solved by eliminating
the near-zero eigenvalues using the continuity equation. An intuitive explanation for the
impact of the near-zero eigenvalues and de�niteness of A on the convergence behavior of
iterative methods is also provided.
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Chapter 4 demonstrates the usefulness of the iterative FDFD solver by using it in design-
ing novel waveguide components for integrated optical circuits. �e components are sharp
90° bends and T-splitters formed in plasmonic coaxial waveguides. �ese components bend
and split optical waves almost perfectly with nearly no re�ection and radiation loss over a
broad range of wavelengths, including the telecommunication wavelength of 1.55 µm.
Finally, Chapter 5 concludes this dissertation with a few important remarks and out-

looks. �e di�erence in the use of iterative methods between this dissertation and the liter-
ature of general numerical linear algebra is highlighted.

�is Ph.D. dissertation would have been impossible to �nish without help and support
of many people and organizations. First, I would like to thankmy Ph.D. advisor, Prof. Shan-
hui Fan, for his guidance based on a thorough knowledge of this �eld of research as well
as for his emotional support. I also would like to thank the members of my reading com-
mittee, Prof. David A. B. Miller and Prof. Jelena Vuckovic, for their inspirational lectures
and pioneering research, which have been the source of my passion in nanophotonics. I
am indebted to Dr. Georgios Veronis for the initial introduction to the FDFD method, and
to Jesse Lu for the implementation of my FDFD solver on GPUs, which demonstrated the
true capability of the FDFDmethod. All of the Fan group members have been a joy to work
with, but I especially thank Peter, Xiaofang, Lieven, Aaswath, Ken, Linxiao, and Yasin for
actually using my solver program and suggesting useful features, and Zheng, Zongfu, Sunil,
Zhichao, Eden, Victor, and Sacha for useful and interesting discussions. Besides this group,
I thank Prof. Wenshan Cai for the collaboration in plasmonic waveguide projects, and Paul
Hansen for an opportunity to guest lecture about the FDFD method in his numerical elec-
tromagnetics class. I also acknowledge the generous support from Samsung Scholarship,
the National Science Foundation (Grant No. DMS-0968809), the AFOSR MURI program
(Grant No. FA9550-09-1-0704), and the Interconnect Focus Center, funded under the Focus
Center Research Program, a Semiconductor Research Corporation entity.
On the domestic side, I thankmyparents, sister, and in-laws inKorea for all their support

and encouragement. Most important, I deeply thank my wife Kyuwon for always standing
by me with endless love.

Wonseok Shin
Stanford, California
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Chapter 1

Basic formulation of the FDFDmethod
for Maxwell’s equations

We should forget about small e�ciencies, say
about 97% of the time: premature optimization is
the root of all evil.

Donald E. Knuth (1938–present)

Maxwell’s equations are partial di�erential equations that govern optical and elec-
tromagnetic (EM) phenomena. In the frequency domain, they are

∇× E(r,ω) = −iωµ(r,ω)H(r,ω) −M(r,ω), (1.1a)

∇×H(r,ω) = iωε(r,ω)E(r,ω) + J(r,ω), (1.1b)

where E and H are the electric and magnetic �elds (or alternatively called the E- and H-
�elds); J andM are the electric andmagnetic current source densities; ε and µ are the electric
permittivity and magnetic permeability. All these quantities are functions of position r and
angular frequency ω.

�e above frequency-domain Maxwell’s equations are derived from the time-domain
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Figure 1.1: Comparison of popularity of the FDTDversus the FDFDmethod in the academia.
In each year from 1980 to 2011, the numbers of academic papers published with “FDTD” and
“FDFD” as keywords are counted and shown as bright and dark columns, respectively. �e
term “FDTD” was �rst coined in 1980 by Ta�ove [7]. �e term “FDFD” was �rst used in
1989 by Ling [8]. In terms of popularity, the FDTDmethod has been much more successful
than the FDFD method.

Maxwell’s equations

∇× E(r, t) = −∂tB(r, t) −M(r, t), (1.2a)

∇×H(r, t) = ∂tD(r, t) + J (r, t) (1.2b)

for a given ω by assuming a time dependence of e+iωt in each time-dependent quantity
F(r, t) to have F(r, t) = F(r,ω)e iωt and then using the constitutive equations D = εE
and B = µH. Alternatively, we can also obtain Eq. (1.1) by Fourier-transforming Eq. (1.2) in
time.

�e �nite-di�erence method is a method to construct numerically solvable di�erence
equations out of di�erential equations, by approximating derivatives by ratios between �nite
di�erences. �erefore, the method can be applied to both the time- and frequency-domain
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Maxwell’s equations. Nevertheless, the �nite-di�erence method has been much more pop-
ular in solving the time-domainMaxwell’s equations than the frequency-domain equations.
Figure 1.1 directly shows how successful the �nite-di�erence time-domain (FDTD) method
has been compared to the �nite-di�erence frequency-domain (FDFD) method in the aca-
demic community.

�e time- and frequency-domainMaxwell’s equations, however, are complementary tools
for understanding optical and EM phenomena. �e time-domain equations are indispens-
able to investigating transient states and dynamics, but the frequency-domain equations are
also crucial to studying steady states and treating dispersive materials accurately. �erefore,
providing techniques to implement an e�cient FDFD solver should bene�t the research
community in a way that has not been possible with the FDTD method.

In this chapter, we review the basics of the FDFD method that form the foundation of
this dissertation. In Sec. 1.1 we formulate a frequency-domain di�erential equation to solve.
In Sec. 1.2 we discretize the di�erential equation by the �nite-di�erence method. In Sec. 1.3
we brie�y review iterative methods of solving the discretized equation. Lastly, in Sec. 1.4 we
introduce benchmark problems against which we will test the e�ciency of our techniques
developed in the rest of the dissertation.

1.1 Equation formulation

�e FDFD method solves the frequency-domain Maxwell’s equations (1.1) for the E- and
H-�elds for given current source densities J and M. �ere are a few di�erent choices of
actual equations to solve, though. First, we can choose to solve Eq. (1.1) directly for the E-
and H-�elds at the same time. �is choice is equivalent to solving

⎡
⎢
⎢
⎢
⎢
⎣

−iωε ∇×

∇× iωµ

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

E
H

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

J
−M

⎤
⎥
⎥
⎥
⎥
⎦

. (1.3)

However, when described in the SI unit, Eq. (1.3) becomes an ill-conditioned equation,
which is not favorable to numerical solvers. �e concept of ill- and well-conditioned equa-
tions will be discussed in detail in Ch. 2, but we can easily see that Eq. (1.3) is ill-conditioned
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from the formula ∣E∣/∣H∣ = ∣η∣, which holds for a plane wave propagating in a medium with
the impedance η =

√
µ/ε. In vacuum the impedance is η0 = 377Ω, which means that

the solution E-�eld is typically two orders-of magnitude stronger than the H-�eld. Such a
huge contrast inmagnitude between the elements of a solution is a sign of an ill-conditioned
equation. To obtain a better-conditioned equation, we should introduce a normalized H-
�eld variable H̃ = ηH, but then it becomes harder to enforce the continuity of the normal and
tangential components of the H-�eld at the interfaces between di�erent materials. Using η0
as a normalization factor is another possibility [9Sec. 3.4.1, 10], but then the normalization is
no longer optimal.

A better alternative is to eliminate either the E- or H-�eld from Eq. (1.1) to obtain

∇× µ−1∇× E − ω2εE = −iωJ −∇ × µ−1M (1.4)

or
∇× ε−1∇×H − ω2µH = −iωM +∇ × ε−1J. (1.5)

Both equations have only one of the E- and H-�elds as an unknown, so they are no longer
ill-conditioned due to the huge contrast in magnitude between the two �elds. An addi-
tional bene�t of this formulation is that the size of the solution vector is halved from that
of Eq. (1.3). Once either Eq. (1.4) or Eq. (1.5) is solved for one �eld, the other �eld can be
easily recovered by simple substitution of the solved �eld into Eq. (1.1).

Between the above two equations, we choose to solve Eq. (1.4) because it is a better
formulation for nanophotonic systems by the following reason, which will be elaborated
in Ch 3. In nanophotonics, the second term of the le�-hand side of Eq. (1.4) is usually
much smaller than the �rst term, i.e., ∣ω2εE∣ ≪ ∣∇ × µ−1∇× E∣, because nanophotonic ob-
jects are much smaller than a wavelength. �erefore the operator of Eq. (1.4) can be well-
approximated by ∇ × µ−1∇×. Because µ = µ0 for most materials used in nanophotonic
devices, this operator is Hermitian positive-semide�nite. In other words, the operator of
Eq. (1.4) is close to a Hermitian positive-semide�nite operator, which is very favorable to
numerical solvers. �e second term of the le�-hand side of Eq. (1.5) is also ignorable for the
same reason, but the operator of the �rst term is neitherHermitian nor positive-semide�nite,
because ε is complex and has a negative real part for metals.
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In solving Eq. (1.4) we can ignoreMwithout loss of generality, because for given J andM
a new current source densities J′ = J+ 1

iω∇× µ−1M andM′ = 0 generate the same right-hand
side of Eq. (1.4). �erefore, the equation we focus on solving in the rest of this dissertation
is

∇× µ−1∇× E − ω2εE = −iωJ. (1.6)

1.2 Finite-di�erence approximation

In the Cartesian coordinate system, the frequency-domain Maxwell’s equations (1.1a) and
(1.1b) are written as

∂yEz − ∂zEy = −iωµHx −Mx , (1.7a)

∂zEx − ∂xEz = −iωµHy −My , (1.7b)

∂xEy − ∂yEx = −iωµHz −Mz , (1.7c)

and

∂yHz − ∂zHy = iωεEx + Jx , (1.8a)

∂zHx − ∂xHz = iωεEy + Jy , (1.8b)

∂xHy − ∂yHx = iωεEz + Jz . (1.8c)

To solve Eqs. (1.7) and (1.8) numerically by the �nite-di�erence method, we approximate
each derivative by a ratio between �nite di�erences as

E i , j+1,k
z − E i , j,k

z

∆ j
y

−
E i , j,k+1
y − E i , j,k

y

∆k
z

= −iωµ i , j,k
x H i , j,k

x −M i , j,k
x , (1.9a)

E i , j,k+1
x − E i , j,k

x

∆k
z

−
E i+1, j,k
z − E i , j,k

z

∆i
x

= −iωµ i , j,k
y H i , j,k

y −M i , j,k
y , (1.9b)

E i+1, j,k
y − E i , j,k

y

∆i
x

−
E i , j+1,k
x − E i , j,k

x

∆ j
y

= −iωµ i , j,k
z H i , j,k

z −M i , j,k
z , (1.9c)
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Hx
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i, j,k
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Dx
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Dy
j
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Figure 1.2: Yee’s �nite-di�erence grid. �e box depicts the (i , j, k)th cell of Yee’s grid whose
corner with the smallest x-, y-, z-coordinates is at ri , j,k. Repetition of the box in the x-, y-, z-
directions generates the entire grid. �e x-, y-, z-components of the E-�eld (solid-headed
arrows) are de�ned at the centers of the edges of the box. �e x-, y-, z-components ofH-�eld
(open-headed arrows) are de�ned at the centers of the faces of the box.

and

H i , j,k
z −H i , j−1,k

z

∆̃ j
y

−
H i , j,k

y −H i , j,k−1
y

∆̃k
z

= iωεi , j,kx E i , j,k
x + J i , j,kx , (1.10a)

H i , j,k
x −H i , j,k−1

x

∆̃k
z

−
H i , j,k

z −H i−1, j,k
z

∆̃i
x

= iωεi , j,ky E i , j,k
y + J i , j,ky , (1.10b)

H i , j,k
y −H i−1, j,k

y

∆̃i
x

−
H i , j,k

x −H i , j−1,k
x

∆̃ j
y

= iωεi , j,kz E i , j,k
z + J i , j,kz , (1.10c)

where εi , j,kw and µ i , j,k
w are the electric permittivity andmagnetic permeability evaluated at the

locations where E i , j,k
w and H i , j,k

w are de�ned, respectively, and ∆̃l
w = (∆l

w + ∆l−1
w )/2.

�e locations of E i , j,k
w andH i , j,k

w are indicated in Yee’s �nite-di�erence grid cell in Fig. 1.2.
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In his seminal paper [11], Yee cleverly interlaced the E- and H-�eld grids as shown in the
�gure. Such interlaced placementmakes the �nite di�erences in Eqs. (1.9) and (1.10) central
di�erences; the use of the central di�erence is crucial, because its error is O(∆2w), which
decreases much faster as ∆w decreases than O(∆w) of the forward and backward di�erences
[3Sec. 3.3, 6Secs. 2.4, 3.6]. In addition, the interlaced grid ensures that the vector calculus identities
∇×∇φ = 0 and∇ ⋅ (∇× F) = 0 hold for arbitrary scalar and vector �elds φ and F even a�er
the derivatives are approximated with �nite di�erences [12].

�e three di�erence equations (1.9) are obtained for each grid cell. We collect them from
all grid cells to construct

Cee = −iωDµh −m, (1.11)

where

e =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋮

E i , j,k
x

E i , j,k
y

E i , j,k
z

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, h =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋮

H i , j,k
x

H i , j,k
y

H i , j,k
z

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, m =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋮

M i , j,k
x

M i , j,k
y

M i , j,k
z

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.12)

are column vectors representing the relevant �elds; Ce , whose nonzero elements are ±1/∆l
w ,

is a matrix for the curl operator on the E-�eld; Dµ = diag(. . . , µ i , j,k
x , µ i , j,k

y , µ i , j,k
z , . . . ) is a

diagonal matrix for the magnetic permeability. Similarly, collecting Eq. (1.10) from all grid
cells produces

Chh = iωDεe + j, (1.13)

where Ch ,Dε , j are de�ned similarly to Ce ,Dµ ,m.

Note that the index of each element of the vectors in Eq. (1.12) is completely determined
by the directional index w and positional indices i , j, k. In other words, for the nth element
of a column vector, there exists a unique combination (w , i , j, k) that corresponds to the
sequential index n. Hence, (w , i , j, k) can be used to index an element of a column vector.
We can similarly index an element of amatrix with (w1, i1, j1, k1;w2, i2, j2, k2), where the �rst
set (w1, i1, j1, k1) speci�es a row and the second set (w2, i2, j2, k2) speci�es a column. �e
described indexing scheme is useful in mapping di�erence equations to the corresponding
matrix-vector representation. For example, from the right-hand side of Eq. (1.9a), we can



8 CHAPTER 1. BASIC FORMULATION OF THE FDFD METHOD

see that the equation corresponds to the (x , i , j, k)th row of Eq. (1.11). However, the le�-
hand side of Eq. (1.9a) does not have E i , j,k

x , the (x , i , j, k)th element of e. �is means that
the (x , i , j, k; x , i , j, k)th element of Ce , which is on the diagonal of the matrix, is zero. We
can argue the same way to show that Eqs. (1.9b) and (1.9c) do not provide diagonal elements
to Ce , and therefore that the diagonal of Ce is completely �lled with zeros.
Now, by eliminating h from Eqs. (1.11) and (1.13) and ignoring m we can easily formu-

late the �nite-di�erence approximation of Eq. (1.6):

(ChD−1
µ Ce − ω2Dε) e = −iω j, (1.14)

which is simply a system of linear equations

Ax = b, (1.15)

where A represents the operator, x represents the E-�eld we solve for, and b is a column
vector determined by a given electric current source density.

1.3 Iterative methods to solve Ax = b

�ere are two categories of methods to solve the system of linear equations (1.15): direct
methods and iterative methods [13Ch. 2]. Direct methods factorize A into a few (typically
two or three) factors with which A−1b can be calculated e�ciently, and they produce a solu-
tion in a �xed number of steps. Depending on the structures and properties of A, di�erent
factorization methods such as the Cholesky, LU , LDM⊺, LDL⊺ factorizations are used.

�e other category of methods, i.e., iterative methods, produce an approximate solution
at each iteration step until the solution converges su�ciently close to the exact solution.
More speci�cally, suppose that xm is the approximate solution produced at themth iteration
step. �en iterative methods continue the process until the residual vector

rm = b − Axm (1.16)

satis�es ∥rm∥/∥b∥ < τ, where ∥⋅∥ is a norm of a column vector and τ is a user-de�ned small
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positive number; typically the 2-norm is used as the norm, but some iterative methods, e.g.,
the conjugate gradient method [14], use di�erent norms such as the A-norm, and in practice
τ = 10−6 is su�ciently small for accurate solutions. Iterative methods do not guarantee
convergence in a �xed number of iteration steps, but they o�en produce accurate solutions
much earlier than direct methods.

�e matrix A of Eq. (1.15) constructed by the �nite-di�erence method is typically very
large (o�en with more than 10 million rows and columns for 3D problems) but extremely
sparse (with at most 13 nonzero elements per row). For such an extremely large and sparse
matrix, iterative methods are usually preferred to direct methods, because direct methods
require too much computer memory [15].
Among many kinds of iterative methods, we use Krylov subspace methods [16], which

are known as one of the most e�cient class of iterative methods. �e Krylov subspace of
dimension m generated by A and r0 is

Km(A, r0) = span{r0,Ar0,A2r0, . . . ,Am−1r0} , (1.17)

where r0 is the initial residual vector of Eq. (1.16) for an initial guess solution x0. Krylov
subspacemethods �nd the “best”mth approximate solution xm of Eq. (1.15) in the space x0+
Km (A, r0). Each Krylov subspace method is distinguished from others by its own criterion
for determining the best approximate solution. In general, however, all Krylov subspace
methods �nd better and better approximate solutions as m increases because the search
space becomes larger and larger, i.e., x0 +Km(A, r0) ⊆ x0 +Km+1(A, r0).
Like direct methods, there are Krylov subspace methods specialized for matrices with

speci�c structures and properties, such as real-symmetric, complex-Hermitian, or positive-
de�nite matrices. Unfortunately, our matrix constructed fromMaxwell’s equations does not
satisfy any of these properties: it is complex, nonsymmetric, and inde�nite. �erefore, we
need to rely on Krylov subspace methods that can handle the most generic matrices.
In this dissertation, we use the biconjugate gradient (BiCG) [17, 18], quasi-minimal resid-

ual (QMR) [19], and generalized minimal residual (GMRES) [20] methods,1 which are such
Krylov subspace methods for generic matrices. All the three methods use the 2-norm in

1We implement BiCG and QMR using the matrix-vector multiplication routine of the portable, extensible
toolkit for scienti�c computation (PETSc) [21], and use GMRES that is provided in PETSc.
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Figure 1.3: A typical convergence plot of QMR. A benchmark problemdescribed in Fig. 1.4 is
solved by QMR. �e solid line plots ∥rm∥/∥b∥ versus m. �e dashed line indicates a typical
tolerance value τ = 10−6. Approximate solutions satisfy ∥rm∥/∥b∥ < τ a�er about 25,000
iteration steps.

testing ∥rm∥/∥b∥ < τ. We use x0 = 0 as an initial guess solution throughout the dissertation
to create Krylov subspaces of Eq. (1.17). A typical convergence plot of ∥rm∥/∥b∥ versus m
for QMR is shown in Fig. 1.3.

�e three Krylov subspace methods have di�erent characteristics. GMRES leads to con-
vergence in the least number of iteration steps, but its each iteration step takes gradually
more computation time and memory. �erefore GMRES is ideal for theoretical analysis (in
Sec. 3.2), but impractical for large 3D problems. In contrast, BiCG and QMR are suitable
for large 3D problems, because they consume constant computation time and memory over
iteration steps for a given matrix A. Between the two methods, we use QMR to investigate
the impact of our techniques developed in Chs. 2 and 3 on convergence speed for 3D prob-
lems (in Secs. 2.2, 2.4, and 3.3), because its ∥rm∥/∥b∥ decreases more stably without much
oscillation than BiCG’s. However, BiCG is a better method to use in practice (in Ch. 4) than
QMR, because rm for evaluating ∥rm∥/∥b∥ < τ is obtained as a byproduct in BiCG whereas
it should be calculated explicitly as Eq. (1.16) in QMR.
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(a) Slot waveguide bend (Slot) (b) Distribution of Re{Hz}

Figure 1.4: Benchmark problem “Slot”: wave propagation through a plasmonic slot waveg-
uide bend. In (a), the structure of the bend is illustrated. A narrow, 90°-bent slot waveguide
is formed in a thin silver (Ag) �lm immersed in a silica (SiO2) background. �e vacuum
wavelength and size of the structure are indicated in the �gure. �e red arrows specify the
directions of wave propagation. In numerical simulation, all the x-, y-, z-normal bound-
aries of the simulation domain are covered by PML. In (b), Re{Hz} calculated by the FDFD
method is plotted on two planes: the horizontal z = 0 plane bisecting the �lm thickness, and
the vertical y = (const.) plane containing the central axis of the input port. Red and blue
indicate Re{Hz} > 0 and Re{Hz} < 0. Only the z ≥ 0 portion is drawn by virtue of mirror
symmetry, and the PML regions are excluded. �e sharp transition from blue to red near
x = 0 is due to the J source plane there. �e electric permittivities of silver [22] and silica
[23] at λ0 = 1550nm are εAg = (−129 − i3.28)ε0 and εSiO2 = 2.085ε0.

1.4 Benchmark problems

In this dissertation we introduce techniques to improve the convergence speed of iterative
methods. To demonstrate the e�ectiveness of the techniques, we test them on three bench-
mark problems described in this section.

�e �rst benchmark problem is to simulate wave propagation through a 90° bend of a
plasmonic slot waveguide formed in a thin metal �lm (Fig. 1.4a). Plasmonic slot waveguides
are a subject of active research in nanophotonics due to their capability of guiding light at
deep-subwavelength scale [24].

We simulate the propagation of an EM wave at the telecommunication wavelength λ0 =
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Figure 1.5: Benchmark problems “Diel” and “Array”: a dielectric waveguide and metallic
pillar array. �e materials and sizes of the structures, the vacuum wavelengths, and the
directions of wave propagation (red arrows) are indicated in the �gures. In numerical sim-
ulation, all the six boundaries of the simulation domain of (a) are covered by PML. On the
other hand, only the two z-normal boundaries of (b) are covered by PML, while the x- and
y-normal boundaries are subject to periodic boundary conditions. �e electric permittivi-
ties of silicon (Si) [23] at λ0 = 1550nm and gold (Au) [25] at λ0 = 632.8 nm are εSi = 12.09ε0
and εAu = (−10.78 − i0.79)ε0.

1550nm through the bend. A J source plane is placed near x = 0 to launch the fundamental
mode of the waveguide. To simulate an in�nitely long plasmonic slot waveguide immersed
in a dielectric medium, all six boundary faces of the Cartesian simulation domain are cov-
ered by the perfectlymatched layer (PML), which is discussed in detail in Ch. 2. �e solution
obtained by the FDFD method is displayed in Fig. 1.4b.

�e second benchmark problem is to simulate wave propagation through a rectangular
dielectric waveguide (Fig. 1.5a). We launch the fundamental mode in the dielectric waveg-
uide.

�e last benchmark problem is to simulate interaction between a planewave and an array
of metallic pillars (Fig. 1.5b). We launch a plane wave toward the pillars and observe how it
is scattered by them; the detailed analysis is described in Ref. [26].

�e number of grid cells in the �nite-di�erence grid used to discretize each simulation
domain is shown in Table 1.1, together with the grid cell size in the x-, y-, z-directions.
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Slot Diel Array
Nx × Ny × Nz 192 × 192 × 240 220 × 220 × 320 220 × 220 × 130
∆x , ∆y , ∆z 2 ∼ 20nm 10nm 5, 5, 20nm

Table 1.1: Speci�cation of the �nite-di�erence grids used for the three benchmark problems.
Slot uses a nonuniform grid with smoothly varying grid cell size. �e vector x of Eq. (1.15)
has 3NxNyNz elements, where the extra factor 3 accounts for the x-, y-, z-components of
the E-�eld.

In Chs. 2 and 3 we will show that our techniques accelerate the convergence of itera-
tive methods for all the three benchmark problems. �e benchmark problems shown here
are chosen deliberately to include di�erent geometrical complexities and di�erent materials
such as dielectrics and metals. �erefore, such benchmark results should suggest that our
techniques are e�ective for a wide range of problems.
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Chapter 2

Accelerated solution by the correct choice
of PML1

An expert is a person who has made all the
mistakes that can be made in a very narrow �eld.

Niels H. D. Bohr (1885–1962)

The perfectly matched layer (PML) is an arti�cial medium initially developed by
Bérenger that absorbs incident EM waves omnidirectionally with virtually no re�ec-

tion [28]. Because EMwaves incident uponPMLdoes not re�ect back, a domain surrounded
by PML simulates an in�nite space. �us, the use of PML has been essential for simulating
spatially unbounded systems, such as an in�nitely long waveguide [29] or an isolated struc-
ture in an in�nite vacuum region [26].
Bérenger’s original PML was followed by many variants. In the FDTDmethod, the uni-

axial PML (UPML) [30] and stretched-coordinate PML (SC-PML) [31–33] are themost pop-
ular, both resulting in similar numerical performance.2
In frequency-domain methods such as the FDFDmethod and FEM , on the other hand,

UPML and SC-PML result in systems of linear equations (1.15) with di�erent matrices A. In

1Reproduced in part with permission, from Ref. [27]: W. Shin and S. Fan, “Choice of the perfectly matched
layer boundary condition for frequency-domainMaxwell’s equations solvers,” Journal of Computational Physics
231, pp. 3406–3431. Copyright 2012 Elsevier.
2�e convolutional PML (CPML) [34] that is widely used in time-domain simulation is in essence SC-PML.

15
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general, it is empirically known that the use of any PML leads to an ill-conditioned matrix
and slows down the convergence of iterative methods to solve Eq. (1.15) [35–39]. Yet, to
the best of our knowledge, no detailed study has been conducted to compare the degree
of deterioration caused by di�erent PMLs in frequency-domain numerical solvers, except
Ref. [40] that brie�y mentions empirical observations.

In this chapter, we demonstrate that the choice of PML signi�cantly in�uences the con-
vergence of iterative methods to solve the frequency-domain Maxwell’s equations. More
speci�cally, we show that SC-PML leads to far faster convergence than UPML in general,
and the di�erence in convergence speed becomes extremely signi�cant for plasmonic and
nanophotonic systems where wavelengths are much longer than grid cell size. To prove the
generality of this observation, we present a rigorous analysis that relates convergence speed
to the condition number of the matrix.

�e chapter is organized as follows. In Sec. 2.1 we review the basic formulations ofUPML
and SC-PML for the frequency-domain Maxwell’s equations. �en, in Sec. 2.2 we demon-
strate that SC-PML gives rise to much faster convergence of iterative methods than UPML
for the benchmark problems. In Sec. 2.3 we show that SC-PML produces a much better-
conditioned matrix than UPML. Finally, we introduce a diagonal preconditioning scheme
for UPML in Sec. 2.4; the newly developed preconditioning scheme can be very useful in
situations where UPML is easier to implement than SC-PML. In Sec. 2.5 we summarize the
chapter and make a few remarks.

�roughout this chapter we assume that µ = µ0; this is valid for most nanophotonic sim-
ulations. Also, we use the FDFD method in this chapter to discretize di�erential equations.
However, the arguments we present should be equally applicable to other frequency-domain
methods including FEM.

2.1 Reviewof SC-PMLandUPMLfor the frequency-domain

Maxwell’s equations

To simulate an in�nite space, one surrounds the EM system of interest with PML as illus-
trated in Fig. 2.1. As a result, the governing equation is modi�ed from Eq. (1.6). For an EM
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Figure 2.1: An example of an EM system surrounded by PML. In the four corner regions
where the x- and y-normal PMLs overlap, waves attenuate in both directions. If the EM
system is in a 3D simulation domain, PMLs can overlap up to three times. PML is either
UPML or SC-PML.

system surrounded by UPML, the governing equation is the UPML equation

∇× µ−1s ∇× E − ω2εsE = −iωJ, (2.1)

where the 3 × 3 tensors εs and µs are

εs = ε

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sy sz
sx 0 0
0 sz sx

sy 0

0 0 sx sy
sz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, µs = µ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sy sz
sx 0 0
0 sz sx

sy 0

0 0 sx sy
sz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.2)

On the other hand, for an EM system surrounded by SC-PML, the governing equation is the
SC-PML equation

∇s × µ−1∇s × E − ω2εE = −iωJ, (2.3)

where
∇s = x̂

1
sx

∂
∂x

+ ŷ
1
sy

∂
∂y

+ ẑ
1
sz
∂
∂z
. (2.4)
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In both equations, the PML scale factors sw for w = x , y, z are

sw(l) = 1 − is′′w(l) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 − i σw(l)
ωε0 inside the w-normal PML,

1 elsewhere,
(2.5)

where l is the depth measured from the PML interface; σw(l) is the PML loss parameter at
the depth l in the w-normal PML; ε0 is the electric permittivity of vacuum. �e w-normal
PML attenuates waves propagating in the w-direction. In regions such as the corners in
Fig. 2.1 wheremultiple PMLs overlap, sw(l) ≠ 1 formore than onew. Also, here for simplicity
we have chosen Re{sw(l)} = 1; the conclusion of this chapter, however, is equally applicable
to PML with Re{sw(l)} ≠ 1.

For theoretical development of PMLs, σw(l) is usually assumed to be a positive constant
that is independent of l . In numerical implementation of PMLs, however, σw(l) gradually
increases from 0 with l to prevent spurious re�ection at PML interfaces. Typically, the poly-
nomial grading scheme is adopted [6] so that

σw(l) = σw ,max (
l
d
)

m

, (2.6)

where d is the thickness of PML; σw ,max is the maximum PML loss parameter attained at
l = d; m is the degree of the polynomial grading, which is usually between 3 and 4. If R is
the target re�ection coe�cient for normal incidence, the requiredmaximum loss parameter
is

σw ,max = −
(m + 1) lnR
2η0d

, (2.7)

where η0 =
√
µ0/ε0 is the vacuum impedance.

�emodulus of sw(l) increases with l , so ∣sw(d)∣ is typicallymuch larger than ∣sw(0)∣ = 1,
as can be seen in the following example. Consider a uniform �nite-di�erence grid with
grid cell size ∆. For a typical 10-layer PML with d = 10∆, m = 4, R = e−16 ≃ 1 × 10−7, we
have σw ,max = 4/η0∆. In the �nite-di�erence scheme, the wavelength inside an EMmedium
should be at least 15∆ to approximate spatial derivatives by �nite di�erences accurately [41].
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�erefore, if the medium matched by PML is vacuum, the vacuum wavelength λ0 corre-
sponding to ω should satisfy λ0 ≥ 15∆, which implies that

s′′w(d) =
σw ,max
ωε0

=

4
η0∆

2π
λ0 c0ε0

=
2λ0
π∆

≥
30∆
π∆

≃ 9.549, (2.8)

where c0 = 1/
√µ0ε0 is the speed of light in vacuum. �erefore, ∣sw(d)∣ =

√
1 + s′′w(d)2 is at

least about 10. In nanophotonics where deep-subwavelength structures are studied, the use
of ∆ = 1 nm for vacuumwavelength λ0 = 1550nm is not uncommon (see Ch. 4). In that case,
∣sw(d)∣ is nearly 1000.

Depending on the kind of PMLused, we solve either Eq. (2.1) or Eq. (2.3) throughout the
entire simulation domain (both inside and outside PML). Because the UPML and SC-PML
equations are di�erent, they produce di�erent systems of linear equations (1.15), which are
respectively referred to as

Aux = b (2.9)

and
Ascx = b, (2.10)

where b is common to both systems if the same J drives the EM �elds of the two systems.
We refer to Au and Asc as the UPML and SC-PML matrices, respectively.

In the following sections, we will see that Eq. (2.10) is muchmore favorable to numerical
solvers than Eq. (2.9).

2.2 Convergence speed of iterative methods to solve the

UPML and SC-PML equations

We apply UPML and SC-PML to each benchmark problem in Sec. 1.4 to construct two sys-
tems of linear equations (2.9) and (2.10), and compare the convergence speed of an iterative
method to solve them. �e iterative method used here is QMR introduced in Sec. 1.3.

Figure 2.2 shows ∥rm∥/∥b∥ of QMR versus the number m of iteration steps. For all the
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Figure 2.2: Convergence of QMR for the three benchmark problems “Slot”, “Diel”, and “Ar-
ray” described in Sec. 1.4 surrounded by UPML (U) and SC-PML (SC). Notice that simply
replacing UPML with SC-PML improves convergence speed dramatically for all the three
benchmark problems.

three benchmark problems, SC-PML signi�cantly outperforms UPML in terms of conver-
gence speed. As mentioned at the end of Sec. 1.4, the three benchmark problems have dif-
ferent geometrical complexities and di�erent materials. �erefore, Fig. 2.2 suggests that
SC-PML leads to faster convergence speed than UPML for a wide range of EM systems.
Moreover, the result is not speci�c to QMR; we have observed the same trend for other iter-
ativemethods such BiCG. Hence, we conclude that the signi�cant di�erence in convergence
speed originates from the intrinsic properties of UPML and SC-PML, and is independent of
the kind of iterative method used.

In the next section, we relate the signi�cantly di�erent convergence speeds to the very
di�erent condition numbers of the UPML and SC-PML matrices.
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2.3 Condition numbers of theUPMLand SC-PMLmatrices

In this section, we present a detailed analysis of the condition numbers of the UPML and
SC-PML matrices. �e condition number of a matrix A is de�ned as

κ(A) = σmax(A)
σmin(A)

, (2.11)

where σmax(A) and σmin(A) are the maximum and minimum singular values of A as we
will review in Sec. 2.3.1. Matrices with large and small condition numbers are called ill-
conditioned and well-conditioned, respectively. For convenience, we introduce notations

σumax = σmax(Au), σumin = σmin(Au), κu = σumax
σumin

(2.12)

for the maximum and minimum singular values and the condition number of the UPML
matrix Au. We de�ne σ scmax, σ scmin, and κsc similarly for the SC-PML matrix Asc.

�e objective of this section is to show that in general UPML produces a much worse-
conditioned matrix than SC-PML, i.e., κu/κsc ≫ 1, provided that the two PMLs enclose the
same EM system. According to Eq. (2.11), the objective is accomplished by analyzing the
extreme singular values of Au and Asc.
All EM systems simulated in Sec. 2.2 are inhomogeneous, being composed of several

di�erent EMmedia. It turns out that the extreme singular values of an inhomogeneous EM
system are approximately determined by the extreme singular values of the component me-
dia. Here, the extreme singular values of each componentmediumare de�ned as the extreme
singular values of an in�nite space �lled entirely with that medium, which we refer to as the
“homogeneousmedium”. For example, the extreme singular values of a vacuum surrounded
byUPML are determined by the extreme singular values of a homogeneous vacuum and ho-
mogeneousUPML. �erefore, we study the extreme singular values of homogeneousmedia.
Of particular interest are a homogeneous regular medium, homogeneous UPML, and ho-
mogenous SC-PML, whose extreme singular values are studied in Secs. 2.3.2 through 2.3.4.

In Sec. 2.3.5, we develop a theory based on the variational method to estimate the ex-
treme singular values and condition numbers of inhomogeneous EM systems from the ex-
treme singular values of the component homogeneous media. �e theory predicts that



22 CHAPTER 2. CORRECT CHOICE OF PML

κu/κsc ≫ 1. In Sec. 2.3.6, we verify the theory numerically for two inhomogeneous EM
systems.

�e conclusion of this section explains the results in Sec. 2.2, because A with a smaller
condition number, or an ill-conditioned A, generally implies faster convergence of iterative
methods to solve a system of linear equations Ax = b [42Sec. 9.2]. In fact, an ill-conditioned
matrix can be detrimental to direct methods as well; it is known that the LU factorization of
ill-conditioned matrices tends to be inaccurate [43Sec. 6.8]. �erefore, the result in this sec-
tion suggests that SC-PML should be preferable to UPML for solving the frequency-domain
Maxwell’s equations by both iterative and direct methods.

2.3.1 Mathematical background

For an arbitrary A ∈ Cn×n, one can always perform a singular value decomposition (SVD)
as [44Sec. 2.5.6]

A = UΣV †, (2.13)

whereU ,V ∈ Cn×n are unitary;V † is the conjugate transpose ofV ; Σ ∈ Rn×n is a real diagonal
matrix whose diagonal elements are nonnegative. If A is nonsingular, the diagonal elements
of Σ are strictly positive; the converse is also true.

�e SVD can also be written as

A =
n
∑
i=1

σiuiv†i , (2.14)

where σi is the ith diagonal element of Σ; ui and vi are the ith column of U and V , re-
spectively. Because U and V are unitary, each of {u1, . . . , un} and {v1, . . . , vn} forms an
orthonormal basis of Cn. Each σi is referred to as a singular value of A; ui and vi are the
corresponding le� and right singular vectors, respectively.

�e maximum and minimum singular values,

σmax =max
1≤i≤n

σi and σmin =min
1≤i≤n

σi , (2.15)
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are collectively called the extreme singular values. �e le� and right singular vectors cor-
responding to σmax are denoted by umax and vmax, and called the maximum le� and right
singular vectors, respectively. Similarly, the minimum le� and right singular vectors are the
singular vectors corresponding to σmin, and denoted by umin and vmin.

From Eq. (2.14), it follows that

Avi = σiui and A†ui = σivi . (2.16)

�erefore, the singular values and vectors can be obtained by solving aHermitian eigenvalue
problem

H(A)
⎡
⎢
⎢
⎢
⎢
⎣

ui

vi

⎤
⎥
⎥
⎥
⎥
⎦

= σi

⎡
⎢
⎢
⎢
⎢
⎣

ui

vi

⎤
⎥
⎥
⎥
⎥
⎦

, where H(A) =
⎡
⎢
⎢
⎢
⎢
⎣

0 A
A† 0

⎤
⎥
⎥
⎥
⎥
⎦

. (2.17)

In Sec. 2.3.6 of this chapter, we solve Eq. (2.17) for the largest or smallest nonnegative
eigenvalues by the Arnoldi Package (ARPACK) [45] to numerically calculate the extreme
singular values of A.3 ARPACK uses the Arnoldi iteration that only requires matrix-vector
multiplication. For the maximum and minimum singular values of A, the matrices multi-
plied iteratively to vectors are H(A) and H(A)−1, respectively [47]. �is means that a large
system of linear equations needs to be solved repeatedly for the minimum singular value,
which is extremely costly unless the LU factors of H(A) are known. For this reason, all
numerical calculations of the singular values and vectors in Sec. 2.3.6 are limited to two-
dimensional (2D) EM systems, for which the LU factorization is easily performed.

�e singular values and vectors also satisfy a di�erent Hermitian eigenvalue equation

(A†A)vi = σ2i vi (2.18)

that is derived fromEq. (2.16). Because κ(A†A) = κ(A)2 and κ(H(A)) = κ(A), A†A is much
worse-conditioned than H(A), so we use Eq. (2.17) rather than Eq. (2.18) to solve for the
singular values numerically. Nevertheless, Eq. (2.18) turns out to be useful in the theoretical
analysis in Secs. 2.3.2 through 2.3.4.

3�e actual calculation of the extreme singular values is carried out using the MATLAB routine svds [46],
which uses ARPACK internally.
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�e extreme singular values can also be calculated by the variational method. As a con-
sequence of Eq. (2.14) we have

σmax =maxx≠0
∥Ax∥
∥x∥

and σmin =minx≠0
∥Ax∥
∥x∥

, (2.19)

where ∥⋅∥ is the 2-norm of a vector. Note that the quotient ∥Ax∥/∥x∥ is maximized to σmax
at x = vmax and minimized to σmin at x = vmin. In Sec. 2.3.5, we use the variational method to
estimate the extreme singular values of inhomogeneous EM systems.

�emaximum singular value of a matrix is related to a norm of the matrix. �e p-norm
of a matrix is de�ned as [44Sec. 2.3.1]

∥A∥p =maxx≠0

∥Ax∥p
∥x∥p

, (2.20)

where ∥y∥p = (∑i ∣yi ∣
p
)
1/p on the right-hand side is the p-norm of a column vector y. Com-

paring Eq. (2.20) for p = 2 with Eq. (2.19) reveals that

σmax(A) = ∥A∥, (2.21)

where the subscript 2 is omitted from ∥⋅∥2 as a convention throughout this chapter.

�ere is an inequality that holds between the matrix p-norms [44Corollary 2.3.2]:

∥A∥ ≤
√

∥A∥1∥A∥∞. (2.22)

Because the∞-norm satis�es ∥A∥∞ = ∥A⊺∥1, Eq. (2.22) implies that

σmax(A) ≤ ∥A∥1 for symmetric A. (2.23)

�e right-hand side of Eq. (2.23) is easily evaluated, because the 1-norm reduces to

∥A∥1 =max1≤ j≤n∑
n
i=1 ∣ai j∣ = (the maximum absolute column sum), (2.24)

where ai j is the (i , j)th element of A.
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Finally, we note that the singular values, singular vectors, and the condition number are
the properties of a matrix. Below, however, we refer to these terms as the properties of an
EM system, which are understood as those of the matrix that describes the EM system. For
example, “the maximum singular value of a homogeneous vacuum” means “the maximum
singular value of the matrix describing a homogeneous vacuum.”

2.3.2 Maximum singular values of homogeneous media

In this section, we derive approximate formulae for the maximum singular values of a ho-
mogeneous regular medium, homogeneous UPML, and homogeneous SC-PML. Here, a
homogeneous medium is de�ned as an in�nite space described by translationally invariant
EM parameters; for a regular medium it means that ε is constant over all space, and for PML
it means that the PML scale factors sw for w = x , y, z as well as ε are constant over all space.

For simplicity, we consider PML with only one attenuation direction, which, without
loss of generality, is assumed to be the x-direction. Hence, we have sy = sz = 1 and

sx = 1 − is′′x with s′′x ≫ 1, (2.25)

where the assumption s′′x ≫ 1 is due to the discussion following Eq. (2.8). Equation (2.25)
implies that

sx ≃ −is′′x and ∣sx ∣ ≃ s′′x ≫ 1. (2.26)

We use the notations σu0max and σ sc0max for the maximum singular values of a homogeneous
UPML and SC-PML to distinguish them from σumax and σ scmax of inhomogeneous EM systems
de�ned in Eq. (2.12) and below. In addition, themaximum singular value of a homogeneous
regular medium is denoted by σ r0max.

Because a homogeneous EM system is spatially unbounded, discretizing the govern-
ing di�erential equation results in an in�nitely large matrix. To avoid dealing with such an
in�nitely large matrix, we �rst examine the maximum singular values of the original di�er-
ential operators used in Eqs. (1.6), (2.1), and (2.3); we take the e�ect of �nite-di�erence dis-
cretization into account later. �e di�erential operators for a homogeneous regularmedium,



26 CHAPTER 2. CORRECT CHOICE OF PML

UPML, and SC-PML are de�ned as

Tr0(E) = ∇ × µ−1∇× E − ω2εE, (2.27a)

Tu0(E) = ∇ × µ−1s ∇× E − ω2εsE, (2.27b)

T sc0(E) = ∇s × µ−1∇s × E − ω2εE. (2.27c)

Below, we refer to them collectively as T when we discuss properties that are common to all
three operators. �e purpose of this section is to estimate σmax(T).

Because T is a translationally invariant operator, the composite operator T† ○ T is also
translationally invariant, which implies that its eigenvector, and hence the right singular
vector of T , has the form [48Sec. 2.3.2, 49Sec. 2.6.1]

Ek(r) = Fke−ik⋅r, (2.28)

where k is real and Fk is constant.

By applying Tr0 , Tu0 , and T sc0 to Ek, we obtain

Tr0(Ek) = −k × µ−1k × Ek − ω2εEk ≡ Tr0k Ek , (2.29a)

Tu0(Ek) = −k × µ−1s k × Ek − ω2εsEk ≡ Tu0k Ek , (2.29b)

T sc0(Ek) = −ks × µ−1ks × Ek − ω2εEk ≡ T sc0k Ek , (2.29c)

where ks = x̂(kx/sx) + ŷ(ky/sy) + ẑ(kz/sz) with sy = sz = 1; Tr0k , T
u0
k , and T sc0k are 3 × 3

matrices operating on the vector [Ek,x Ek,y Ek,z]
⊺. To facilitate computation, without loss of

generality, we choose a coordinate system such that k lies in the xy-plane. (We recall that
the attenuation direction of PML is x̂.) �en,

Tr0k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k2y
µ − ω2ε −

kx ky
µ 0

−
kx ky
µ

k2x
µ − ω2ε 0

0 0 k2x
µ +

k2y
µ − ω2ε

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.30a)
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Tu0k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k2y
sx µ −

ω2ε
sx −

kx ky
sx µ 0

−
kx ky
sx µ

k2x
sx µ − sxω2ε 0

0 0 k2x
sx µ +

sx k2y
µ − sxω2ε

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.30b)

T sc0k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k2y
µ − ω2ε −

kx ky
sx µ 0

−
kx ky
sx µ

k2x
s2x µ

− ω2ε 0

0 0 k2x
s2x µ

+
k2y
µ − ω2ε

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.30c)

Note that Eq. (2.30) are the k-space representations of Tr0 , Tu0 , and T sc0 . Below, we refer to
them collectively as Tk when we discuss properties that are common to all three matrices.
We note that the quantity we want to estimate, i.e., σmax(T), satis�es

σmax(T) =max
k

σmax(Tk). (2.31)

By solving Eq. (2.18) with A = Tk, we easily obtain one singular value σk,3 of Tk corre-
sponding to a singular vector [0 0 1]⊺:

σ r0k,3 = ∣
k2x
µ
+
k2y
µ
− ω2ε∣ , σu0k,3 = ∣

k2x
sxµ

+
sxk2y
µ

− sxω2ε∣ , σ sc0k,3 = ∣
k2x
s2xµ

+
k2y
µ
− ω2ε∣ . (2.32)

�e subscript 3 of σk,3 indicates that the singular value is produced from the (3, 3)th element
of Tk.

To estimate σmax(T), we �nd lower and upper bounds of σmax(T) using Eqs. (2.30)
through (2.32). From Eq. (2.31) and the de�nition (2.15) of the maximum singular value,
we have

σmax(T) =max
k

σmax(Tk) ≥max
k

σk,3. (2.33)

Also, from Eq. (2.31) and the inequality (2.23) we have

σmax(T) =max
k

σmax(Tk) ≤max
k

∥Tk∥1. (2.34)

�erefore σmax(T) satis�es

max
k

σk,3 ≤ σmax(T) ≤max
k

∥Tk∥1. (2.35)
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Below we show that the lower and upper bound in the above inequality are approximately
the same, and therefore we �nd a good estimate of σmax(T).

We �rst consider the lower bound in Eq. (2.35). From Eq. (2.32) it is obvious that σk,3
increases with ∣kx ∣ and ∣ky∣. For a continuous medium, kx and ky are unbounded, and so
is σk,3. On a �nite-di�erence grid with uniform grid cell size ∆, however, the maximum
wavenumber in each Cartesian direction is the Nyquist wavenumber [41Sec. 3.2, 49Sec. 4.2]

kmax =
π
∆
, (2.36)

and therefore σk,3 is bounded from above; here we note that ∣ky∣ ≤ kmax in 2D but ∣ky∣ ≤
√
2kmax in 3D, because in 3D ky actually contains the y- and z-components of the wavevec-
tor due to the special choice of our coordinate system made in the discussion following
Eq. (2.29). Furthermore, when kmax is used to maximize σk,3, it turns out that we can ignore
ω2 terms in Eq. (2.32) because ∆ is typically far smaller than a wavelength. As a result, for
the three T the �rst inequality of Eq. (2.35) can be written approximately as

σ r0max ≳
2k2max
µ
, σu0max ≳

∣sx ∣k2max
µ

, σ sc0max ≳
k2max
µ

in 2D, (2.37a)

σ r0max ≳
3k2max
µ
, σu0max ≳

2∣sx ∣k2max
µ

, σ sc0max ≳
2k2max
µ

in 3D, (2.37b)

where we use the inequality (2.26) for further approximation.

Next, we consider the upper bound inEq. (2.35). Calculatingmaxk ∥Tk∥1 usingEq. (2.24),
we obtain

σ r0max ≤
2k2max
µ

+ω2∣ε∣, σu0max ≤
k2max
∣sx ∣µ

+
∣sx ∣k2max

µ
+ ∣sx ∣ω2∣ε∣, σ sc0max ≤

k2max
∣sx ∣2µ

+
k2max
µ

+ω2∣ε∣ (2.38)

in 2D, and

σ r0max ≤
3k2max
µ

+ω2∣ε∣, σu0max ≤
k2max
∣sx ∣µ

+
2∣sx ∣k2max

µ
+∣sx ∣ω2∣ε∣, σ sc0max ≤

k2max
∣sx ∣2µ

+
2k2max
µ

+ω2∣ε∣ (2.39)



2.3. CONDITION NUMBERS OF THE UPML AND SC-PML MATRICES 29

in 3D. Using the inequality (2.26) and ignoring the ω2 terms again, we obtain

σ r0max ≲
2k2max
µ
, σu0max ≲

∣sx ∣k2max
µ

, σ sc0max ≲
k2max
µ

in 2D, (2.40a)

σ r0max ≲
3k2max
µ
, σu0max ≲

2∣sx ∣k2max
µ

, σ sc0max ≲
2k2max
µ

in 3D. (2.40b)

Because the approximate lower and upper bounds indicated in Eqs. (2.37) and (2.40) are
the same for each of σ r0max, σu0max, and σ sc0max, we have

σ r0max ≃
2k2max
µ
, σu0max ≃

∣sx ∣k2max
µ

, σ sc0max ≃
k2max
µ

in 2D, (2.41a)

σ r0max ≃
3k2max
µ
, σu0max ≃

2∣sx ∣k2max
µ

, σ sc0max ≃
2k2max
µ

in 3D, (2.41b)

and therefore

σu0max ≃
∣sx ∣
2

σ r0max and σ sc0max ≃
1
2

σ r0max in 2D, (2.42a)

σu0max ≃
2∣sx ∣
3

σ r0max and σ sc0max ≃
2
3

σ r0max in 3D. (2.42b)

�e result indicates a large contrast in magnitude between the maximum singular values of
a homogeneous UPML and SC-PML: σu0max is much larger than σ r0max, whereas σ sc0max is smaller
than σ r0max.

We note that each estimate in Eq. (2.41) is realized by the corresponding σk,3 in Eq. (2.32)
with appropriate k; in 2D for example, the estimate of σ r0max is achieved by σ r0k,3 for k such
that ∣kx ∣ = ∣ky∣ = kmax, and the estimates of σu0max and σ sc0max are achieved by σu0k,3 and σ sc0k,3 for
k such that kx = 0 and ky = ±kmax. �erefore, in 2D, one of k = ±[x̂kmax ± ŷkmax] is an
approximate wavevector of the maximum right singular vector corresponding to σ r0max, and
one of k = ±ŷkmax is an approximate wavevector of the maximum right singular vectors
corresponding to σu0max and σ sc0max.

So far, when deriving the estimates of σ r0max, σu0max, and σ sc0max, we have incorporated the
e�ect of the �nite-di�erence grid by simply imposing the upper bound kmax on wavevectors.
�e exact derivation that takes into account the �nite-di�erence approximation of spatial
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derivatives can be found in Appendix B. �e results are

σ r0max ≃
2(2/∆)2

µ
, σu0max ≃

∣sx ∣(2/∆)2
µ

, σ sc0max ≃
(2/∆)2

µ
in 2D, (2.43a)

σ r0max ≃
3(2/∆)2

µ
, σu0max ≃

2∣sx ∣(2/∆)2
µ

, σ sc0max ≃
2(2/∆)2

µ
in 3D. (2.43b)

We note that the exact results in Eq. (2.43) di�er from the approximate results in Eq. (2.41)
by only a factor of (2/π)2. �us the approximate results presented in this section, which are
simpler to derive, are in fact rather accurate. In particular, the main conclusion Eq. (2.42) of
this section, which is obtained from the approximate results, turns out to hold for the exact
results (2.43) as well.

2.3.3 Minimum singular values of homogeneous media

In this section, we examine theminimumsingular values of a homogeneous regularmedium,
homogeneous UPML, and homogeneous SC-PML denoted by σu0min, σ

sc0
min, and σ r0min, respec-

tively. Here, in addition to the assumptions sx = 1 − is′′x and sy = sz = 1 made about the PML
scale factors in Sec. 2.3.2, we assume that the media have no gain, i.e., ε′′ ≥ 0 in ε = ε′ − iε′′.
As in the previous section, here we also use the k-space representations Tr0k , T

u0
k , and

T sc0k of Eq. (2.30). We �nd σ r0min, σu0min, and σ sc0min as the minima of σmin(Tr0k ), σmin(Tu0k ), and
σmin(T sc0k ) over k, respectively.

First, we derive the conditions for Tr0k , T
u0
k , and T

sc0
k to be singular. Tr0k is singular when

det(Tr0k ) = −ω2ε(k2x/µ + k2y/µ − ω2ε)2 = 0, or equivalently

k2x + k2y = ω2µε. (2.44)

Similarly, Tu0k and T
sc0
k are singular when

k2x
s2x
+ k2y = ω2µε. (2.45)

Now, suppose that ε is positive (ε′ > 0, ε′′ = 0). We see that Eq. (2.44) is satis�ed by
in�nitely many real k lying on a circle in the k-space, and Eq. (2.45) is satis�ed by only
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two real k, i.e., k = ±ŷω√µε, because s2x has a nonzero imaginary part. Since a singular
matrix has 0 as a singular value as pointed out in Sec. 2.3.1, each of σmin(Tr0k ), σmin(Tu0k ), and
σmin(T sc0k ) is zero for some real k, which implies that

σu0min = σ sc0min = σ r0min = 0 for positive ε. (2.46)

On the other hand, in cases where ε is either negative (ε′ < 0, ε′′ = 0) or complex (ε′′ > 0),
Tr0k , T

u0
k , and T

sc0
k are nonsingular for all real k, because no real k satis�es Eq. (2.44) or (2.45).

�erefore, we have

σu0min, σ
sc0
min, σ

r0
min > 0 for negative or complex ε. (2.47)

From Eqs. (2.46) and (2.47), we conclude that the minimum singular values of homo-
geneous media with positive ε (e.g., dielectrics and PMLs matching dielectrics) are always
less than the minimum singular values of homogeneous media with negative ε or complex
ε with ε′′ ≥ 0 (e.g., metals and PMLs matching metals).

2.3.4 Minimum singular values of homogeneous media with ε > 0 in a

bounded domain

In Sec. 2.3.3, we have shown that the minimum singular values of a homogeneous regular
medium, UPML, and SC-PML are all zero for ε > 0. �e result has been obtained for ho-
mogeneous media in an in�nite space. However, simulation domains are always bounded.
In this section, we show that the minimum singular values of homogeneous media deviate
from 0 in a bounded domain, even if ε > 0. We also compare the amount of deviation for
di�erent homogeneous media.

�roughout this section, we use the notation c = 1/√µε; note that c > 0 because ε is
assumed positive in this section.

For simplicity, suppose that the bounded domain in the xy-plane is a rectangle whose
sides in the x- and y-directions are Lx and Ly, respectively. We impose periodic boundary
conditions on the x- and y-boundaries of the bounded domain. �en, kx and ky are limited



32 CHAPTER 2. CORRECT CHOICE OF PML

kx !!Ω " c#
ky !!Ω " c#

Σmin! k" #" Ω2 !$

UP
ML SC

-PM
L

regular

Figure 2.3: �e 3D plot of σmin(Tu0k ), σmin(T sc0k ), and σmin(Tr0k ) as functions of kx and ky.
�e three functions are drawn in a portion of the k-space where the functions are close to
zeros. �e surface of σmin(Tu0k ) is below that of σmin(T sc0k ) for all k displayed in the �gure
except k = ±ŷ(ω/c) where the two surfaces are both zero. �e surface of σmin(Tr0k ), on
the other hand, is neither consistently below nor above the other two. �e dashed lines in
the σmin(Tk) = 0 plane indicate kx ∈ Kx and ky ∈ Ky, so the intersections of the dashed
lines correspond to k ∈ K. �e rectangular simulation domain that quantizes kx and ky is a
square of side length L = 1.273λ0, where λ0 is the vacuum wavelength corresponding to ω.
�e speci�c value of L is chosen so that no quantized k is at the zeros of the three functions.
A PML scale factor sx = 1 − i10 is used.

to the quantized values in the sets

Kx = {
2πnx

Lx
∶ nx ∈ Z+} and Ky = {

2πny

Ly
∶ ny ∈ Z+} , (2.48)

respectively, where Z+ is the set of nonnegative integers; due to mirror symmetry of a ho-
mogeneous UPML and SC-PML, it is su�cient to consider kx ≥ 0 and ky ≥ 0. For later use
we also de�ne the set of all quantized k:

K = {x̂kx + ŷky ∶ kx ∈ Kx , ky ∈ Ky} . (2.49)
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When there is no k ∈ K satisfying Eqs. (2.44) and (2.45), all of σ r0min, σu0min, and σ sc0min de-
viate from 0 for a bounded domain, but by di�erent amounts. Figure 2.3 shows σmin(Tr0k ),
σmin(Tu0k ), and σmin(T sc0k ) in a portion of the k-space where they are close to zero. It shows
that σmin(Tu0k ) < σmin(T sc0k ) for all displayed k except k = ŷ(ω/c) for which both σmin(Tu0k )

and σmin(T sc0k ) are zero. �erefore, in generalwe expectmink∈K σmin(Tu0k ) <mink∈K σmin(T sc0k ),
or equivalently σu0min < σ sc0min. On the other hand, σmin(T

r0
k ) can be either above, between, or

below σmin(Tu0k ) and σmin(T sc0k ) in the �gure. Hence, σ r0min = mink∈K σmin(Tr0k ) can be ei-
ther less than, between, or greater than σu0min and σ sc0min, depending on the size of the bounded
domain.

We now estimate an upper bound of σu0min/σ sc0min for a bounded domain. For that purpose,
we examine the plots of σmin(Tu0k ) and σmin(T sc0k ) in Fig. 2.3 in more detail. Figure 2.4a
displays the same σmin(T sc0k ) shown in Fig. 2.3, but as a contour plot over an extended range
of kx . In Fig. 2.4a, we notice the following important features of σmin(T sc0k ):

First, σmin(T sc0k ) has a globalminimumof zero at k = ŷ(ω/c) due to the argument leading
to Eq. (2.46); accordingly, the contours in the vicinity of the global minimum point form
enclosing curves (cyan contours in Fig. 2.4a).

Second, the surface of σmin(T sc0k ) has a “valley”, where σmin(T sc0k ) is close to zero, along
a curve in the kxky-plane. �e shape of the curve can be derived from Eq. (2.45), which
describes the condition for σmin(T sc0k ) to be singular. Because of Eq. (2.26), the condition
(2.45) is approximated by

−
k2x
s′′x 2

+ k2y =
ω2
c2
. (2.50)

Hence, for k satisfying Eq. (2.50), T sc0k is nearly singular and has a close-to-zero singular
value. Equation (2.50) thus describes the bottom of the valley of the σmin(T sc0k ) surface. �e
curve described by Eq. (2.50), which is a hyperbola that is indicated by a black dashed line
in Fig. 2.4a, agrees well with the actual location of the bottom of the valley as can be seen
from the contour plot.

�ird, σmin(T sc0k ) varies much more slowly in kx than in ky; note that the scale of the ky
axis in Fig. 2.4a is exaggerated. �is can be shownmathematically by examining Eq. (2.30c).
We notice that interchanging kx/sx and ky only swaps the (1, 1)th and (2, 2)th elements of
the matrix and therefore does not change the singular values of T sc0k . Hence, σmin(T sc0k ) is
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Figure 2.4: (a) �e 2D contour plot of σmin(T sc0k ). �e values of σmin(T sc0k )/ω2ε are over-
laid on the corresponding solid contours; two cyan contours are drawn in addition to black
contours to demonstrate that the contours are closed at large kx ’s. �e black dashed line is
a hyperbola whose equation is Eq. (2.50), and describes the location of the valley very well.
At the ky = 2π/L and ky = 2(2π/L) cross sections indicated by the two white dashed lines,
σmin(Tu0k ) and σmin(T sc0k ) are plotted in (b) and (c). �e horizontal axes are drawn using
the same scale as that of (a), and the vertical axes are in a logarithmic scale. Note that the
functions are minimized at kx = 0 in (b), and around the “x” marks in (c). �e horizontal
locations of the small circles on the plots correspond to quantized kx . All parameters are the
same as those used in Fig. 2.3.
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a symmetric function of kx/sx and ky, and thus it has a stronger dependence on ky than kx
since ∣sx ∣ ≫ 1.

We do not display the contour plot of σmin(Tu0k ). However, σmin(Tu0k ) also exhibits the
three features described above.

Motivated by the third observation above, we derive an approximate upper bound of
σu0min/σ sc0min. Suppose that kuy ∈ Ky and kscy ∈ Ky are the y-components of the quantized k’s at
which σmin(Tu0k ) and σmin(T sc0k ) are minimized, respectively. �en, from the de�nitions of
σu0min and σ sc0min for a bounded domain, we have

σu0min
σ sc0min

=
minkx∈Kx minky∈Ky σmin(Tu0k )

minkx∈Kx minky∈Ky σmin(T sc0k )
=
minkx∈Kx σmin(Tu0k )ky=kuy
minkx∈Kx σmin(T sc0k )ky=kscy

≤
minkx∈Kx σmin(Tu0k )ky=kscy
minkx∈Kx σmin(T sc0k )ky=kscy

≤ max
ky∈Ky

{
minkx∈Kx σmin(Tu0k )

minkx∈Kx σmin(T sc0k )
} . (2.51)

�erefore, to estimate an upper bound of σu0min/σ sc0min, we estimate

minkx∈Kx σmin(Tu0k )

minkx∈Kx σmin(T sc0k )
(2.52)

for all ky. Because σmin(Tu0k ) and σmin(T sc0k ) are slowly varying functions of kx , we use the
approximation

minkx∈Kx σmin(Tu0k )

minkx∈Kx σmin(T sc0k )
≃
minkx≥0 σmin(Tu0k )

minkx≥0 σmin(T sc0k )
(2.53)

to estimate Eq. (2.52).

We estimate the right-hand side of Eq. (2.53) for ky < ω/c �rst. To visualize the general
behaviors of σmin(Tu0k ) and σmin(T sc0k ) for such ky, in Fig. 2.4b we plot them along the lower
white dashed line of Fig. 2.4a. Figure 2.4b indicates that σmin(Tu0k ) and σmin(T sc0k ) are mini-
mized at kx = 0 for ky < ω/c. In Appendix C.1 we show that in the limit of s′′x ≫ 1, which is
the numerically relevant situation, σmin(Tu0k ) and σmin(T sc0k ) are indeed minimized at kx = 0
for all ky < ω/c. �erefore, we have

min
kx≥0

σmin(Tk) ≃ σmin(Tk)kx=0 for Tk = Tu0k , T
sc0
k for ky <

ω
c
. (2.54)
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Since Tu0k and T
sc0
k of Eq. (2.30) are diagonalized for kx = 0, the right-hand side of Eq. (2.54)

is easily calculated as

σmin(Tu0k )kx=0 =
1

µ∣sx ∣
(

ω2
c2

− k2y) and σmin(T sc0k )kx=0 =
1
µ
(

ω2
c2

− k2y) . (2.55)

Combining Eq. (2.55) with Eqs. (2.53) and (2.54), we obtain

minkx∈Kx σmin(Tu0k )

minkx∈Kx σmin(T sc0k )
≃
1

∣sx ∣
for ky <

ω
c
. (2.56)

Next, we consider ky > ω/c. Such ky is indicated by the upper white dashed line in
Fig. 2.4a, along which σmin(Tu0k ) and σmin(T sc0k ) are plotted in Fig. 2.4c. As seen in Fig. 2.4c,
at such a given ky the minima of σmin(Tu0k ) and σmin(T sc0k ) occur in the valley, with the
location of the minima very well-approximated by kx = s′′x [k2y − ω2/c2]1/2 (see Eq. (2.50));
this is shown more rigorously in Appendix C.1 for s′′x ≫ 1. �erefore, we have

min
kx≥0

σmin(Tk) ≃ σmin(Tk)
kx=s′′x

√
k2y− ω2

c2

for Tk = Tu0k , T
sc0
k for ky >

ω
c
. (2.57)

By evaluating the right-hand side of Eq. (2.57) approximately, in Appendix C.2 we show that

σmin(Tu0k )
kx=s′′x

√
k2y− ω2

c2

≃ 2ω2ε
k2y − ω2/c2

(s′′x 2 + 1)k2y − ω2/c2
, (2.58a)

σmin(T sc0k )
kx=s′′x

√
k2y− ω2

c2

≃
2
s′′x

ω2ε
k2y − ω2/c2

2k2y − ω2/c2
. (2.58b)

�e two “x” marks drawn at kx = s′′x
√

k2y − ω2
c2 in Fig. 2.4c indicate the values determined by

Eq. (2.58). �e good agreement of the marks with the actual minima in the �gure validates
Eq. (2.58).

Combining Eq. (2.58) with Eqs. (2.53) and (2.57), we obtain

minkx∈Kx σmin(Tu0k )

minkx∈Kx σmin(T sc0k )
≃
2s′′x k2y − s′′x ω2/c2

(s′′x 2 + 1)k2y − ω2/c2
for ky >

ω
c
. (2.59)
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For ky > ω/c, the right-hand side of Eq. (2.59) is an increasing function of k2y, so its maxi-
mum is attained at ky = ∞. Hence, σu0min/σ sc0min is bounded from above as

minkx∈Kx σmin(Tu0k )

minkx∈Kx σmin(T sc0k )
≲
2s′′x

s′′x 2 + 1
for ky >

ω
c
. (2.60)

Lastly, we consider the case where ky is very close to ω/c; such a case occurs either
when Ly ≫ λ so that ky is quantized very �nely, or when Ly ≃ mλ for some integer m so
that 2πm/Ly ≃ ω/c, where λ = 2πc/ω is the wavelength in the medium described by ε.
In this case, the minima of σmin(Tu0k ) and σmin(T sc0k ) over kx ∈ K occur in the vicinity of
the global minimum point k = ŷ(ω/c). Hence, both minima are very close to zeros, and
the approximation (2.53) we have used to derive Eqs. (2.56) and (2.60) may not be accurate
enough. �erefore, we provide a direct estimate of Eq. (2.52) for ky ≃ ω/c.

For ky ≃ ω/c, suppose that kux ∈ Kx and kscx ∈ Kx are the x-components of the quantized
k’s at which σmin(Tu0k ) and σmin(T sc0k ) are minimized, respectively. �en, Eq. (2.52) satis�es

minkx∈Kx σmin(Tu0k )

minkx∈Kx σmin(T sc0k )
=

σmin(Tu0k )kx=kux
σmin(T sc0k )kx=kscx

≤
σmin(Tu0k )kx=kscx
σmin(T sc0k )kx=kscx

for ky ≃
ω
c
. (2.61)

It is reasonable to assume that kscx is very close to kx = 0, which is the x-component of
the global minimum point. In Appendix C.3, we derive the lowest-order approximation of
σmin(Tu0k )/σmin(T sc0k ) around kx = 0 and ky = ω/c. �e result is

σmin(Tu0k )kx=kscx
σmin(T sc0k )kx=kscx

≃
1

∣sx ∣
for ky ≃

ω
c
. (2.62)

From Eqs. (2.61) and (2.62), we have

minkx∈Kx σmin(Tu0k )

minkx∈Kx σmin(T sc0k )
≲
1

∣sx ∣
for ky ≃

ω
c
. (2.63)
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Figure 2.5: An example of an inhomogeneous EM system. �e hypothetical system has a
dielectric cavity (S6) side-coupled to a dielectric waveguide (S9) immersed in a background
metal (S5). �e system is composed of several subdomains Si , each of which is �lled with a
homogeneous medium. We de�ne Si as a domain excluding its boundary.

Combining Eqs. (2.56), (2.60), (2.63) with Eq. (2.51), we conclude that σu0min/σ sc0min is ap-
proximately bounded from above as

σu0min
σ sc0min

≲max{
1

∣sx ∣
,
2s′′x

s′′x 2 + 1
,
1

∣sx ∣
} ≃

2
∣sx ∣
. (2.64)

In summary, the minimum singular values of a homogeneous regular medium, UPML,
and SC-PML for positive ε are all zero as shown in Eq. (2.46), but for a bounded domain they
deviate from 0. When such deviation occurs, σu0min is much smaller than σ sc0min as Eq. (2.64)
describes, but σ r0min can be either less than, between, or greater than σu0min and σ sc0min.

2.3.5 Variational method to estimate extreme singular values of inho-

mogeneous EM systems

In this section, we provide general estimates of the extreme singular values of EM systems
surrounded by either UPML or SC-PML using the variational method. An example of such
EM systems is illustrated in Fig. 2.5. Because the EM system consists of several regularmedia
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and PML, we refer to it as an inhomogeneous EM system to distinguish it from the homoge-
neous EM systems examined in the previous sections.

We estimate the extreme singular values of an inhomogeneous EM system using the
variational method introduced in Eq. (2.19), and express them in terms of the extreme sin-
gular values of the homogeneous media examined in Secs. 2.3.2 through 2.3.4. Using the
estimates, we show that

σumax
σ scmax

≫ 1, (2.65)

σumin
σ scmin

≲ 1, (2.66)

and therefore
κu
κsc

=
σumax
σ scmax

σ scmin
σumin

≫ 1. (2.67)

�e inequality (2.67) indicates that Au is much worse-conditioned than Asc.

As inferred from the discussion following Eq. (2.19), estimation of the extreme singular
values by the variational method is closely related to estimation of the corresponding ex-
treme right singular vectors. We use the notations vumax, vumin and vscmax, vscmin to refer to the
extreme right singular vectors of Au and Asc.

A typical inhomogeneous EM system is composed of a few homogeneous subdomains
Si as illustrated in Fig. 2.5. At least one of the EM parameters of each subdomain is di�er-
ent from the corresponding parameter of the neighboring subdomains. We assume that all
PML regions in the system have the same constant PML scale factors in their attenuation
directions w, i.e.,

sw(l) = s0 = 1 − is′′0 and s′′0 ≫ 1. (2.68)

First, we estimate the maximum singular value of an inhomogeneous EM system. From
Eq. (2.19), the maximum singular value σmax = σmax(A) is the maximum of the quotient
r(x) = ∥Ax∥/∥x∥ over all x, where A is either Au or Asc. We consider the maximum of
r(x) over x whose nonzero elements are con�ned in a speci�c homogeneous subdomain
Si . Suppose that x∣S i is a column vector that has the same elements as x inside Si and zeros
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outside. We de�ne
σmax∣S i =maxx r(x∣S i) . (2.69)

�en, by the de�nition of σmax we have

σmax ≥max
i

σmax∣S i . (2.70)

In addition, we have4

σ2max =maxx
∥Ax∥2

∥x∥2
≃max

x

∥∑i Ax∣S i∥
2

∥∑i x∣S i∥
2 ≃max

x

∑i ∥Ax∣S i∥
2

∑i ∥x∣S i∥
2

=max
x

(∑i ρi(x)r(x∣S i)
2
) ≤max

x
(∑i ρi(x) (σmax∣S i)

2
) , (2.71)

where

ρi(x) =
∥x∣S i∥

2

∑ j ∥x∣S j∥
2 . (2.72)

Because∑i ρi(x) = 1,∑i ρi(x)(σmax∣S i)
2 is the weighted average of (σmax∣S i)

2 over all i, so it
is always less than or equal to maxi(σmax∣S i)

2. �us Eq. (2.71) leads to

σ2max ≲maxx (max
i

(σmax∣S i)
2
) =max

i
(σmax∣S i)

2 . (2.73)

�e two inequalities (2.70) and (2.73) dictate

σmax ≃max
i

σmax∣S i . (2.74)

4Here we use four equalities ∥x∥2 ≃ ∥∑i x∣S i∥
2
= ∑i ∥x∣S i∥

2
and ∥Ax∥2 ≃ ∥∑i Ax∣S i∥

2
≃ ∑i ∥Ax∣S i∥

2
.

Out of the four equalities, only ∥∑i x∣S i∥
2
= ∑i ∥x∣S i∥

2
is exact because the elements of x∣S i are zeros at the

boundary of S i by de�nition (See the caption of Fig. 2.5) so that x∣S i is orthogonal to x∣S j
for i ≠ j. �e other

three equalities are approximate, because x and∑i x∣S i are di�erent at the boundaries of the subdomains, and
Ax∣S i is not necessarily orthogonal to Ax∣S j

for neighboring S i and S j . Still, the approximations hold as long
as the elements of a vector at the boundaries of the subdomains contribute negligibly to the norm of the vector.
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�erefore, the maximum singular value of an inhomogeneous EM system can be approxi-
mated by the largest of the maximum singular values of the homogeneous subdomains con-
stituting the inhomogeneous system. Accordingly, the maximum right singular vector vmax
tends to be concentrated in a speci�c subdomain Si = S for which σmax ≃ σmax∣S .

Because Ax∣S i = Ai x∣S i , where Ai is the operator for the homogeneous medium used in
Si , σmax∣S i is approximated as5

σmax∣S i ≃

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ r0max for Si outside the PML region,

σu0max for Si inside the UPML region,

σ sc0max for Si inside the SC-PML region.

(2.75)

Here, we ignore the subdomains Si where PMLs overlap (e.g., the four corners in Fig. 2.5),
simply because they typically do not interact with incident waves strongly; we will see in
Sec. 2.3.6 that this assumption is consistent with direct numerical calculations. Note that
σmax∣S i ’s in Eq. (2.75) are independent of ε, because σ r0max, σu0max, and σ sc0max do not depend on ε
as shown in Eq. (2.43).

We apply Eq. (2.75) to Eq. (2.74) for A = Au and A = Asc separately to estimate σumax and
σ scmax. An inhomogeneous EM system consists of regular media and UPML for A = Au, and
of regular media and SC-PML for A = Asc. �erefore, we have

σumax ≃max {σ r0max, σu0max} = σu0max, (2.76)

σ scmax ≃max {σ r0max, σ sc0max} = σ r0max, (2.77)

where themagnitudes of σ r0max, σu0max, and σ sc0max are compared using Eq. (2.42). Equations (2.76)
and (2.77) imply that vumax and vscmax tend to be concentrated in the UPML region and the
region of regular media, respectively.

5For σmax∣S i to be approximated well by one of σ r0max, σu0max, and σ sc0max, the subdomain S i needs to be suf-
�ciently large, because each homogeneous medium studied in Sec. 2.3.2 is assumed to �ll an in�nite space.
However, for 2D problems for example, as described in the discussion following Eq. (2.41) the maximum right
singular vectors Ek of the three homogeneous media in Sec. 2.3.2 have ∣k∣ =

√

2kmax or ∣k∣ = kmax, which cor-
respond to the wavelengths

√

2∆ or 2∆ that are much smaller than the usual size of a subdomain. Hence, S i is
in e�ect an in�nite space when the maximum singular value is concerned, which justi�es the approximation
(2.75).
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From Eqs. (2.76), (2.77), and (2.42), we obtain

σumax
σ scmax

≃
σu0max
σ r0max

≃
∣s0∣
2

in 2D, (2.78a)

σumax
σ scmax

≃
σu0max
σ r0max

≃
2∣s0∣
3

in 3D, (2.78b)

which prove Eq. (2.65).

Next, we estimate theminimum singular value of an inhomogeneous EM system. De�n-
ing σmin = σmin(A) and σmin∣S i =minx r(x∣S i), and following a process similar to Eqs. (2.70)
through (2.73) except that now we minimize instead of maximize, we obtain

σmin ≃mini σmin∣S i , (2.79)

which is a result that parallels Eq. (2.74). �erefore, the minimum singular value of an inho-
mogeneous EM system can be approximated by the smallest of theminimum singular values
of the homogeneous subdomains constituting the inhomogeneous system. Accordingly, the
minimum right singular vector vmin tends to be concentrated in a speci�c subdomain Si = S
for which σmin ≃ σmin∣S .

Below, we make one more assumption. We assume that at least one of the PML subdo-
mains (e.g., S8 or S10 in Fig. 2.5) is adjacent to, and hence matches, a dielectric (as opposed
to metallic) subdomain. �is assumption is not very restrictive, because a�er all, as seen
in the benchmark problems in Sec. 1.4, the purpose of using PML is to simulate situations
where there are waves propagating out of the simulation domain; such outgoing waves are
supported only in the presence of a dielectric adjacent to PML.

With this additional assumption, when looking for the smallest of σmin∣S i ’s in Eq. (2.79),
we can ignore subdomains made of metals or lossy materials, because such materials always
have larger minimum singular values than lossless dielectrics as shown in Sec. 2.3.3. �en,
in Eq. (2.79) we only need to consider subdomains D j made of dielectrics and subdomains
Pk made of either UPML or SC-PML that match such dielectrics. For these subdomains, we
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have

σmin∣S i ≃

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ r0min∣D j
for Si = D j,

σu0min∣Pk for Si = Pk inside the UPML region,

σ sc0min∣Pk for Si = Pk inside the SC-PML region,

(2.80)

where σ r0min∣D j
, σu0min∣Pk , and σ sc0min∣Pk are the minimum singular values of the three homoge-

neous media in a bounded domain examined in Sec. 2.3.4; the bounded domain in this case
is either Pk or D j.

We apply Eq. (2.80) to Eq. (2.79) for A = Au and A = Asc separately to estimate σumin and
σ scmin. An inhomogeneous EM system consists of regular media and UPML for A = Au, and
of regular media and SC-PML for A = Asc. �erefore, we have

σumin ≃min{min j σ r0min∣D j
, mink σu0min∣Pk} =min{σ r0min∣D , σ

u0
min∣P} , (2.81)

σ scmin ≃min{min j σ r0min∣D j
, mink σ sc0min∣Pk} =min{σ r0min∣D , σ

sc0
min∣P′} , (2.82)

where D, P, and P′ are the subdomains that minimize σ r0min∣D j
, σu0min∣Pk , and σ sc0min∣Pk , respec-

tively. Equations (2.81) and (2.82) imply that both vumin and vscmin tend to be concentrated in
either a dielectric or a dielectric-matching PML. Whether they are in a dielectric or PML,
however, depends on the magnitude of σ r0min∣D relative to σu0min∣P and σ sc0min∣P′ .

For the same subdomain Pk, (σu0min∣Pk)/(σ sc0min∣Pk) ≪ 1 according to Eq. (2.64). Hence, we
have

σu0min∣P
σ sc0min∣P′

≤
σu0min∣P′
σ sc0min∣P′

≪ 1, (2.83)

which results in

σumin
σ scmin

≃
min{σ r0min∣D , σ

u0
min∣P}

min{σ r0min∣D , σ
sc0
min∣P′}

≤
min{σ r0min∣D , σ

sc0
min∣P′}

min{σ r0min∣D , σ
sc0
min∣P′}

= 1. (2.84)

�e inequality (2.84) directly leads to Eq. (2.66).

From Eqs. (2.78) and (2.84), we conclude that

κu
κsc

=
σumax
σ scmax

σ scmin
σumin

≳
∣s0∣
2

in 2D, (2.85a)
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κu
κsc

=
σumax
σ scmax

σ scmin
σumin

≳
2∣s0∣
3

in 3D. (2.85b)

�erefore, the condition number of an inhomogeneous EM system surrounded by UPML is
much larger than the condition number of the same EM system surrounded by SC-PML in
general.

We end this section with two remarks. First, Eq. (2.84) does not necessarily mean that
σumin/σ scmin is close to 1. For example, consider a case where σ r0min∣D is greater than both σu0min∣P
and σ sc0min∣P′ in Eqs. (2.81) and (2.82). Such a case leads to

σumin
σ scmin

≃
σu0min∣P
σ sc0min∣P′

≤
σu0min∣P′
σ sc0min∣P′

≲
2
∣s0∣
, (2.86)

where the last inequality is fromEq. (2.64). �e inequality (2.86) demonstrates that σumin/σ scmin
can be much smaller than 1 indeed. �is further implies that it is possible to have

κu
κsc

=
σumax
σ scmax

σ scmin
σumin

≳
∣s0∣2

4
in 2D, (2.87a)

κu
κsc

=
σumax
σ scmax

σ scmin
σumin

≳
∣s0∣2

3
in 3D, (2.87b)

which predict much larger κu/κsc than is expected from Eq. (2.85).

Second, as shown in Eq. (2.85), κu/κsc increases with ∣s0∣. �erefore, in nanophotonics
where ∣s0∣ can exceed 1000 asmentioned in Sec. 2.1, we expect the ratio between the condition
numbers of the UPML and SC-PML matrices to be very large. Especially, when Eq. (2.87)
holds, κu/κsc can be of the order of 105.

2.3.6 Numerical validation

In this section, we numerically validate the analysis in Sec. 2.3.5. We consider two 2D EM
systems as examples: a vacuum surrounded by PML (Fig. 2.6a), and ametal-dielectric-metal
(MDM) waveguide bend surrounded by PML (Fig. 2.6b). For these two EM systems, we
numerically calculate their extreme singular values as well as the corresponding extreme
right singular vectors. We compare the behavior of these quantities to the discussions in the
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Figure 2.6: Two inhomogeneous EM systems whose extreme singular values and condition
numbers are numerically calculated: (a) a vacuum surrounded by PML, and (b) a metal-
dielectric-metal waveguide bend surrounded by PML. �e grid cell sizes ∆ of the uniform
grids used to discretizeMaxwell’s equations are indicated in the �gures. Relevant dimensions
of the structures are displayed in terms of ∆. All PMLs are 10∆ thick. For both EM systems,
the vacuum wavelength λ0 = 1550nm is used. In (b), the electric permittivity of silver [22]
at λ0 is εAg = (−129 − i3.28)ε0.

previous sections.

We �rst examine the system in Fig. 2.6a. Here, we use a constant PML loss parameter.
With ∆ = 20nm, d = 10∆, m = 0, and R = e−16 ≃ 1 × 10−7 in Eqs. (2.6) and (2.7), the PML
scale factor of Eq. (2.5) is

sw(l) = s0 = 1 − i9.868 (2.88)

in each attenuation direction w.

Table 2.1 compares numerically calculated σumax and σ scmax with their estimates derived in
Eqs. (2.76) and (2.77). �e agreement is very good with errors only about 0.1 ∼ 0.2%. As
a result, σumax/σ scmax is also estimated very accurately by σu0max/σ r0max ≃ ∣s0∣/2 = 4.959, and thus
Eq. (2.78) is validated.

We visualize numerically calculated vumax and vscmax in Fig. 2.7. Note that the �gure plots
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Figure 2.7: �e maximum right singular vectors (a) vumax of the vacuum surrounded by
UPML, and (b) vscmax of the vacuum surrounded by SC-PML. �e real parts of the x-, y-, z-
components of vumax and vscmax are displayed. Outside the dashed boxes are PMLs matching
the vacuum, and both UPML and SC-PML are constructed with a constant PML loss pa-
rameter. Note that vumax is concentrated in the UPML region, whereas vscmax is concentrated in
the vacuum region. Also notice the high-frequency oscillation of both the maximum right
singular vectors. �e numbers along the horizontal and vertical axes in each plot indicate
the x- and y-indices of the grid cells.
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σumax(×µ−10 /nm2) σ scmax(×µ−10 /nm2) σumax/σ scmax
Numerical 9.896 × 10−2 1.998 × 10−2 4.953
Estimated 9.919 × 10−2 2.000 × 10−2 4.959

Table 2.1: �e maximum singular values σumax and σ scmax of the vacua surrounded by UPML
and SC-PML, respectively, along with the ratio σumax/σ scmax. Notice the excellent agreement
between the estimates and numerically calculated values. �e numerically calculated maxi-
mum singular values are obtained by solving Eq. (2.17) so that ∥Avmax − σmaxumax∥/∥umax∥ <
10−11 for A = Au,Asc. �e estimates of the maximum singular values are evaluated using σu0max
and σ r0max in Eq. (2.43) with sx = s0. �e unit µ−10 /nm2 of the singular values is the normaliza-
tion factor used in our numerical solver.

the real parts of the x-, y-, z-components of vmax; because vmax is the solution of Eq. (1.14)
for the electric current source density j = (iσmax/ω)umax, the x-, y-, z-components of vmax
are well-de�ned as the Cartesian components of the solution E-�eld.

Figure 2.7 shows that vumax is concentrated in the UPML region, whereas vscmax is concen-
trated in the vacuum region. �is is exactly what we expect from the discussion of Eqs. (2.76)
and (2.77). Moreover, vumax and vscmax are indeed quite similar to the maximum right singular
vectors of a homogeneous UPML and regularmedium described in the discussion following
Eq. (2.42). Notice that both vumax and vscmax exhibit fast spatial oscillations, but the oscillations
have di�erent wavevectors k. For vumax, the dominant wavevector in each UPML section is
normal to the attenuation direction, and the wavelength is 2∆. �us, in the x-normal UPML
section for example, the dominant wavevector of vumax is k = ±ŷ(2π/2∆). On the other hand,
the dominant wavevector of vscmax is k = ±[x̂(2π/2∆) ± ŷ(2π/2∆)]. �ese are exactly the
wavevectors of the maximum right singular vectors of the homogeneous UPML and regular
medium described in the discussion following Eq. (2.42).

We now examine the minimum singular values of the same system of Fig. 2.6a. Table 2.2
displays numerically calculated σumin and σ scmin as well as the ratio between the two. �e ratio
is clearly less than 1, validating Eq. (2.84). Note that we do not have the estimates of the
minimum singular values in the table, because in Sec. 2.3.5 we have provided only a general
bound of the ratio σumin/σ scmin, but not detailed estimates of the individual minimum singular
values.

Notice that σumin/σ scmin in Table 2.2 is in fact close to 2/∣s0∣ = 0.2016. �is is consistent
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Figure 2.8: �e minimum right singular vectors (a) vumin of the vacuum surrounded by
UPML, and (b) vscmin of the vacuum surrounded by SC-PML. �e absolute values of the
x-, y-, z-components of vumin and vscmax are displayed. Note that both the minimum right sin-
gular vectors are concentrated in the PML region. �e numbers along the horizontal and
vertical axes in each plot indicate the x- and y-indices of the grid cells.
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σumin(×µ−10 /nm2) σ scmin(×µ−10 /nm2) σumin/σ scmin
Numerical 4.181 × 10−7 1.975 × 10−6 0.2117

Table 2.2: �e minimum singular values σumin and σ scmin of the vacua surrounded by UPML
and SC-PML, respectively, alongwith the ratio σumin/σ scmin. Note that σumin/σ scmin ≤ 1 as expected
from Eq. (2.84). �e numerically calculated minimum singular values are obtained by solv-
ing Eq. (2.17) so that ∥Avmin − σminumin∥/∥umin∥ < 10−11 for A = Au,Asc. �e unit µ−10 /nm2 of
the singular values is the normalization factor used in our numerical solver.

with vumin and vscmin shown in Fig. 2.8, where we plot the absolute values of the complex el-
ements of each singular vector. We see that vumin is concentrated in the UPML region, and
vscmin is concentrated in the SC-PML region. According to the discussion of Eqs. (2.81) and
(2.82), this corresponds to a case where σ r0min∣D is greater than both σu0min∣P and σ sc0min∣P′ . �en,
σumin/σ scmin satis�es Eq. (2.86) in addition to Eq. (2.84), which explains why σumin/σ scmin is close
to the upper bound 2/∣s0∣ in Eq. (2.86). However, we note that vumin and vscmin are not always
concentrated in the PML region; for the same system, it is actually possible to make them
concentrated in the region of regular media (vacuum in the present case) by changing the
wavelength or the size of the simulation domain.

Combining the results in Table 2.1 and 2.2, we obtain κu/κsc = 23.40 ≫ 1, which is
consistent with our conclusion in Sec. 2.3.5.

As a second example, we investigate the MDMwaveguide bend in Fig. 2.6b. In this case,
to be consistent with the typical use of PML in numerical simulations, we use a graded PML
loss parameter σw(l) rather than a constant one. With ∆ = 2nm, d = 10∆, m = 4, and
R = e−16 ≃ 1 × 10−7 in Eqs. (2.6) and (2.7), the PML scale factor of Eq. (2.5) is

sw(l) = s0(l) = 1 − i493.4( l
d
)

4

(2.89)

in each attenuation directionw. Note that ∣sw(d)∣, which is the the maximum of ∣sw(l)∣, has
increased from about 10 in Eq. (2.88) to about 500 in Eq. (2.89); the signi�cant increase in
∣sw(d)∣ is due to two factors: the use of the graded PML loss parameter, and the reduction
of ∆ from 20nm to 2nm. �erefore, as discussed at the end of Sec. 2.3.5, we expect much
larger κu/κsc for this system than for the �rst example analyzed above.

Table 2.3 shows the numerically calculated extreme singular values of Au and Asc for the
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σumax(×µ−10 /nm2) σ scmax(×µ−10 /nm2) σumax/σ scmax
Numerical 5.167 × 102 2.001 258.2
Estimated 4.934 × 102 2.000 246.7

(a) Maximum singular values of the MDM waveguide bends

σumin(×µ−10 /nm2) σ scmin(×µ−10 /nm2) σumin/σ scmin
Numerical 2.095 × 10−6 4.739 × 10−6 0.4420

(b) Minimum singular values of the MDM waveguide bends

Table 2.3: �e extreme singular values of the MDMwaveguide bends surrounded by UPML
and SC-PML. �e extreme singular values are calculated by solving Eq. (2.17) so that
∥Avi − σiui∥/∥ui∥ < 10−11 for A = Au,Asc. In (a), the estimates are evaluated using σu0max and
σ r0max in Eq. (2.43) with sx = s0(d). Notice that σumax/σ scmax is much larger than it is in Table 2.1.
�e unit µ−10 /nm2 of the singular values is the normalization factor used in our numerical
solver.

MDM waveguide bend. From the table, we con�rm that both Eqs. (2.78) and (2.84) are
satis�ed. Also, we have much larger κu/κsc for this example than for the �rst example; for
the present system, we have κu/κsc = 584.2.

In Table 2.3a, to estimate σumax as derived in Eq. (2.76), we have used σu0max of Eq. (2.43).
Strictly speaking, Eq. (2.43) is applicable only forUPMLwith a constant PML loss parameter.
However, eachUPML subdomainwith a gradedPML loss parameter can be treated as a stack
of UPML subdomains, each of which has a constant PML loss parameter. In such a stack,
the outermost UPML subdomain, which is closest to the edge of the simulation domain
and described by the PML scale factor s0(d), has the largest σu0max. Hence, we use σu0max in
Eq. (2.43) with sx = s0(d) as an estimate of σumax in Table 2.3a. �e estimate agrees quite well
with numerically calculated σumax. Accordingly, vumax is expected to be concentrated in the
outermost layers of the graded UPML subdomains.

Figure 2.9 displays vumax and vscmax for the MDM waveguide bend. As discussed above,
vumax is indeed concentrated in the outermost UPML region, and vscmax is also concentrated
in the region of regular media as expected. In addition, both vumax and vscmax exhibit the same
fast spatial oscillation as seen in the �rst example.
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(a) vmax of the MDM waveguide bend surrounded by UPML
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Figure 2.9: �e maximum right singular vectors (a) vumax of the MDM waveguide bend sur-
rounded by UPML, and (b) vscmax of the same waveguide bend surrounded by SC-PML. �e
real parts of the x-, y-, z-components of vumax and vscmax are displayed. Outside the dashed
boxes are PMLs, and both UPML and SC-PML are constructed with graded PML loss pa-
rameters. �e solid lines indicate the silver-vacuum interfaces; between the solid lines is
vacuum. Note that vumax is squeezed toward the boundary of the simulation domain where
the PML loss parameters are maximized, whereas vscmax is concentrated in the region of reg-
ular media. Also notice the high-frequency oscillation of both the maximum right singular
vectors. �e numbers along the horizontal and vertical axes in each plot indicate the x- and
y-indices of the grid cells.
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Figure 2.10: �e minimum right singular vectors (a) vumin of the MDM waveguide bend sur-
rounded by UPML, and (b) vscmin of the same waveguide bend surrounded by SC-PML. �e
absolute values of the x-, y-, z-components of vumin and vscmax are displayed. Note that the
nonzero elements of both the minimum right singular vectors are mostly con�ned in the
dielectric sections in the PML region. �e numbers along the horizontal and vertical axes
in each plot indicate the x- and y-indices of the grid cells.
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We also display vumin and vscmin for the MDM waveguide bend in Fig. 2.10. Both the min-
imum right singular vectors are concentrated in the slot region, where the electric permit-
tivity is ε0. �is follows the prediction in Sec. 2.3.5 that the minimum right singular vectors
tend to be concentrated in neithermetals nor PMLsmatchingmetals, but in either dielectrics
or PMLs matching dielectrics.
In summary of this section, all of the detailed predictions made in Sec. 2.3.5 about the

behavior of the extreme singular values, extreme right singular vectors, and the condition
numbers are validated numerically.

2.4 Diagonal preconditioning scheme for UPML

Our results in Secs. 2.2 and 2.3 strongly indicate that SC-PML is superior toUPML in solving
the frequency-domain Maxwell’s equations by iterative methods. However, there are cases
where one would like to use UPML for practical reasons. For example, in FEM, UPML is
easier to implement than SC-PML, because UPML is described by the same �nite-element
equation as regular media, whereas SC-PML is not [35, 50].
To use UPML in iterative solvers of the frequency-domain Maxwell’s equations, one

needs to accelerate convergence. For this purpose, Ref. [38] suggested to avoid overlap of
UPMLs at the corners of the simulation domain, even though some re�ection occurs at the
corners as a result. �e primary assumption in Ref. [38] was that the factors sw1 sw2/sw3 in
Eq. (2.2), which become especially large in overlapping UPML regions, resulted in an ill-
conditioned matrix. However, the arguments in Sec. 2.3.5 show that even without overlap
of UPMLs the matrix is still quite ill-conditioned. In addition, Figs. 2.7 and 2.8 illustrate
that the extreme right singular vectors do not reside in the overlapping UPML regions, and
thus at least for some EM systems, overlap of UPMLs is not the origin of the large condition
number of the UPML matrix.
Reference [39] reported enhanced convergence speed achieved by using an approximate

inverse preconditioner to the UPML matrix. However, the approximate inverse precondi-
tioner requires solving an additional optimization problem, which can be time-consuming
for large 3D EM systems.
In this section, we introduce a simple diagonal preconditioning scheme for the UPML
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matrix to achieve accelerated convergence of iterative methods. We �rst explore the rela-
tion between the UPML matrix and SC-PML matrix in Sec. 2.4.1. Based on this relation, in
Sec. 2.4.2 we devise the le� and right diagonal preconditioners for the UPML matrix, and
apply the preconditioners to the benchmark problem “Slot” described in Sec. 1.4 to demon-
strate the e�ectiveness of the preconditioning scheme.

2.4.1 Relation between UPML and SC-PML

In this section, we relate the EM �elds in a system surrounded by UPML with those in the
same system surrounded by SC-PML. Both PMLs are assumed to have the same and con-
stant PML scale factors.

Suppose that the SC-PML equation (2.3) has Esc as the solution for a given electric cur-
rent source density Jsc. With straightforward substitution, we can show that the following
E-�eld and electric current source density satisfy the UPML equation (2.1):

Eu =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sx 0 0
0 sy 0
0 0 sz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Esc, Ju =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sysz 0 0
0 szsx 0
0 0 sxsy

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Jsc. (2.90)

�e transformations in Eq. (2.90) can also be derived by applying the coordinate transforma-
tion of Maxwell’s equations introduced in Ref. [51Appendix]. It is also interesting to note that
the transformation for E in Eq. (2.90) predicts the discontinuity of the normal component
of the E-�eld at the UPML interface as described in Ref. [6Sec. 7.5.2].
We note that the transformation for E in Eq. (2.90) was derived earlier in Refs. [52, 53].

However, the transformation for J in Eq. (2.90) has been mostly ignored so far, because the
electric current source is usually placed outside PMLwhere the transformation has no e�ect.

�e transformations (2.90) can be written in terms of matrices and column vectors as

eu = Sl esc, ju = Sa jsc. (2.91)

In the FDFDmethod, Sl and Sa are diagonalmatriceswhose diagonal elements are the length
scale factors sw and area scale factors sw1 sw2 , respectively.
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Now, we relate Au and Asc using Eq. (2.91). Recall the systems of linear equations (2.9)
and (2.10). In the present notation, they are

Aueu = −iω ju, (2.92)

Ascesc = −iω jsc, (2.93)

considering Eq. (1.14). Substituting Eq. (2.91) in Eq. (2.92), we obtain

(S−1a AuSl) esc = −iω jsc. (2.94)

Comparing Eq. (2.93) with Eq. (2.94), we conclude that

Asc = S−1a AuSl . (2.95)

We emphasize that the simple relation Eq. (2.95) betweenAu andAsc holds only for PMLs
with constant PML scale factors; if the scale factors were not constant, the transformation
in Ref. [51Appendix] would not transform the SC-PML equation into the UPML equation.

2.4.2 Scale-factor-preconditioned UPML

In actual numerical simulationswhere PMLs are implementedwith graded PML loss param-
eters, the equality in Eq. (2.95) does not hold by the reason explained at the end of Sec. 2.4.1.
Nevertheless, the right-hand side of Eq. (2.95) proposes a preconditioning scheme for the
UPML matrix, which we refer to as the “scale-factor preconditioning scheme.” In this pre-
conditioning scheme, instead of solving the discretized UPML equation (2.9) directly, we
�rst solve

(S−1a AuSl)y = S−1a b (2.96)

for y, and then recover the solution x of Eq. (2.9) as

x = Sl y. (2.97)

�e scale-factor preconditioning scheme does not change the kind of PML used in the
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Figure 2.11: Convergence of QMR for the UPML equation, SC-PML equation, SP-UPML
equation, and the UPML equation preconditioned by the Jacobi preconditioner. �e exam-
ined EM system is the benchmark problem “Slot” described in Sec. 1.4, so the plots for the
UPML and SC-PML equations are identical to the corresponding plots in Fig. 2.2. �e solid
and dashedmagenta lines are for theUPML equation preconditioned by some precondition-
ers. Note that the convergence for the SP-UPML equation is as fast as that for the SC-PML
equation, which shows the e�ectiveness of the scale-factor preconditioning scheme. On
the other hand, the Jacobi preconditioning scheme barely improves the convergence for the
UPML equation.

EM system from UPML; the solution x obtained from Eqs. (2.96) and (2.97) is exactly the
solution of the discretized UPML equation (2.9). Even so, we refer to the implementation
of UPML with the scale-factor preconditioning scheme as the “scale-factor-preconditioned
UPML” (SP-UPML).

�e SP-UPMLmatrix, Asp = S−1a AuSl , is not equal to Asc when Sa and Sl are constructed
for graded PML loss parameters. However, we can expect it to have similar characteristics
as Asc, and therefore to be much better-conditioned than Au itself. Hence, the discretized
SP-UPML equation (2.96) can be much more favorable to numerical solvers than the dis-
cretized UPML equation.

As a numerical test, we solve the discretized SP-UPML equation by QMR for the the
benchmark problem “Slot”, which was solved also in Sec. 2.2. �e convergence behavior for
SP-UPML is depicted in Fig. 2.11, together with those for UPML and SC-PML. �e �gure
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demonstrates that SP-UPML performs as well as SC-PML; in fact, it achieves slightly faster
convergence than SC-PML.

To highlight the e�ectiveness of the scale-factor preconditioning scheme, we also plot
∥rm∥/∥b∥ for the UPML equation preconditioned by the conventional Jacobi preconditioner
in Fig. 2.11. �e system of linear equations for the Jacobi-preconditioned UPML equation is

P−1jac Aux = P−1jac b, (2.98)

where the Jacobi preconditioner Pjac is a diagonal matrix with the same diagonal elements
as Au. �e Jacobi preconditioning scheme makes convergence for UPML slightly faster, but
does not accelerate it as much as our proposed scale-factor preconditioning scheme.

�e scale-factor preconditioning scheme also has a few advantages over the approximate
inverse preconditioning scheme used in Ref. [39]. First, the scale-factor preconditioners Sa
and S−1l are determined analytically using the PML scale factors, and do not require solving
additional optimization problems. Second, the scale-factor preconditioners are diagonal,
so they are much faster to apply and more e�cient to store than any approximate inverse
preconditioners.

2.5 Summary and remarks

SC-PML is more favorable to numerical solvers of the frequency-domain Maxwell’s equa-
tions than UPML. For iterative solvers, SC-PML induces much faster convergence than
UPML. For direct solvers, SC-PML promises more accurate solutions than UPML because
it produces much better-conditioned matrices; the better-conditioned matrices also explain
the faster convergence of iterative solvers for SC-PML.

Nevertheless, there are cases where UPML is easier to implement than SC-PML. In such
cases, the scale-factor preconditioning scheme, which makes the UPML equation similar
to the SC-PML equation, proves to be useful. �is preconditioning scheme is much more
e�ective than the conventional Jacobi preconditioning scheme and more e�cient than the
approximate inverse preconditioning scheme.
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For numerical demonstrations, we constructed matrices by the FDFDmethod through-
out the chapter, but we emphasize that the conclusions of this chapter are not limited to a
speci�c method of discretizing the frequency-domain Maxwell’s equations. For example,
the condition number analysis in Sec. 2.3 was in essence estimation of the extreme singu-
lar values of the di�erential operators for homogeneous media. �e scale-factor precondi-
tioning scheme in Sec. 2.4 resulted from relating the UPML and SC-PML equations before
discretization. None of these approaches depend on the FDFD method.
In particular, our conclusion should hold for the �nite-element method of discretiz-

ing Maxwell’s equations. In the major results, the only modi�cation for FEM is that the
scale-factor preconditioners Sa and S−1l in Sec. 2.4 may not be diagonal but can have up to
3 nonzero elements per row, because the edge elements in FEM are not necessarily in the
Cartesian directions. �is could make construction of the preconditioners somewhat more
complex in FEM than in the FDFD method, but the existence of the preconditioners is still
guaranteed. We can further make the preconditioners diagonal if, in 2D for example, we
use a hybrid mesh that consists of rectangular elements inside PML and triangular elements
outside PML.



Chapter 3

Accelerated solution by engineering the
eigenvalue distribution1

Essentially, all models are wrong, but some are
useful.

George E. P. Box (1919–2013)

In plasmonic and nanophotonic systems, objects o�en have deep-subwavelength fea-
ture size. When the frequency-domain Maxwell’s equations for such systems are dis-

cretized, wavelengths are typically much longer than grid cell size ∆. �e discretized equa-
tions are referred to as being in the “low-frequency regime,” which will be de�ned more
rigorously in Sec. 3.1.

In this chapter, we develop a technique that is e�ective in the low-frequency regime. For
simplicity, we assume nonmagnetic materials (i.e., µ = µ0) and solve the equation

∇×∇ × E − ω2µ0εE = −iωµ0J (3.1)

that is modi�ed from Eq. (1.6).

1Reproduced in part with permission, from W. Shin and S. Fan, “Accelerated solution of the frequency-
domain Maxwell’s equations by engineering the eigenvalue distribution of the operator,” submitted to Optics
Express for publication. Unpublished work copyright 2013 OSA.
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In the low-frequency regime it is well-known that convergence is quite slow when iter-
ative methods are directly applied to solve Eq. (3.1). �e huge null space of the operator
∇ × (∇× ) was shown to be the origin of the slow convergence [54, 55], and several tech-
niques to improve the convergence speed have been developed.

�e �rst class of techniques is based on the Helmholtz decomposition, which decom-
poses the E-�eld as E = Ψ + ∇φ, where Ψ is a divergence-free vector �eld and φ is a scalar
�eld [54–60]. Because ∇ ⋅Ψ = 0, Eq. (3.1) is written as

−∇2Ψ − ω2µ0ε(Ψ +∇φ) = −iωµ0J, (3.2)

where the operator ∇ × (∇× ), which has a huge null space, is replaced with the negative
Laplacian −∇2, which is positive-de�nite for appropriate boundary conditions and thus has
the smallest possible null space. However, these techniques either solve an extra equation
for the extra unknown φ at every iteration step [54–57], which can be time-consuming, or
increase the number of the rows and columns of the matrix by about 33% [58–60], which
requires more memory.

�e second class of techniques utilizes the charge-free condition

∇ ⋅ (εE) = 0. (3.3)

�e condition (3.3) holds at every source-free (i.e., J = 0) position, where Eq. (3.1) can be
modi�ed to

∇×∇ × E + s∇[∇ ⋅ ((ε/ε0)E)] − ω2µ0εE = 0 (3.4)

for an arbitrary constant s; note that the right-hand side is 0 because J = 0. In this class of
techniques, Eqs. (3.1) and (3.4) are solved at positionswith andwithout sources, respectively.

Reference [61] applied the above technique with s = +1 to boundary value problems
described in Ref. [62] and achieved accelerated convergence. Such boundary value problems
satis�ed J = 0 everywhere, so Eq. (3.4) was solved throughout the entire simulation domain.

However, Ref. [61] did not conduct a detailed comparison of convergence speed between
di�erent values of s. It also did not report whether its technique leads to accelerated conver-
gence for problems with sources, even thoughmany problems have nonzero electric current
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sources J inside the simulation domain. Reference [1] applied the technique with s = +1 to
problems with sources, but only in order to suppress spurious modes rather than to accel-
erate convergence.

In this chapter, we develop a modi�cation of Eq. (3.1) that improves convergence speed
even if electric current sources J exist inside the simulation domain.2 Unlike the previous
technique that made the modi�cation only at source-free positions, our technique modi�es
Eq. (3.1) everywhere including positions with sources. For the modi�cation, we utilize the
continuity equation

∂ρ
∂t

+∇ ⋅ J = 0, or ∇ ⋅ (εE) = i
ω
∇ ⋅ J, (3.5)

which can be derived by taking the divergence of Eq. (3.1). When Eq. (3.5) is manipulated
appropriately and then added to Eq. (3.1), we obtain

∇×∇ × E + s∇[ε−1∇ ⋅ (εE)] − ω2µ0εE = −iωµ0J + s i
ω
∇[ε−1∇ ⋅ J] (3.6)

for a constant s. �e modi�ed equation (3.6) is the equation to solve in this chapter.

�e solution E-�eld of Eq. (3.6) is the same as the solution of the original equation (3.1)
regardless of the value of s, because the solution of Eq. (3.1) always satis�es Eq. (3.5). How-
ever, the choice of s a�ects the convergence speed of iterative methods signi�cantly. In this
chapter, we demonstrate that s = −1 induces faster convergence speed than other values of s
by comparing the convergence behavior of iterative methods for s = −1, 0,+1; the latter two
values of s are of particular interest, because s = 0 reduces Eq. (3.6) to the original equation
(3.1) and s = +1 is the value that Ref. [61] used in Eq. (3.4), which is similar to Eq. (3.6).

We also show that the di�erence in convergence behavior results from the di�erent
eigenvalue distributions of the operators for di�erent s. �ere are many general mathemati-
cal studies about the dependence of the convergence behavior on the eigenvalue distribution
[42Sec. 9.2, 63–69]. Our aim here is instead to provide an intuitive understanding of the con-
vergence behavior speci�cally for the operator of Eq. (3.6). For this purpose, we visualize
the residual vector and residual polynomial at each iteration step. As a result, we �nd that

2At the �nal stage of our work, we were made aware of a related work by M. Kordy, E. Cherkaev, and
P. Wannamaker, “Schelkuno� potential for electromagnetic �eld: proof of existence and uniqueness” (to be
published), where an equation similar to our Eq. (3.6) with s = −1 was developed.
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convergence speed deteriorates substantially for s = 0 because the operator has eigenvalues
clustered near zero, and for s = +1 because the operator is strongly inde�nite.

�e rest of this chapter is organized as follows. In Sec. 3.1 we investigate the eigenvalue
distribution of the operator in Eq. (3.6) for s = 0,−1,+1 for a simple homogeneous system.
We also de�ne the low-frequency regime rigorously in the section. In Sec. 3.2, we relate the
eigenvalue distribution with the convergence behavior of an iterativemethod. In Sec. 3.3, we
solve Eq. (3.6) for the benchmark problems described in Sec. 1.4 to compare the convergence
behavior of an iterativemethod for the three values of s. In Sec. 3.4we summarize the chapter
and make a few remarks.

3.1 Eigenvalue distribution of the operator for a homoge-

neous system

In this section, we consider the operator in Eq. (3.6) for a homogeneous system and show
that the properties of the eigenvalue distribution of the operator strongly depend on the
value of s. �e impact of s on the eigenvalue distribution has been studied in detail in the
literature of the de�ationmethod (also known as the penaltymethod) [70–72]. Here we only
highlight those aspects that are important for the present study.

For a homogeneous system where ε is constant, Eq. (3.6) is simpli�ed to

∇×∇ × E + s∇(∇ ⋅ E) − ω2µ0εE = −iωµ0J + s i
ωε

∇(∇ ⋅ J), (3.7)

where the operator
T = ∇ × (∇× ) + s∇(∇⋅ ) − ω2µ0ε (3.8)

is Hermitian for real ε. Because ε is constant in this section, the eigenvalue distribution of
T is shi�ed from the eigenvalue distribution of a Hermitian operator

T0 = ∇ × (∇× ) + s∇(∇⋅ ) (3.9)

by a constant −ω2µ0ε. In the low-frequency regime such shi� is negligible, and thus the
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s = 0 s < 0 s > 0
multiplicity of λ = 0 very high low
de�niteness of T0 positive-semide�nite inde�nite

Table 3.1: Properties of the eigenvalue distributions of T0 for di�erent s. Depending on the
sign of s, T0 has very di�erent eigenvalue distributions in terms of the multiplicity of the
eigenvalue 0 and the de�niteness of T0

eigenvalue distribution of T0 approximates that of T very well. Hence, we examine the eigen-
value distribution of T0 below to investigate the eigenvalue distribution of T .

In Appendix D, we show that Fke−ik⋅r with

Fk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

kx
ky
kz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

kz
0
−kx

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−ky
kx
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.10)

are the three eigenfunctions of both ∇ × (∇× ) and ∇(∇⋅ ) for each wavevector k. We
also show in the same appendix that the corresponding three eigenvalues are

λ = 0, ∣k∣2, ∣k∣2 (3.11)

for ∇× (∇× ), and
λ = −∣k∣2, 0, 0 (3.12)

for ∇(∇⋅ ). �erefore, T0 has

λ = −s∣k∣2, ∣k∣2, ∣k∣2 (3.13)

as three eigenvalues for each wavevector k.

Equation (3.13) indicates that the eigenvalue distribution of T0 is greatly a�ected by the
value of s. Speci�cally, the multiplicity of the eigenvalue 0 depends critically on whether s is
0 or not: for s = 0 T0 has a very high multiplicity of the eigenvalue 0 because Eq. (3.13) has
0 as an eigenvalue for every k, whereas for s ≠ 0 T0 does not have such a high multiplicity
of the eigenvalue 0. �e de�niteness of T0 also depends on the value of s: for s ≤ 0 T0
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Figure 3.1: A 2D square domain �lled with vacuum (ε = ε0) for which the eigenvalue distri-
bution of T is calculated numerically for s = 0,−1,+1. �e domain is homogeneous in the
z-direction, whereas its x- and y-boundaries are subject to periodic boundary conditions.
�e square domain is discretized on a �nite-di�erence grid with cell size ∆ = 2nm. �e
domain is composed of 50×50 grid cells, which lead to 7500 eigenvalues in total. A vacuum
wavelength λ0 = 1550nm, which puts the system in the low-frequency regime, is assumed
for the electric current source to be used in Sec. 3.2.

is positive-semide�nite because the three eigenvalues in Eq. (3.13) are always nonnegative,
whereas for s > 0 T0 is inde�nite because Eq. (3.13) has both positive and negative numbers
as eigenvalues. �e di�erent properties of the eigenvalue distributions of T0 for s = 0, s < 0,
and s > 0 are summarized in Table 3.1.

�e above description of the eigenvalue distributions of T0 should approximately hold
for the eigenvalue distributions of T as well in the low-frequency regime, as mentioned in
the discussion of Eqs. (3.8) and (3.9). Moreover, even though T is a di�erential operator
de�ned in an in�nite space, it turns out that the description also applies to the matrix A
discretized from T that is de�ned in a spatially bounded simulation domain.

To demonstrate, we numerically calculate the eigenvalues of A for a 2D system shown in
Fig. 3.1, a square domain �lled with vacuum. �e domain is discretized on a �nite-di�erence
grid with Nx × Ny = 50 × 50 cells and cell size ∆ = 2nm. �erefore, the matrix A for each
s has 3NxNy = 7500 rows and columns, where the extra factor 3 accounts for the three
Cartesian components of the E-�eld. We chooseω corresponding to the vacuumwavelength
λ0 = 1550nm, which puts the system in the low-frequency regime as will be seen at the end
of this section. �e matrices A are constructed for three values of s: 0, −1, and +1, each of
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Figure 3.2: �e eigenvalue distribution of A discretized from T for (a) s = 0, (b) s = −1, and
(c) s = +1 for the vacuum-�lled domain illustrated in Fig. 3.1. All 7500 eigenvalues λ of A are
calculated for each s and categorized into 41 intervals in the horizontal axis that represents
the range of the eigenvalues; the unit of the horizontal axis is nm−2. �e height of the column
on each interval represents the number of the eigenvalues in the interval. In (b) and (c), the
black dots indicate the eigenvalue distribution for s = 0 shown in (a). �e vertical axes are
broken due to the extremely tall column at λ ≃ 0 in (a). �e local maxima at λ = ±1 nm−2 are
the Van Hove singularities [73Ch. 8] arising from the lattice structure imposed by the �nite-
di�erence grid.

which represents each category of s in Table 3.1.

�e distributions of the numerically calculated eigenvalues of A for s = 0,−1,+1 are
shown as three plots in Fig. 3.2. In each plot, the horizontal axis represents eigenvalues,
and it is divided into 41 intervals t−20, . . . , t0, . . . , t20 where t0 ∋ 0. �e height of the column
on each interval corresponds to the number of the eigenvalues in the interval.

�e eigenvalue distributions of A shown in Fig. 3.2 agree well with the description of the
eigenvalues of T0 in Table 3.1: the very tall column on t0 in Fig. 3.2a indicates the very high
multiplicity of λ ≃ 0 for s = 0, and the eigenvalues distributed over t j<0 and t j>0 in Fig. 3.2c
indicate a strongly inde�nite operator for s = +1. In addition, the height of the column on
t0 in Fig. 3.2a is about 2500, or one third of the total number of eigenvalues, which agrees
with Eq. (3.13) for s = 0 where one of the three eigenvalues is 0 for each k; the columns on
t j>0 are about 1.5 times taller in Fig. 3.2b than in Fig. 3.2a, which also agrees with Eq. (3.13)
where the number of ∣k∣2 increases from two for s = 0 to three for s = −1.

We end the section by providing a quantitative de�nition of the low-frequency regime.
Suppose that A0 is the matrix discretized from T0 of Eq. (3.9). For s = 0, the eigenvalues of
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A0 range from 0 to 8/∆2min, where ∆min is the minimum grid cell size;3 note that the range
agrees with Fig. 3.2a. �e eigenvalue distribution of A is the shi�ed eigenvalue distribution
of A0 by −ω2µ0ε. �e low-frequency regime is where the magnitude of the shi� is so small
that A has an almost identical eigenvalue distribution as A0. �erefore, the condition for the
low-frequency regime is

ω2µ0∣ε∣ ≪ 8/∆2min. (3.14)

Equation (3.14) is consistent with the condition introduced in Ref. [54], but here we provide
a condition that is based on a more accurate estimate of the maximum eigenvalue of A0. We
can rewrite Eq. (3.14) in terms of the vacuum wavelength λ0 as

λ0/∆min ≫ π
√

∣εr ∣/2, (3.15)

where εr = ε/ε0 is the relative electric permittivity. �e system described in Fig. 3.1 satis�es
Eq. (3.15), so it is in the low-frequency regime.

3.2 Impact of the eigenvaluedistributionon the convergence

behavior of GMRES

In this section, we explain how the di�erent eigenvalue distributions for di�erent values of
s examined in Sec. 3.1 in�uence the convergence behavior of an iterative method to solve
Eq. (3.7).

For each of s = −1, 0,+1, we discretize Eq. (3.7) using the FDFD method for the system
illustrated in Fig. 3.1 with an x-polarized electric dipole current source placed at the center
of the simulation domain. We then solve the discretized equation by an iterative method
to observe the convergence behavior. �e iterative method to use in this section is GMRES
introduced in Sec. 1.3; we useGMRESwithout restart because the system is su�ciently small.

Figure 3.3 shows ∥rm∥/∥b∥ versus the number m of iteration steps for the three values
of s. As can be seen in the �gure, the convergence behavior of GMRES is quite di�erent for

3To obtain 8/∆2min, take the �rst equation of Eq. (2.43a) and thenmultiply the extra factor µ = µ0 to account
for the di�erence between Eqs. (1.6) and (3.1).
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Figure 3.3: Convergence behavior of GMRES for the vacuum-�lled domain illustrated in
Fig. 3.1. �ree systems of linear equations discretized from Eq. (3.7) for s = 0,−1,+1 are
solved by GMRES. In the iteration process of GMRES for each s, we plot the relative residual
norm ∥rm∥/∥b∥ at each iteration step m. Notice that for s = 0 the relative residual norm
stagnates initially; for s = −1 it stagnates around m = 100; for s = +1 it does not stagnate, but
decreases very slowly. �e upper and lower “X”marks on the vertical axis indicate the values
around which our theory expects ∥rm∥/∥b∥ to stagnate for s = 0 and s = −1, respectively.

di�erent s, with s = −1 far more superior than the other two choices of s.

�e overall trend of the convergence behavior shown in Fig. 3.3 is consistent with the
mathematical theories of iterativemethods. For example, the convergence stagnates initially
for s = 0, and according to Ref. [65] this is typical behavior of GMRES for a matrix with
many eigenvalues close to 0 such as our A for s = 0 (see Fig. 3.2a). Also, the convergence is
very slow for s = +1, and Ref. [42Sec. 9.2] argues that in general the Krylov subspace methods
converge much more slowly for inde�nite matrices such as our A for s = +1 (see Fig. 3.2c)
than for de�nite matrices. In this section we provide a more intuitive explanation for the
convergence behavior by using the residual polynomial.

We �rst review the residual polynomial of GMRES brie�y. Suppose that Pm is the set of
all polynomials p̃m of degree at most m such that

p̃m(0) = 1. (3.16)
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For each p̃m ∈ Pm, we can de�ne a column vector

r̃m ≡ p̃m(A)r0. (3.17)

At the mth iteration step of GMRES, it turns out that the residual vector rm of Eq. (1.16) is
the r̃m with the smallest 2-norm. We refer to the p̃m for r̃m = rm as the residual polynomial
pm. �erefore, from Eq. (3.17) we have

rm = pm(A)r0. (3.18)

Below, we show how the eigenvalue distribution of A in�uences pm at each iteration step
and hence in�uences the convergence behavior of GMRES. �e matrix A ∈ Cn×n for our
homogeneous system described in Fig. 3.1 is Hermitian because it is discretized from the
Hermitian operator T of Eq. (3.7). Hence, the eigendecomposition of A is

A = VΛV †, (3.19)

where

Λ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1
⋱

λn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, V = [ v1 ⋯ vn ] (3.20)

with real eigenvalues λi and the corresponding normalized eigenvectors vi , and V † is the
conjugate transpose of V ; note that V is unitary, i.e., V †V = I. Substituting Eq. (3.19) in
Eq. (3.17), we obtain

r̃m = V p̃m(Λ)V †r0. (3.21)

We then de�ne column vectors

zm ≡ V †(rm/∥b∥) and z̃m ≡ V †(r̃m/∥b∥), (3.22)

whose ith elements, which are referred to as zmi and z̃mi below, are the projections of rm/∥b∥
and r̃m/∥b∥ onto the direction of the ith eigenvector vi . From Eqs. (3.21) and (3.22) we
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Figure 3.4: Initial evolution of rm/∥b∥ for s = −1. Relative residual vectors rm/∥b∥ are visual-
ized at three iteration steps m = 0, 2, 4. In each plot, the column on each interval represents
the norm of rm/∥b∥ projected onto the sum of the eigenspaces of the eigenvalues contained
in the interval. Notice that all the columns almost vanish only a�er four iteration steps. In
the plots for m = 2 and m = 4, the residual polynomials pm are also plotted as solid curves;
note that they always satisfy the condition (3.16).

obtain

z̃m = p̃m(Λ)z0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p̃m(λ1)
⋱

p̃m(λn)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

z0, (3.23)

which can be written element-by-element as

z̃mi = p̃m(λi)z0i . (3.24)

Because ∥z̃m∥ = ∥r̃m∥/∥b∥, GMRES minimizes ∥z̃m∥ to ∥zm∥ when it minimizes ∥r̃m∥ to ∥rm∥
at the mth iteration step.
According to Eq. (3.24), ∣z̃mi ∣ is minimized to 0 when p̃m has λi as a root. �us, the most

ideal p̃m has all the n eigenvalues of A as its roots, because it reduces ∥z̃m∥ to 0. However, p̃m
has at most m roots, and m, which is the number of iteration steps, is typically far less than
n. �erefore, p̃m needs to have its roots optimally placed near the eigenvalues to minimize
∥z̃m∥. Hence, the eigenvalue distribution of A greatly in�uences the convergence behavior
of GMRES.

Wenow seek to understand the convergence behavior ofGMRES for the di�erent choices
of s. We begin with s = −1. In Fig. 3.4 we plot rm/∥b∥ for s = −1 as bar graphs at the �rst
few iteration steps. �e horizontal axis in each plot represents eigenvalues. We divide the
range of eigenvalues into the same 41 intervals t−20, . . . , t0, . . . , t20 used in Fig. 3.2; note that
t0 ∋ 0. �e height of the column on each interval is the norm of the projection of rm/∥b∥
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onto the space spanned by the eigenvectors whose corresponding eigenvalues are contained
in the interval. More speci�cally, the height of the column on t j a�er m iteration steps is

hmj = [∑λ i∈t j z2mi]
1/2
. (3.25)

Note that [∑ j h2mj]
1/2 = ∥rm∥/∥b∥, and thus the sum of the squares of the column heights is

a direct measure of convergence.

A few properties of rm/∥b∥ for s = −1 shown in Fig. 3.4 are readily predicted from the
corresponding eigenvalue distribution of the matrix A presented in Fig. 3.2b. For instance,
A has no eigenvalues in t j<0, and therefore rm/∥b∥ has components only in t j≥0 throughout
the iteration process as demonstrated in Fig. 3.4. Also, A has very few eigenvalues in t0, and
thus r0/∥b∥ has a very weak component in t0 as can be seen in the m = 0 plot in Fig. 3.4.

Now, we relate rm/∥b∥with the residual polynomial to explain the convergence behavior
of GMRES for s = −1. �e residual polynomial pm(λ), which is obtained by solving a least
squares problem, is also plotted in Fig. 3.4 at each iteration step. As the iteration proceeds,
the residual polynomial in Fig. 3.4 has more and more roots, but only in t j≥0, because the
eigenvalues exist only in t j≥0 and the roots of residual polynomials should stay close to the
eigenvalues as mentioned in the discussion following Eq. (3.24). Also, as Eq. (3.24) predicts,
the columns in each plot of Fig. 3.4 almost vanish at the roots of the residual polynomial.
�erefore, all the columns quickly shrink as the number of the roots of the residual polyno-
mial increases in the iteration process of GMRES. �e fast reduction of the column heights
provides visualization of the fast convergence of GMRES for s = −1 shown in Fig. 3.3.

Next, we examine the convergence behavior for s = 0. Figure 3.5 shows rm/∥b∥ for s = 0
at the �rst few iteration steps. Note that r0/∥b∥ has a tall column on t0 because A has many
eigenvalues in t0 as shown in Fig. 3.2a. Also, the tall column on t0 persists during the initial
period of the iteration process.

To explain the above convergence behavior for s = 0, we show that for a nearly positive-
de�nitematrix the columnon t0 is persistent during the initial period of the iteration process
of GMRES in general. For that purpose, we compare the three polynomials p̃m ∈ Pm shown
in Fig. 3.6. �e three p̃m are chosen as candidates for the residual polynomial pm for a nearly
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Figure 3.5: Initial evolution of rm/∥b∥ for s = 0. Relative residual vectors rm/∥b∥ are visual-
ized at three iteration steps m = 0, 2, 4. In each plot, the column on each interval represents
the norm of rm/∥b∥ projected onto the sum of the eigenspaces of the eigenvalues contained
in the interval. Notice that most columns almost vanish only a�er four iteration steps, ex-
cept for the very persistent column at λ ≃ 0. In the plots for m = 2 and m = 4, the residual
polynomials pm are also plotted as solid curves; note that they always satisfy the condition
(3.16).

positive-de�nitematrix, and therefore the roots of the polynomials are placed in t j≥0 accord-
ing to the discussion following Eq. (3.24). �e three p̃m have the same roots except for their
smallest roots: p̃m in Fig. 3.6a does not have its smallest root in t0, whereas p̃m in Figs. 3.6b
and 3.6c do. Note that the latter two p̃m can shrink the column on t0 more e�ectively than
the �rst p̃m according to Eq. (3.24).

However, the slopes at the roots of the latter two p̃m are steeper than the slopes at the
corresponding roots of the �rst p̃m as shown in Fig. 3.6. In Appendix E, we prove rigorously
that the slopes of p̃m at all roots indeed increase as the smallest root decreases in magnitude.
In general, p̃m with steeper slopes at the roots oscillates with larger amplitudes around the
horizontal axis because it varies faster around the axis; compare the amplitudes of oscillation
in Fig. 3.6a with those in Figs. 3.6b and 3.6c. �e increased amplitudes of oscillation amplify
∣z̃mi ∣ overall according to Eq. (3.24), and thus ∥z̃m∥ as well.

In other words, shrinking the column on t0 (by placing the smallest root of p̃m in t0) is
achieved only at the penalty of amplifying the columns on t j>0. �is penalty is too heavy
when the columns on t j>0 constitute a considerable portion of ∥z̃m∥. �erefore, roots of
residual polynomials are not placed in t0 until the columns on t j>0 become quite small, which
results in the persistence of the columnon t0 during the initial period of the iteration process.

Because the height of the column on t0 remains almost the same at the initial iteration
steps of GMRES, h00 of Eq. (3.25), which is the initial height of this column, provides an
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Figure 3.6: Impact of the magnitude of the smallest root of a polynomial p̃m ∈ Pm on the
oscillation amplitudes of p̃m. �ree p̃m of degree 6 are shown. In each �gure, a solid line
represents a polynomial; an open dot on the horizontal axis indicates the smallest root; solid
dots indicate the other roots; dashed lines show the slopes of the polynomial at the roots.
�e three polynomials have the same roots except for their smallest roots: the smallest root
in (a) becomes smaller positive and negative roots in (b) and (c), respectively. Notice that
the slopes at all roots in (a) become steeper in (b) and (c) as the smallest root decreases in
magnitude, and as a result the amplitudes of oscillation of p̃m around the horizontal axis
increase.

approximate lower bound of ∥zm∥ = ∥rm∥/∥b∥ during the initial period of the iteration pro-
cess. A more accurate lower bound is calculated as the norm of r0/∥b∥ projected onto the
eigenspace of the eigenvalue closest to 0. For our example system, for s = 0 the calculated
lower bound is 0.707. Note that ∥rm∥/∥b∥ for s = 0 indeed stagnates initially at this value in
Fig. 3.3. For s = −1 the calculated lower bound is 4.16×10−7, at which ∥rm∥/∥b∥ also stagnates
as shown in Fig. 3.3. However, this value is much smaller than the lower bound for s = 0,
because for s = −1 the initial height of the column on t0 is almost negligible as shown in the
m = 0 plot in Fig. 3.4. In fact, the value is smaller than the conventional tolerance τ = 10−6

mentioned below Eq. (1.16), so the stagnation does not deteriorate the convergence speed
for s = −1.
Lastly, we examine the convergence behavior for s = +1. Figure 3.7 shows rm/∥b∥ for

s = +1 at some �rst (m = 0, 4, 7, 11) and later (m = 120, 140) iteration steps. Because the ma-
trix A for s = +1 has both positive and negative eigenvalues as indicated in Fig. 3.2c, rm/∥b∥
has components in both t j>0 and t j<0, but in the present example the components of rm/∥b∥
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Figure 3.7: Evolution of rm/∥b∥ for s = +1. Relative residual vectors rm/∥b∥ are visualized at
iteration steps m = 0, 4, 7 in the �rst row and at m = 11, 120, 140 in the second row. In each
plot, the column on each interval represents the norm of rm/∥b∥ projected onto the sum of
the eigenspaces of the eigenvalues contained in the interval. �e vertical scale of the plot
is magni�ed as the iteration proceeds. Notice that the column at λ ≃ 0 is very persistent
during the later period of the iteration process (m = 120, 140). In the plots for m = 4, 7, 11,
the residual polynomials pm are also plotted as solid curves; the residual polynomials are
not plotted for m = 100 and m = 120 because they have too many roots.

are concentrated in t j<0 initially (m = 0 plot in Fig. 3.7). �us GMRES begins with the
roots of residual polynomials placed in t j<0 (m = 4 plot in Fig. 3.7). However, such residual
polynomials have large values in t j>0, so they amplify the initially very small components
of rm/∥b∥ in t j>0 according to Eq. (3.24), and eventually we reach a point where the com-
ponents of rm/∥b∥ in t j>0 and t j<0 become comparable (m = 7 plot in Fig. 3.7). A�erwards,
GMRES places the roots of residual polynomials in both t j>0 and t j<0 so that the components
of rm/∥b∥ in both regions are reduced.

We note that the convergence behavior for s = +1 is initially quite similar to that for
s = −1 because r0/∥b∥ for s = +1 has components concentrated in t j<0 and only a very weak
component in t0. �erefore, ∥rm∥/∥b∥ reduces quickly for s = +1 without stagnation during
the initial period of the iteration process as shown in Fig. 3.3.

During the later period of the iteration process, however, the reduction of ∥rm∥/∥b∥ for
s = +1 slows down signi�cantly, and eventually s = +1 produces the slowest convergence
among the three values of s as shown in Fig. 3.3. �e slow reduction of ∥rm∥/∥b∥ is due to
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Figure 3.8: Candidates for the residual polynomials for (a) a nearly positive-de�nite matrix
and (b) strongly inde�nite matrix. In each �gure, a solid line represents a polynomial p̃m ∈

Pm; an open dot on the horizontal axis indicates the smallest-magnitude root; solid dots
indicate the other roots; dashed lines show the slopes of the polynomial at the roots. �e
two polynomials have the same smallest-magnitude root ζ0, and thus have approximately
the same slope −1/ζ0 at their smallest-magnitude roots. Note that for both p̃m the slopes get
steeper at the roots further away from the median of the roots. Hence, the slopes of most
dashed lines are gentler than 1/∣ζ0∣ in (a) and steeper than 1/∣ζ0∣ in (b). As a result, p̃m in (b)
has larger amplitudes of oscillation around the horizontal axis than p̃m in (a).

the very persistent column on t0: comparing the plots for m = 120 and m = 140 in Fig. 3.7
shows that the column barely reduces for 20 iteration steps.
We have shown earlier that the column on t0 is quite persistent for a nearly positive-

de�nite matrix. �e argument relied on the properties proved in Appendix E about a poly-
nomial p̃m ∈ Pm with only positive roots. We can easily extend the proof in the appendix
to p̃m with both positive and negative roots, and then show that the column on t0 is per-
sistent also for a strongly inde�nite matrix, which explains the slow convergence for s = +1
described above. However, the explanation is insu�cient to explain why the convergence is
much slower for s = +1 than for s = 0 as indicated in Fig. 3.3.
Here, we show that the column on t0 is in fact even more persistent for a strongly inde�-

nite matrix than for a nearly positive-de�nite matrix. For that purpose, we compare the two
polynomials p̃m ∈ Pm shown in Fig. 3.8. As can be seen from the locations of their roots, they
are candidates for the residual polynomials for di�erent matrices: p̃m shown in Fig. 3.8a is
appropriate for a nearly positive-de�nitematrix (referred to as Adef below), and p̃m shown in
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Fig. 3.8b is appropriate for a strongly inde�nite matrix (referred to as Aind below). Moreover,
we choose these two p̃m to have the same smallest-magnitude root ζ0 in t0. Being elements
of Pm, both p̃m satisfy Eq. (3.16). Hence, we have ∣p̃′m(ζ0)∣ ≃ 1/∣ζ0∣ for both p̃m, where p̃′m is
the �rst derivative of p̃m.

Now, we note that ∣p̃′m∣ evaluated at a root of p̃m tends to decrease as the root gets closer to
themedian of the roots; see Appendix F for amore rigorous explanation. Hence, ∣p̃′m∣ ≤ 1/∣ζ0∣
tends to hold at most roots of p̃m for Adef , because ζ0 is one of the farthest roots from the
median of the roots. On the other hand, ∣p̃′m∣ ≥ 1/∣ζ0∣ tends to hold at most roots of p̃m
for Aind, because ζ0 is one of the closest roots to the median of the roots. �erefore, p̃m for
Aind has much steeper slopes at most roots than p̃m for Adef in general, and thus has larger
amplitudes of oscillation around the horizontal axis, as demonstrated in Fig. 3.8.

Combined with Eq. (3.24), the above argument shows that shrinking the column on t0
(by placing the smallest-magnitude root of p̃m in t0) increases ∥zm∥muchmore for a strongly
inde�nite matrix than for a nearly positive-de�nite matrix. �erefore, the column on t0
should be much more persistent for a strongly inde�nite matrix than for a nearly positive-
de�nite matrix in general, which explains the much slower convergence for s = +1 than for
s = 0 in Fig. 3.3.

In summary of this section, we have shown that s = −1 produces the most superior
convergence behavior; s = 0 induces stagnation during the initial period of the iteration
process due to the high multiplicity of eigenvalues near zero; s = +1 leads to the slowest
convergence overall due to the strongly inde�nite matrix. We have provided a graphical
explanation of the di�erence in the convergence behavior of GMRES, for which a strong
theoretical basis exists, using a simple system of a homogeneous dielectric medium.

�e arguments provided in this section can be easily extended to show that s = −1 is
indeed optimal among all values in general. Compared with the case of s = −1, according
to Eq. (3.13), for s > 0 A is always more strongly inde�nite and therefore the convergence
should be slower; for −1 < s < 0 A has more eigenvalues clustered near zero and thus the
initial stagnation period should be longer; for s < −1 A has a wider eigenvalue value range,
so the condition number of A should be larger and the convergence should be slower as
seen in Ch. 2. In other words, s = −1 is the value that leaves the matrix A nearly positive-
de�nite while removing the eigenvalues clustered near zero su�ciently without increasing
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Slot Diel Array
λ0 1550nm 1550nm 632.8 nm
∆min 2nm 10nm 5nm
max ∣εr ∣ 129.0 12.09 10.81

Table 3.2: Benchmark problems’ parameters used in Eq. (3.15). When substituted in
Eq. (3.15), these parameters prove that all the three benchmark problems described in
Sec. 1.4 are in the low-frequency regime.

the condition number. With separate numerical experiments we have veri�ed that s = −1 is
indeed superior to values other than s = 0 and s = +1 as well.
In the next section we will see that the di�erence in the convergence behavior for di�er-

ent choices of s is in fact quite general in practical situations.

3.3 Convergence behavior of QMR for 3D inhomogeneous

systems

In this section, we solve Eq. (3.6) for 3D inhomogeneous systems of practical interest by an
iterative method, and demonstrate that s = −1 still induces faster convergence than s = 0
and s = +1. We note that the systems examined in this section are inhomogeneous and have
complex ε in general. �e analyses in Secs. 3.1 and 3.2, therefore, do not hold strictly here.
Nevertheless, we will see that the analyses for the homogeneous system in the previous sec-
tions provide insight in understanding the convergence behavior for more general systems
examined in this section.

�e three 3D inhomogeneous systems we consider are the benchmark problems de-
scribed in Sec. 1.4. To prevent re�ection of EM waves from boundaries, we enclose each
system by SC-PML, because SC-PML produces a much better-conditioned matrix than the
more commonly usedUPML as shown inCh. 2. For each system, we construct three systems
of linear equations Ax = b corresponding to s = −1, 0,+1 by the FDFDmethod. Considering
the parameters summarized in Table 3.2 and the condition (3.15), all the three systems are
in the low-frequency regime.

�e constructed systems of linear equations are solved by QMR introduced in Sec. 1.3.
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Figure 3.9: Convergence behavior of QMR for the three benchmark problems “Slot”, “Diel”,
and “Array” described in Sec. 1.4 for s = −1, 0,+1. For all the three problems QMR converges
fastest for s = −1, whereas it barely converges for s = +1.

GMRES that was used in Sec. 3.2 to solve a 2D problem is not suitable for 3D problems here
because it requires too much memory as explained in Sec. 1.3.

Figure 3.9 shows the convergence behavior of QMR for the three systems. Note that for
all three systems the choice of s = −1 results in the fastest convergence, and the choice of
s = +1 barely leads to convergence. As mentioned at the end of Sec. 1.4, the three benchmark
problems have di�erent geometrical complexities and di�erent materials. �erefore, Fig. 3.9
suggests that the superiority of s = −1 over both s = 0 and s = +1 is quite general.
Even though both the iterative method and the systems in this section are signi�cantly

di�erent from those in the previous section, the convergence behaviors are very similar. We
explain the resemblance as follows.

�e matrix for an inhomogeneous system is actually not much di�erent from that for a
homogenous system in many cases. Indeed, most inhomogeneous systems consist of sev-
eral homogeneous subdomains. Inside each homogeneous subdomain of such an inhomo-
geneous system, the di�erential operator in Eq. (3.6) for the inhomogeneous system is the
same as the di�erential operator (3.8) for a homogeneous system, whereas at the interfaces
between the subdomains it is not. Nevertheless, the number of �nite-di�erence grid points
assigned at the interfaces is usually much smaller than that of the grid points assigned inside
the homogeneous subdomains. �erefore most rows of the matrix for the inhomogeneous
system should be the same as those for a homogeneous system discretized on the same grid.

In addition, the di�erential operator (3.8) for a homogeneous system is nearlyHermitian
in the low-frequency regime even if ε is complex, because it is approximated well by the



78 CHAPTER 3. ENGINEERING THE EIGENVALUE DISTRIBUTION

Hermitian operator (3.9).

Hence, the matrix for an inhomogeneous system is actually quite similar to the nearly
Hermitian matrix for a homogeneous system. Because QMR reduces to GMRES for Hermi-
tianmatrices in exact arithmetic [74Secs. 2.4, 3.3], it is reasonable that the convergence behavior
of QMR for an inhomogeneous system is similar to that of GMRES for a homogeneous sys-
tem.

�e matrix for an inhomogeneous system deviates more from that for a homogeneous
system as the number of homogeneous subdomains increases, because then the number of
grid points assigned at the interfaces between homogeneous subdomains increases. �ere-
fore, we can expect that the convergence behavior for an inhomogeneous system would de-
viate from that for a homogeneous system as the number of homogeneous subdomains in-
creases. Such deviation is demonstrated in Fig. 3.9c, where the system has many metallic
pillars; note that the convergence behavior for s = −1 is no longer very di�erent from that
for s = 0 in this case.

3.4 Summary and remarks

We have introduced a new method to accelerate the convergence of iterative solvers of the
frequency-domain Maxwell’s equations in the low-frequency regime. �e method solves a
new equation that is modi�ed from the original Maxwell’s equations using the continuity
equation.

�e operator of the newly formulated equation does not have the high multiplicity of
near-zero eigenvalues that makes the convergence stagnate for the original operator. At the
same time, the new operator is nearly positive-de�nite, so it avoids the long-term slow con-
vergence that inde�nite operators su�er from.

In this chapter, we have considered only nonmagnetic materials (µ = µ0). For magnetic
materials (µ ≠ µ0), we note that a similar equation

∇× µ−1∇× E + s∇[(µε)−1∇ ⋅ (εE)] − ω2εE = −iωJ + s i
ω
∇[(µε)−1∇ ⋅ J] , (3.26)

which can also be formulated fromMaxwell’s equations and the continuity equation, can be
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used instead of Eq. (3.6) to accelerate the convergence of iterative methods. We leave the
discussion on the optimal value of s in this equation for future work.
Because our method achieves accelerated convergence by formulating a new equation,

it can be easily combined with other acceleration techniques such as preconditioning and
better iterative methods.
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Chapter 4

Design of plasmonic coaxial waveguide
bends and splitters by the FDFDmethod1

Cere is no abstract art. You must always start
with something. A�erward you can remove all
traces of reality.

Pablo Picasso (1881–1973)

Routing of light in arbitrary directions inside a submicron-scale volume is one of the
most basic functions sought a�er in nanophotonics [75–77]. Plasmonic waveguides,

despite Ohmic loss inherent in metals, have therefore been considered important compo-
nents of nanophotonics due to their capability of guiding light through deep-subwavelength
mode areas [78–83]. A natural question arose as to whether basic waveguide components
such as sharp 90° bends and T-splitters can be constructed in plasmonic waveguides in a
simple and compact manner. In 2D metal-dielectric-metal (MDM) waveguides, it was nu-
merically demonstrated that these components can bend and split input power almost per-
fectly without introducing additional re�ection and radiation loss on top of the inherent
Ohmic loss of the straight waveguide [84].

1Reproduced in part with permission, from W. Shin et al., “Broadband sharp 90-degree bends and T-
splitters in plasmonic coaxial waveguides,” submitted toNano Letters for publication. Unpublished work copy-
right 2013 American Chemical Society.

81



82 CHAPTER 4. PLASMONIC COAXIAL WAVEGUIDE BENDS AND SPLITTERS
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Figure 4.1: Structures of a sharp 90° bend and T-splitter in plasmonic coaxial waveguides.
(a) and (b) show the structures of a bend and T-splitter with the propagation directions of
light indicated by red arrows. (c) shows the cross section of the reference plasmonic coaxial
waveguide. Silver is used as the metal, but it is substituted by PEC in order to illustrate some
of the physics.

In realistic 3D plasmonic waveguides, however, it turns out to be signi�cantlymore di�-
cult to design sharp 90° bends and T-splitters without additional loss into undesirable chan-
nels such as re�ection and radiation. For example, plasmonic slot waveguides [24], which
are 3D analogs of the 2DMDMwaveguides, su�er from substantial re�ection of about 16%
when bent sharply by 90° for near-infrared wavelengths [85]. �e re�ection can be sup-
pressed by rounding the sharp corner and hence increasing the bending radius of curvature
slightly [85, 86], but there always exists loss into radiation and surface wave [87]. �ese extra
loss channels also induce unwanted crosstalk between optical components; such crosstalk
can be especially detrimental in densely integrated optical circuits, where optical compo-
nents are placed close to each other [88].

V-grooves are another type of plasmonic waveguides for which nearly perfect transmis-
sion of optical waves through sharp 90° bends was reported [89]. However, the lossless
transmission through the bends in the V-grooves is narrowbanded because it relies on an
interference phenomenon [90]. Moreover, unless the taper angles of the V-grooves are very
narrow, the modes of the V-grooves may not be at deep-subwavelength scale [79, 91, 92].

In this chapter, we propose to use a di�erent type of plasmonic waveguides, namely
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plasmonic coaxial waveguides, for implementing sharp 90° bends and T-splitters. �e plas-
monic coaxial waveguides have been studied both theoretically [93, 94] and experimen-
tally [95], and they have been applied to achieve a variety of novel functions such as deep-
subwavelength focusing [96, 97], enhanced transmission [98–101], and negative refraction
[102–104]. In addition to this repertoire of applications, we demonstrate numerically that the
plasmonic coaxial waveguides are also useful for building sharp 90° bends and T-splitters
that experience nearly no loss other than the inherent Ohmic loss of the straight waveguide
itself over a broad range of wavelengths, including the telecommunication wavelength of
1.55 µm. �e structures of a bend and T-splitter are described in Figs. 4.1a and 4.1b.

�is chapter is organized as follows. In Sec. 4.1 we examine the properties of straight
coaxial waveguides. In Sec. 4.2 we demonstrate that sharp 90° bends in plasmonic coax-
ial waveguides can bend input waves almost perfectly. In Sec. 4.3 we show that T-splitters
in plasmonic coaxial waveguides can be designed to split input waves nearly perfectly. In
Sec. 4.4 we summarize the chapter and make a few remarks.
We note that the numerical simulation of wave propagation through bends and splitters

in this chapter is accomplished e�ciently by the 3D FDFD method combined with the two
acceleration techniques developed in Chs. 2 and 3. BiCG introduced in Sec. 1.3 is used as an
iterative method to solve the system of linear equations Eq. (1.15) constructed by the FDFD
method.

4.1 Properties of plasmonic coaxial waveguides

In this section we examine the properties of plasmonic coaxial waveguides. Unlike most of
the previous works [93–97, 99–104], we use coaxial waveguides with square rather than cir-
cular cross sections because they are easier to fabricate using lithography-based fabrication
techniques. �e cross section of the “reference waveguide” examined in this chapter is de-
scribed in Fig. 4.1c. �e waveguide is placed on top of a silicon (Si) substrate, and the space
between inner and outer coaxial metals is �lled with silica (SiO2). �roughout this chapter,
we use silver (Ag) as the metal. We also use the perfect electric conductor (PEC) in order
to illustrate some of the physics. �e choice of the metal used will be speci�ed explicitly for
each numerical result.
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Figure 4.2: Properties of the reference coaxial waveguide. (a) shows the dispersion relations
of the fundamental modes of the reference waveguides made of silver and PEC. �e data
points are obtained by the 2D FDFDmode solver. �e blue solid line is the light line in silica,
and its alignment with the blue open dots proves the accuracy of the mode solver results.
�e red open dots and cross hairs are for the waveguides with 25 nm-thick and in�nitely
thick outer silver layers, respectively, and their coincidence proves the e�ectiveness of the
25 nm-thick outer silver layer. �e red dashed line connects the origin and the data point for
λ0 = 1.55 µm, for which the guide wavelength is λg = 0.68 µm, and its alignment with the red
open dots shows that the mode is quasi-TEM.�e propagation length [24] for λ0 = 1.55 µm
is Lp = 6.82 µm. (b) and (c) show the magnitudes (colors) and directions (arrows) of the
transverse E- and H-�elds of the fundamental mode of the reference waveguide made of
silver for λ0 = 1.55 µm; the longitudinal components are not shown because they are much
smaller than the transverse components. �e dielectric constants of silicon [23], silica [23],
and silver [25] are taken from tabulated data.

To study the properties of the reference waveguide, we use the 2D FDFDmode solver to
solve the waveguide mode equation numerically for each vacuum wavelength λ0 [24, 105].
�e FDFD method allows us to use tabulated dielectric constants of dispersive materials
such as silver [25] directly, including both the real and imaginary parts. For accurate yet ef-
�cient solution, we use nonuniform spatial grids whose cells are as small as 1 nm inside the
waveguide region and as large as 20 nm further outside. To simulate in�nitely long waveg-
uides, we surround the entire simulation domain by SC-PML, which is much superior to
the more commonly used UPML as shown in Ch. 2.

�e fundamental mode of the reference waveguide made of silver is a quasi-transverse-
electromagnetic (quasi-TEM) mode. �e quasi-TEM mode inherits many desirable prop-
erties of the true TEM mode of the same coaxial waveguide made of PEC [24, 93]. First,
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it has a nearly linear dispersion relation as shown in Fig. 4.2a. �erefore, the waveguide
has a nearly constant group velocity over a broad range of wavelengths, and has no cuto�
wavelength; the latter means that it can guide light with wavelengths much larger than the
cross-sectional dimensions of the coaxial waveguide. Second, the E- and H-�elds of the
quasi-TEM mode are tightly con�ned between the two metals, as shown in Figs. 4.2b and
4.2c for a vacuumwavelength λ0 = 1.55 µm. Remarkably, we �nd that only 25 nm-thick outer
metal layer is su�cient for con�ning the �elds within the waveguide, because the opposite
electric charges and currents carried by the inner and outer metals cancel the �elds outside
the coaxial waveguide e�ciently. Note that the area of the silica region, where most of the
�elds are con�ned, is less than (1.55 µm/10)2, which is at deep-subwavelength scale for the
vacuum wavelength λ0 = 1.55 µm. In fact, because of the above mentioned �eld cancellation
e�ect, the area of con�nement stays almost the same even if λ0 increases from 1.55 µm, so
the con�nement becomes even stronger for longer wavelengths.

4.2 Performance of sharp 90° bends

In this section we examine the performance of the sharp 90° bend in the reference waveg-
uide made of silver shown in Fig. 4.1a. For each vacuum wavelength λ0 between 1 µm and
5 µm, we excite the fundamental mode of the waveguide by an electric current source plane
located 0.5 µm before the bend; in reality the fundamental mode can be excited by coupling
the lowest-order transverse magnetic (TM01) mode of optical �bers [106] or the quasi-TEM
mode of plasmonic coaxial lasers [107]. We then measure the transmitted power through a
�ux plane located 0.5 µm a�er the bend.
Figures. 4.3a and 4.3b show the solutions of Maxwell’s equations for such measurement

for λ0 = 1 µm and λ0 = 1.55 µm; notice that for λ0 = 1 µm a strong standing wave pattern is
formed in the input waveguide by the interference between the input and re�ected waves,
whereas for λ0 = 1.55 µm the pattern is diminished signi�cantly, which means that most of
input power is transmitted through the bend without re�ection. We perform a similar mea-
surement of the power transmitted over (0.5 + 0.5) µm in a straight waveguide. �e ratio of
the measurement in the bend with respect to the measurement in the straight waveguide is
the transmittance of the bend. Such a de�nition of transmittance is intended to capture loss
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Figure 4.3: Performance of the sharp 90° bend. (a) and (b) plot the amplitude of the H-�eld
component normal to the plane containing the axes of the input and output waveguides for
λ0 = 1 µm and λ0 = 1.55 µm. Silver is used as the metal. �e distances from the center of
the junction to the electric current source plane (green) and the �ux measurement plane
(cyan) are both 0.5 µm. Notice the strong standing wave pattern in the input waveguide in
(a) due to signi�cant re�ection of the input wave at the junction. (c) shows the transmittance
spectra through the bend. �e transmittance is higher for the PECwaveguide than the silver
waveguide, but both converge to 100% as the vacuum wavelength λ0 increases. For the
silver waveguide, T = 97.5% is obtained at λ0 = 1.55 µm. �e nearly perfect transmission is
achieved for λ0 ≥ 1.55 µm, a broad range of wavelengths; note that the horizontal axis is on
a logarithmic scale.

that is added on top of the propagation loss of the straight waveguide; the additional loss can
be due to additional Ohmic loss introduced by the bend, or due to re�ection and radiation
loss at the bend.

�emeasured transmittance is shown as a spectrum in Fig. 4.3c. It shows that the trans-
mittance approaches 100% as the wavelength increases. Especially, a transmittance of 97.5%
is achieved for λ0 = 1.55 µm without any optimization of the geometry of the bend. �is re-
markable phenomenon can be explained as follows. For wavelengths much larger than the
cross-sectional dimensions of the waveguide, the quasi-static approximation applies, and
hence the junction between the input and output waveguides at the bend can be accurately
modeled as a junction between two transmission lines [108]. Because the input and out-
put waveguides have the same cross-sectional shape, the two transmission lines have the
same characteristic impedance. �erefore, due to the impedance matching, the transmit-
tance should be 100% in the quasi-static limit. �e perfect transmission in the quasi-static
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Figure 4.4: Performance of the sharp 90° bend in the PEC coaxial waveguide with vari-
ous cross-sectional dimensions. �e parameters a and b are indicated in the inset �gure.
�e transmittance is measured while varying a for b = 50nm (open dots), varying b for
a = 150nm (solid dots), and varying b for a − b = 20nm (cross hairs). Note that the high
transmittance for b = 50nm is not very sensitive to the variation of a. On the other hand,
the variation of b a�ects the transmittance signi�cantly.

limit also occurs in a bend in the reference waveguide made of PEC as shown in Fig. 4.3c,
which is consistent with the result in the classical microwave literature [109].

We note that the nearly perfect transmission is a broadband phenomenon achieved from
λ0 = 1.55 µm to mid-infrared, because the quasi-static approximation applies to any su�-
ciently long wavelengths. �e closed structure of the coaxial waveguide that prohibits cou-
pling with other leakage channels such as radiation is crucial for the nearly perfect transmis-
sion; in other conventional 3D plasmonic waveguides that are open to the leakage channels,
the transmission does not become perfect in the quasi-static limit because additional loss
into the leakage channels is unavoidable.

Even though the quasi-static approximation holds in general when the cross-sectional
dimensions of the coaxial waveguide are much smaller than the wavelength, we �nd that
the size of the inner metal is the most critical among all cross-sectional dimensions. In
Fig. 4.4, we measure the transmittance through the PEC coaxial waveguide bend for a vac-
uum wavelength λ0 = 1.55 µm as varying cross-sectional dimensions of the waveguide while
maintaining one of the following three parameters the same: a, b, and a − b (see the inset of
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Figure 4.5: Performance of theT-splitter. (a) shows the transmittance into one of the twoout-
put waveguides of the splitter shown in Fig. 4.1b. Silver is used as the metal. Both the output
waveguides are the reference waveguides, while the input waveguide is either the reference
or the optimal (see Fig.4.6) waveguide. For the reference input waveguide the transmit-
tance reaches 44.4% as the vacuum wavelength λ0 increases, whereas for the optimal input
waveguide it reaches the ideal 50.0% over a broad range of wavelengths of λ0 ≥ 1.55 µm; note
that the horizontal axis is on a logarithmic scale. (b) shows the �ow of electric current in
the T-junction, in which the three reference waveguides are modeled as three transmission
lines with the same characteristic impedance Z0. When the voltage di�erence Vin is applied
between the inner and outer metals, the current I is launched in the input waveguide and
equally divided into the two output waveguides at the junction. Note that the three seem-
ingly separate outer metal pieces shown in the �gure are actually a single connected outer
metal layer.

Fig. 4.4). �e �gure shows that the transmittance stays high as long as b ismuch smaller than
the wavelength, whereas it decreases fast as b increases even if the other two parameters are
at deep-subwavelength scale. �e strong impact of b, i.e., the size of the inner metal, on the
transmittance can be explained by the electromagnetic �eld distributions of the waveguide
mode shown in Figs. 4.2b and 4.2c: the �elds are strongest near the inner metal, so the size
of the inner metal is likely to a�ect transmission properties signi�cantly.

4.3 Performance of T-splitters

In this sectionwe examine the performance of theT-splitter in the referencewaveguidemade
of silver shown in Fig. 4.1b. By the samemethod used for the bend in Sec. 4.2, wemeasure the
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transmittance through one of the two output waveguides. An ideal splitter should transmit
50% of the input power into each output waveguide. However, for the splitter shown in
Fig. 4.1b for which the input and output waveguides have the same cross-sectional shape, it
turns out that the transmittance reaches only 44.4% even for long wavelengths as shown in
Fig. 4.5a.

�is asymptotic value of the transmittance can also be explained by modeling the T-
junction as a junction between three transmission lines in the quasi-static limit. Because all
the three waveguides connected at the T-junction have the same cross-sectional shape, the
characteristic impedance Zin of the input transmission line and Zout of each of the two output
transmission lines have the same value Z0, i.e., Zin = Zout = Z0. �e two output transmission
lines form a parallel combination of impedances with respect to the input transmission line,
because the current �owing through the input transmission line is equally divided into the
two output transmission lines as indicated in Fig. 4.5b. �erefore, the load impedance seen
by the input transmission line is ZL = Zout/2, and the re�ectance is calculated as

R =
∣ZL − Zin∣2

∣ZL + Zin∣2
=

∣Z0/2 − Z0∣2

∣Z0/2 + Z0∣2
=
1
9
. (4.1)

�e remaining 1−R portion of the input power that is not re�ected should be equally divided
into each output transmission line, because no leakage channels such as radiation are cou-
pled at the junction. �erefore, the transmittance into each output transmission line should
be T = (1 − R)/2 = 4/9 = 44.4% in the quasi-static limit, which is exactly the asymptotic
value in Fig. 4.5a.

Equation (4.1) suggests one way of eliminating the re�ection, which is to decrease Zin
from Z0 to Z0/2. We note that for the T-splitter in the 2D MDM waveguide the recipe was
opposite, i.e., to increase Zin, because the two output waveguides formed a series rather a
parallel combination of impedances [84]. It is important to emphasize that the plasmonic
coaxial waveguides and 2D MDM waveguides have very di�erent topology in their trans-
mission line models for the T-splitters, despite close connection between these two classes
of waveguides in terms of the modal properties of the straight waveguides. [94].

To eliminate the re�ection, we decrease Zin gradually by increasing the size bin of the
inner metal of the input waveguide as described in Fig. 4.6a, and measure the re�ectance
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Figure 4.6: Optimization of the T-splitter. (a) shows the structure of the T-splitter on the
vertical cross section containing the axis of the input waveguide. �e inner metal size bin
of the input waveguide is increased from the original size 50 nm to eliminate the re�ection
of the input wave at the T-junction. �e red arrow and bullseye indicate the propagation
direction of light. (b) shows the spectra of the actual re�ectance in the 3D FDFD solution
of Maxwell’s equations (open dots) and the re�ectance predicted by the transmission line
model (solid dots) for the T-splitter in the silver coaxial waveguide. �e actual re�ectance
almost vanishes for bin = 90nm, but the transmission line model slightly underestimates
the optimal bin. (c) shows similar spectra for the T-splitter in the PEC coaxial waveguide,
but the prediction by the transmission line model is made using the analytic formula of
the characteristic impedance of the PEC coaxial waveguide. (d) and (e) plot the amplitude
of the H-�eld component normal to the plane containing the axes of the input and output
waveguides of the splitters with the reference (bin = 50nm) and optimal (bin = 90nm) input
waveguides. Only a half of the splitter is shown by virtue of the mirror symmetry. Silver is
used as the metal, and the distances from the center of the junction to the electric current
source plane (green) and the �ux measurement plane (cyan) are both 0.5 µm. Notice the
strong standing wave pattern in (d) due to signi�cant re�ection of the input wave at the
T-junction.
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for λ0 = 1.55 µm. Fig. 4.6b shows that indeed the re�ection almost vanishes for bin = 90nm,
for which the re�ectance is only 0.17%. Figs. 4.6d and 4.6e show the solutions of Maxwell’s
equations for bin = 50nm and bin = 90nm for λ0 = 1.55 µm. Notice the presence of a strong
standing wave pattern in the input waveguide in Fig. 4.6d and the absence of such a standing
wave pattern in Fig. 4.6e, which con�rms that the choice of bin = 90nm indeed results in
nearly perfect transmission.

Even though the splitter is optimized for λ0 = 1.55 µm, the same splitter turns out to
exhibit nearly perfect transmission over a broad range of wavelengths spanning from λ0 =
1.55 µm to mid-infrared as shown in Fig. 4.5a. �e broadband perfect transmission is also
explained by the transmission line model as follows. Because the mode of each plasmonic
coaxial waveguide is quasi-TEM, its characteristic impedance is nearly independent of wave-
length. �erefore, for su�ciently long wavelengths for which the transmission line model
holds, Eq. (4.1) predicts the nearly constant transmittance, which is T = 50% for the opti-
mized splitter.

To assess the validity of the transmission line model more quantitatively, we predict the
re�ectance by substituting numerically calculated impedances Z in the formula for R in
Eq. (4.1); Z is calculated as V/I, where the voltage di�erence V between the inner and outer
metals and the electric current I �owing through the inner metal are calculated by numeri-
cally integrating the E- andH-�elds of the fundamental mode of the waveguide [85, 110]. In
Fig. 4.6b, the predicted re�ectance is compared with the actual re�ectance in the 3D FDFD
solution of Maxwell’s equations. In Fig. 4.6c we make a similar comparison between the
predicted and actual re�ectances for the splitter in the PEC coaxial waveguide, for which
the analytic expression for Z exists [111Sec. 3.2.4, 112–114]. For both the silver and PEC coaxial
waveguides, the prediction from the transmission line model correctly describes the over-
all trend of the actual re�ectance as a function of bin, but we �nd that the model slightly
underestimates the optimal bin for vanishing re�ectance.

In addition to its dependence on the impedances of the input and output waveguides, the
re�ectance also depends on the detailed shape of the junction between the input and out-
put waveguides: it turns out that the re�ectance does not reduce to zero unless the thicker
inner metal of the input waveguide extends into the junction and reaches the central axis
of the output waveguide as shown in Fig. 4.6a. Such dependence on the detailed shape of



92 CHAPTER 4. PLASMONIC COAXIAL WAVEGUIDE BENDS AND SPLITTERS

the junction is of course not incorporated in the simple transmission line model above. Fol-
lowing the literature of microwave circuits one could develop a more sophisticated model
that includes additional lumped circuit elements [115Sec. 9.6, 116] to describe the properties of
the junction more accurately. Nevertheless, as we can see here the simple model above does
provide very important guidance for the overall design of the T-splitter.

4.4 Summary and remarks

We have proposed and analyzed compact and realistic designs of sharp 90° bends and T-
splitters in plasmonic coaxial waveguides. �e bends and splitters transmit optical waves
nearly perfectly without parasitic re�ection and radiation, so they help to minimize unde-
sirable crosstalk in integrated optical circuits. Also, because the nearly perfect transmission
occurs over a broad range of wavelengths, the performance of our bends and splitters should
be tolerant of fabrication errors, thermal expansion, andwavelength detuning. �eproposed
designs can be fabricated either by standard lithography-based fabrication methods, or by
more sophisticated methods utilizing silver nanowire bends [117, 118] and dielectric-coated
silver nanowires [119–121]. Another interesting approach is to use highly doped semicon-
ductor nanowires instead of metals as conductive inner pieces of plasmonic coaxial waveg-
uides; because the semiconductor nanowires can be grown into various structures such as
bends [122], branches [123, 124], and combs [125], they can be useful for building networks
of plasmonic coaxial waveguides.



Chapter 5

Conclusion and �nal remarks

When earnest labor brings you fame and glory,
And all earth’s noblest ones upon you smile,
Remember that life’s longest, grandest story
Fills but a moment in earth’s little while:
“Cis, too, shall pass away.”

LantaW. Smith (1856–1939)

The finite-difference frequency-domain (FDFD) method is a numerical method
of solvingMaxwell’s equationswith several attractive features compared to othermeth-

ods. As a frequency-domain method, it provides an easier way to analyze steady states and
systems with dispersive materials than time-domain methods such as the �nite-di�erence
time-domain (FDTD) method. In addition, thanks to the straightforwardness of the �nite-
di�erence scheme, discretization of Maxwell’s equations into a large system of linear equa-
tions Ax = b is conceptually much simpler to understand and easier to implement in the
FDFDmethod than in other frequency-domain methods such as the �nite element method
and method of moments.

When implemented näıvely, however, the FDFD method faces the problem of the slow
convergence of iterative methods to solve Ax = b. In this dissertation, we have developed
two techniques to greatly enhance the convergence speed. �e �rst technique is to better-
condition thematrix Aby using an appropriate perfectlymatched layer (PML), i.e., SC-PML

93
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or SP-UPML, instead of the more commonly used UPML. �e second technique is to re-
move the near-zero eigenvalues of A by utilizing the continuity equation. Combining the
two techniques, we have achieved a dramatic increase in convergence speed; for example,
the benchmark problem “Slot” originally took 6 hours to solve with 1024 CPU cores, but af-
ter applying the techniques it took only 10 minutes with 128 CPU cores, resulting in a nearly
300-fold speedup. Beyond solving a few benchmark problems, we have demonstrated the ef-
�ciency of our 3D FDFD solver in a practical situation by using it in designing nearly perfect
bends and splitters in plasmonic coaxial waveguides.

�e use of iterative methods in our 3D FDFD solver is somewhat unconventional from
the perspective of the numerical linear algebra community. When the problem becomes
larger, the numerical linear algebra community is willing to use more computation time
per-iteration rather than more iteration steps. For example, they try to keep the number of
iteration steps below 100 even for a very large problem, as shown in Refs. [126, 127]. Usually
this is possible onlywith very sophisticated algorithms or rather dense preconditioners, both
of which are in general not easy to implement in parallel computing environment.

On the contrary, we carry out the iteration process for a very large number of iteration
steps; for example, to solve “Slot” we use about 12,000 iteration steps; this is less than 0.1 % of
the total number of unknowns (3NxNyNz ≃ 27million), but it is still an enormous number
to the numerical linear algebra community. Nevertheless, we solve this large 3D problem
very e�ciently within several minutes thanks to highly parallel computing environment;
note that our two techniques achieve accelerated convergence by modifying the di�erential
equation before discretization, and therefore the discretized equation remains very sparse
and highly suitable for parallel computing environment. We think that our approach of us-
ing extremely lightweight per-iteration computation for an unconventionally large number
of iteration steps on highly parallelized hardware is one practical way of solving large and
complex problems using iterative methods.

Recently, graphics processing units (GPUs) have emerged as a powerful parallel com-
puting platform. A GPU has a huge number of computing cores but a very limited amount
of on-chip memory. Using iterative methods, our 3D FDFD solver consumes a very small
amount of memory compared to other solvers using direct methods. Especially, if the solver
is implementedwith thematrix-free formulation, which performs the curl operation onYee’s
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�nite-di�erence grid itself without ever constructing amatrix, then our 3D FDFD solver be-
comes extremely memory-e�cient, and hence it is well-suited to be implemented on GPUs.
A preliminary implementation shows that a single GPU can drive our solver as fast as 256
CPU cores. Numerical simulation of complex photonic devices on a desktop using GPUs is
certainly foreseeable.
We will be excited to see the FDFD method become popular and contribute to the ad-

vancement of photonics technology.
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Appendix A

First-order perturbation method for
nondegenerate singular values of
symmetric matrices

In Appendix C.2, the singular values of symmetric matrices are calculated by a perturbation
method, which we describe in this appendix. �e overall derivation is very similar to the
derivation of the widely used perturbation method for the nondegenerate eigenvalues of
Hermitian matrices, for which we refer readers to Ref. [128].

For a symmetric matrix A ∈ Cn×n such that A⊺ = A, its SVD is known to reduce to

A = V∗ΣV †, (A.1)

where V∗ is the complex conjugate of V . In other words, U = V∗ in the original singular
value decomposition of Eq. (2.13) and ui = v∗i in Eq. (2.14). �e decomposition (A.1) is
called the Takagi factorization or the symmetric SVD [129Corollary 4.4.4, 130, 131].

Suppose that A(0) ∈ Cn×n is a symmetric matrix whose Takagi factorization in the form
(2.14) is

A(0) =
n
∑
r=1

σ(0)r v(0)∗r v(0)†r . (A.2)
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We consider a symmetric matrix A that is perturbed from A(0):

A = A(0) + δA(1), (A.3)

where δ is a small number that characterizes the strength of the perturbation. We seek to
calculate the singular values of A, whose Takagi factorization is written as

A =
n
∑
r=1

σrv∗r v†r . (A.4)

We assume that the singular values of A and A(0) are both nondegenerate. �en, for any
singular value σr of A, the corresponding right singular vector vr is unique up to an arbitrary
phase factor e iθr with θr real [129�eorem 7.3.5], because vr is the unit eigenvector corresponding
to a distinct eigenvalue σ2r of the Hermitian eigenvalue problems (2.18);1 the same is true for
v(0)r corresponding to σ(0)r of A(0). As a result,

(σr , vr) → (σ(0)r , e iϕrv(0)r ) for some real ϕr as δ → 0 (A.5)

because A → A(0) as δ → 0. �e nondegeneracy constraint is important in obtaining
Eq. (A.5); without this constraint, in cases where σ(0)q = σ(0)r for q ≠ r, vr converges to a
unit vector in span{v(0)q , v(0)r } instead.

For the perturbed matrix A, we want to express its pth singular value σp to �rst order in
δ. Noting that {v(0)1 , . . . , v

(0)
n } is an orthonormal basis of Cn, we expand the corresponding

right singular vector vp as

vp =
n
∑
r=1

crv(0)r . (A.6)

1�e phase factor e iθ r is arbitrary for the general SVD, but in fact it is not for the Takagi factorization [130];
the equality in Eq. (A.4) cannot be maintained for real σr if vr is scaled by a factor of e iθ r , unless e iθ r

= ±1. �e
only exception arises when σr = 0, whose corresponding right singular vector vr can be freely scaled by any
phase factor. Unfortunately, we have to deal with such an exceptional case in Appendix C.2, so we allow the
freedom to vary the phase factor of vr .
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From Eq. (A.5), we see that vp ≃ e iϕpv(0)p for small δ. �us, to lowest order in δ,

cr =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

e iϕpO(1) = O(1) for r = p,

O(δ) for r ≠ p.
(A.7)

FromEq. (A.4) we have σpv∗p = Avp. Substituting Eqs. (A.3) and (A.6) into this, we obtain

σp

n
∑
r=1

c∗r v
(0)∗
r =

n
∑
r=1

cr(A(0) + δA(1))v(0)r . (A.8)

Subsequent multiplication of v(0)⊺p to Eq. (A.8) produces

c∗pσp = cpσ(0)p +
n
∑
r=1

δcr (v(0)⊺p A(1)v(0)r ) , (A.9)

where Eq. (A.2) is used to obtain the �rst term of the right-hand side.
Now, because of Eq. (A.7), all terms in the sum in Eq. (A.9) are in the order of δ2 unless

r = p. Hence,
c∗pσp = cp [σ(0)p + δ (v(0)⊺p A(1)v(0)p )] + O(δ2), (A.10)

or equivalently
σp −

cp
c∗p

[σ(0)p + δ (v(0)⊺p A(1)v(0)p )] = O(δ2). (A.11)

By taking the modulus of Eq. (A.11) and using the triangle inequality, we obtain

− ∣O(δ2)∣ ≤ σp − ∣σ(0)p + δ (v(0)⊺p A(1)v(0)p )∣ ≤ ∣O(δ2)∣, (A.12)

where ∣σp∣ = σp and ∣cp/c∗p ∣ = 1 are used. �erefore, we have

σp = ∣σ(0)p + δ (v(0)⊺p A(1)v(0)p )∣ + O(δ2), (A.13)

which is the expression of the perturbed singular value σp in terms of the original singu-
lar value σ(0)p , original singular vector v

(0)
p , perturbation matrix A(1), and the perturbation

strength δ.
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Appendix B

Maximum singular values of
homogeneous media accounting for
�nite-di�erence approximation

In this appendix, we derive Eq. (2.43) in Sec. 2.3.2, considering the �nite-di�erence approx-
imation of the spatial derivatives used in T = Tr0 , Tu0 , T sc0 of Eq. (2.27).

When T is applied, Ek(r) = Fke−ik⋅r of Eq. (2.28) is di�erentiated spatially by two curl
operators. �e �rst curl operator generates an H-�eld from Ek as indicated in Eq. (1.1a) for
M = 0. �e generated H-�eld, which is denoted by Hk(r) = Gke−ik⋅r here, is di�erentiated
by the second curl operator as shown in Eq. (1.1b). In this double curl operation, the p-
components of Ek andHk are di�erentiated as

∂Ek,p(r)
∂w

= −ikwEk,p(r) (B.1)

and
∂Hk,p(r)
∂w

= −ikwHk,p(r) (B.2)

for p,w = x , y, z.

On the interlaced E-�eld grid and H-�eld grid of Yee’s grid [11] with uniform cell size ∆,
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the �nite-di�erence method approximates Eqs. (B.1) and (B.2) by

Ek,p(re + ŵ∆) − Ek,p(re)
∆

=
e−ikw∆ − 1
∆

Ek,p(re) ≡ f (kw)Ek,p(re) (B.3)

and
Hk,p(rh) −Hk,p(rh − ŵ∆)

∆
=
1 − e ikw∆
∆

Hk,p(rh) ≡ b(kw)Hk,p(rh), (B.4)

where ŵ is the unit vector in thew-direction; re and rh are the grid points in the E-�eld grid
and H-�eld grid.

Using Eqs. (B.3) and (B.4), the k-space representations of the �nite-di�erence approxi-
mations of Tr0 , Tu0 , and T sc0 are

Tr0k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
b(ky) f (ky)

µ − ω2ε b(ky) f (kx)
µ 0

b(kx) f (ky)
µ −

b(kx) f (kx)
µ − ω2ε 0

0 0 −
b(kx) f (kx)

µ −
b(ky) f (ky)

µ − ω2ε

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.5a)

Tu0k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
b(ky) f (ky)

sx µ − ω2ε
sx

b(ky) f (kx)
sx µ 0

b(kx) f (ky)
sx µ −

b(kx) f (kx)
sx µ − sxω2ε 0

0 0 −
b(kx) f (kx)

sx µ −
sxb(ky) f (ky)

µ − sxω2ε

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.5b)

T sc0k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
b(ky) f (ky)

µ − ω2ε b(ky) f (kx)
sx µ 0

b(kx) f (ky)
sx µ −

b(kx) f (kx)
s2x µ

− ω2ε 0

0 0 −
b(kx) f (kx)

s2x µ
−

b(ky) f (ky)
µ − ω2ε

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B.5c)

Note that Eq. (B.5) reduces to Eq. (2.30) as ∆ → 0 because f (kw), b(kw) → −ikw . �is
means that we obtain Eq. (B.5) by simply replacing kw ’s in Eq. (2.30) with either i f (kw) or
ib(kw) depending on the situation. Accordingly, we can follow the same procedure as in
Sec. 2.3.2 to obtain estimates of the maximum singular values from Eq. (B.5). In 2D, the
only di�erence is that ∣i f (kw)∣, ∣ib(kw)∣ ∈ [0, 2/∆] in Eq. (B.5) whereas ∣kw ∣ ∈ [0, kmax] in
Eq. (2.30). �erefore, we substitute 2/∆ for kmax in Eq. (2.41) to obtain

σ r0max ≃
2(2/∆)2

µ
, σu0max ≃

∣sx ∣(2/∆)2
µ

, σ sc0max ≃
(2/∆)2

µ
, (B.6)

which is Eq. (2.43a). In 3D we still have ∣i f (kx)∣, ∣ib(kx)∣ ∈ [0, 2/∆] and ∣kx ∣ ∈ [0, kmax], but
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have ∣i f (ky)∣, ∣ib(ky)∣ ∈ [0, 2
√
2/∆] and ∣ky∣ ∈ [0,

√
2kmax] due to the special choice of our

coordinate system made in the discussion following Eq. (2.29). Considering this di�erence
we can easily derive Eq. (2.43b) as well.
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Appendix C

Lengthy derivations of various formulae
in Sec. 2.3.4

In this appendix, we derive various formulae used in Sec. 2.3.4 to estimate the minimum
singular values of homogeneous UPML and SC-PML with ε > 0 in a bounded domain.

C.1 kx’s minimizing σmin(Tu0k ) and σmin(Tsc0k ) for a given ky

In this section, we derive kx ’sminimizing σmin(Tu0k ) and σmin(T sc0k ) for a given ky; the derived
kx ’s are used in Eqs. (2.54) and (2.57) in Sec. 2.3.4. �e assumptions kx ≥ 0, ky ≥ 0, and ε > 0
made in Sec. 2.3.4 apply here.
We �rst consider ky < ω/c. For such ky, we show that σmin(Tu0k ) and σmin(T sc0k ) are

increasing functions of kx , and therefore they are minimized at kx = 0. To that end, we
examine the analytic formulae of σmin(Tu0k ) and σmin(T sc0k ) as functions of kx and ky.

�e analytic formulae of σmin(Tu0k ) and σmin(T sc0k ) are quite complex, so we use approx-
imations of Tu0k and T

sc0
k to simplify these formulae. Because of Eq. (2.26), Tu0k and T

sc0
k of

Eq. (2.30) are approximated to

T̃u0k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
k2y−ω2/c2

is′′x µ
kx ky
is′′x µ

0
kx ky
is′′x µ

−
k2x+s′′x 2ω2/c2

is′′x µ
0

0 0 −
k2x+s′′x 2(ω2/c2−k2y)

is′′x µ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (C.1a)
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T̃ sc0k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k2y−ω2/c2
µ

kx ky
is′′x µ

0
kx ky
is′′x µ

−
k2x+s′′x 2ω2/c2

s′′x 2µ
0

0 0 −
k2x+s′′x 2(ω2/c2−k2y)

s′′x 2µ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (C.1b)

where c = 1/√µε is substituted.

Now, we examine the singular values of T̃u0k . �e singular value of T̃
u0
k corresponding to

the singular vector [0 0 1]⊺ is

σ̃u0k,3 =
1

s′′x µ
∣k2x + s′′x

2
(

ω2
c2

− k2y)∣ , (C.2)

which is an increasing function of kx for ky < ω/c.

�e remaining two singular values of T̃u0k corresponding to the singular vectors of the
form [a b 0]⊺ are

σ̃u0k,1 =
√

f1 − f2
√
2s′′x µ

, σ̃u0k,2 =
√

f1 + f2
√
2s′′x µ

, (C.3)

where

f1 = (k2x + k2y + s′′x
2ω2
c2

)

2

+
ω2
c2

(
ω2
c2

− 2(s′′x
2
+ 1)k2y) ,

f2 = (k2x + k2y + (s′′x
2
− 1)

ω2
c2

)[(k2x + k2y − (s′′x
2
+ 1)

ω2
c2

)

2

+ 4k2x(s′′x
2
+ 1)

ω2
c2

]

1/2
.

(C.4)

Between the two singular values, we are only interested in σ̃u0k,1, the smaller of the two.

To prove that σ̃u0k,1 is an increasing function of kx , we show by straightforward algebra
that the �rst derivative of f1 − f2 with respect to kx is nonnegative. �e derivative turns out
to be

∂
∂kx

( f1 − f2) =
− f3 + f4

f5
, (C.5)

where

f3 = 2kx f6 ( f7 + f 26 + 2
ω2
c2

f6) , f4 = 4kx ( f6 +
ω2
c2

) f5 , f5 = f6
√

f7 , (C.6)
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and

f6 = k2x + k2y + (s′′x
2
− 1)

ω2
c2
, f7 = [k2x + k2y − (s′′x

2
+ 1)

ω2
c2

]

2

+ 4k2x(s′′x
2
+ 1)

ω2
c2
. (C.7)

We note that f3, f4, and f5 are all positive because f6 and f7 are positive. In addition, the
numerator − f3 + f4 in Eq. (C.5) is nonnegative because

− f 23 + f 24 = 64k2xk2y(s′′x
2
+ 1)

ω4
c4

[k2x + s′′x
2
(

ω2
c2

− k2y)] f 26 (C.8)

is nonnegative. �erefore, for ky < ω/c, Eq. (C.5) is nonnegative and σ̃u0k,1 is an increasing
function of kx .

So far, we have shown that σ̃u0k,1 and σ̃u0k,3 are increasing functions of kx for a given ky <
ω/c. �us, σmin(T̃u0k ) = min{σ̃u0k,1, σ̃

u0
k,3} is also an increasing function of kx . Since we are

considering kx ≥ 0, σmin(T̃u0k ) is minimized at kx = 0.

We can follow a similar procedure to prove that σmin(T̃ sc0k ) is an increasing function of
kx for ky < ω/c. Very brie�y, the singular value of T sc0k corresponding to the singular vector
[0 0 1]⊺ is

σ̃ sc0k,3 =
1

s′′x 2µ
∣k2x + s′′x

2
(

ω2
c2

− k2y)∣ , (C.9)

which is an increasing function of kx for ky < ω/c. �e smaller of the remaining two singular
values of T sc0k corresponding to the singular vectors of the form [a b 0]⊺ is

σ̃ sc0k,1 =

√g1 − g2
√
2s′′x 2µ

, (C.10)

where

g1 = (k2x + s′′x
2k2y)2 + 2s′′x

2ω2
c2

[k2x + s′′x
2
(

ω2
c2

− k2y)] , (C.11a)

g2 = (k2x + s′′x
2k2y) [k4x + 2k2xs′′x

2
(k2y +

2ω2
c2

) + s′′x
4
(k2y −

2ω2
c2

)

2

]

1/2
. (C.11b)

�en we have
∂
∂kx

(g1 − g2) =
−g3 + g4

g5
, (C.12)
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where

g3 = 4kx [(k2x + s′′x
2k2y)2 + s′′x

2ω2
c2

(3k2x + s′′x
2
(
2ω2
c2

− k2y))] , (C.13a)

g4 = 4kx (k2x + s′′x
2
(k2y +

ω2
c2

)) g5, (C.13b)

g5 = [k4x + 2k2xs′′x
2
(
2ω2
c2

+ k2y) + s′′x
4
(k2y −

2ω2
c2

)

2

]

1/2
. (C.13c)

In Eq. (C.12), the denominator g5 is positive. In addition, the numerator −g3 + g4 is non-
negative because g3, g4, and

− g23 + g24 = 128k2xk2ys′′x
6ω4
c4

(k2x + s′′x
2
(

ω2
c2

− k2y)) (C.14)

are nonnegative. �erefore, σ̃ sc0k,1 and σ̃ sc0k,3 are increasing functions of kx for a given ky < ω/c,
which implies that σmin(T̃ sc0k ) = min{σ̃ sc0k,1 , σ̃

sc0
k,3} is also an increasing function of kx . Since

we are considering kx ≥ 0, σmin(T̃ sc0k ) is minimized at kx = 0.

Next, we consider ky > ω/c, and show that σmin(T̃u0k ) and σmin(T̃ sc0k ) are minimized at
kx = kx0 ≡ s′′x [k2y − ω2/c2]1/2 for such ky. First of all, we see that σ̃u0k,3 and σ̃ sc0k,3 of Eqs. (C.2)
and (C.9) are minimized at kx = kx0. In addition, since Eqs. (C.8) and (C.14) are negative
for kx < kx0 and positive for kx > kx0, σ̃u0k,1 and σ̃ sc0k,1 are minimized at kx = kx0. �erefore,
σmin(T̃u0k ) =min{σ̃u0k,1, σ̃

u0
k,3} and σmin(T̃ sc0k ) =min{σ̃ sc0k,1 , σ̃

sc0
k,3} are minimized at kx = kx0.

In summary, σmin(T̃u0k ) and σmin(T̃ sc0k ) are minimized at kx = 0 for ky < ω/c, and at
kx = kx0 for ky > ω/c. Because T̃k = T̃u0k , T̃

sc0
k are good approximations of Tk = Tu0k , T

sc0
k , we

have

min
kx≥0

σmin(Tk) ≃min
kx≥0

σmin(T̃k) = σmin(T̃k)kx=0 ≃ σmin(Tk)kx=0 for ky <
ω
c

(C.15)

and

min
kx≥0

σmin(Tk) ≃min
kx≥0

σmin(T̃k) = σmin(T̃k)kx=kx0 ≃ σmin(Tk)kx=kx0 for ky >
ω
c
, (C.16)

which are Eqs. (2.54) and (2.57), respectively.
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C.2 Estimates of σmin(Tu0k )kx=kx0
and σmin(Tsc0k )kx=kx0

for

a given ky > ω/c

In this section, we derive the estimates of σmin(Tu0k )kx=kx0 and σmin(T sc0k )kx=kx0 for a given ky >

ω/c, where kx0 = s′′x
√

k2y − ω2
c2 , using the perturbationmethod developed in Appendix A; the

estimates are used in Eq. (2.58) in Sec. 2.3.4. �e speci�c assumption ky > ω/c as well as the
assumptions kx ≥ 0, ky ≥ 0, ε > 0 made in Sec. 2.3.4 apply here.

Suppose that the given ky is ky0 > ω/c. �en

kx0 = s′′x

√

k2y0 −
ω2
c2
. (C.17)

Also de�ne
k0 = x̂kx0 + ŷky0. (C.18)

�en, the le�-hand sides of Eq. (2.58) are σmin(Tu0k0 ) and σmin(T sc0k0 ), whichwe evaluate below.

We approximate σmin(Tk0) for Tk0 = Tu0k0 , T
sc0
k0 to �rst order in a small perturbation pa-

rameter δ. �e perturbed quantity in Tk0 is the real part of sx . We write sx of Eq. (2.25)
as

sx = −is′′x (1 + δ), (C.19)

where
δ =

i
s′′x
. (C.20)

Because ∣δ∣ ≪ 1 due to Eq. (2.26), the approximation of σmin(Tk0) to �rst order in δ should
be an accurate estimate of σmin(Tk0).

We �rst derive the approximation of σmin(Tu0k0 ). One singular value of T
u0
k0 corresponding

to the singular vector [0 0 1]⊺ is σu0k0 ,3, which is σu0k,3 of Eq. (2.32) for k = k0. Because Eq. (C.19)
implies

1
s2x

= −
1

s′′x 2(1 + δ)2
= −

1
s′′x 2

(1 − 2δ) + O(δ2), (C.21)
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we have

σu0k0 ,3 = ∣sx ∣ ∣−
k2x0
s′′x 2µ

(1 − 2δ) +
k2y0
µ
− ω2ε∣ + O(δ2) = 2∣δ∣∣sx ∣ (

k2y0
µ
− ω2ε) + O(δ2), (C.22)

where kx0 is expressed in terms of ky0 using Eq. (C.17). Substituting Eq. (C.20) in Eq. (C.22)
leads to

σu0k0 ,3 =
2
√
s′′x 2 + 1
s′′x

(
k2y0
µ
− ω2ε) + O(δ2). (C.23)

�e remaining two singular values of Tu0k0 correspond to the singular vectors of the form
[a b 0]⊺. �erefore, we can derive the two singular values by applying the perturbation
method established in Appendix A to the top-le� 2 × 2 block of Tu0k0 . Using Eq. (C.19) and

1
sx

= −
1

is′′x (1 + δ)
= −

1
is′′x

(1 − δ) + O(δ2), (C.24)

we approximate the top-le� 2 × 2 block of Tu0k of Eq. (2.30b) for k = k0 as

A =

⎡
⎢
⎢
⎢
⎢
⎣

k2y0
sx µ −

ω2ε
sx −

kx0ky0
sx µ

−
kx0ky0
sx µ

k2x0
sx µ − sxω2ε

⎤
⎥
⎥
⎥
⎥
⎦

≃

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(−
k2y0
is′′x µ

+ ω2ε
is′′x

) (1 − δ) kx0ky0
is′′x µ

(1 − δ)
kx0ky0
is′′x µ

(1 − δ) −
k2x0
is′′x µ

(1 − δ) + is′′x (1 + δ)ω2ε

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

(C.25)
Following the notations in Appendix A, Eq. (C.25) is decomposed as

A ≃ A(0) + δA(1) =
⎡
⎢
⎢
⎢
⎢
⎣

−
k2x0
is′′x 3µ

kx0ky0
is′′x µ

kx0ky0
is′′x µ

is′′x k2y0
µ

⎤
⎥
⎥
⎥
⎥
⎦

+ δ
⎡
⎢
⎢
⎢
⎢
⎣

k2x0
is′′x 3µ

−
kx0ky0
is′′x µ

−
kx0ky0
is′′x µ

k2x0
is′′x µ

+ is′′x ω2ε

⎤
⎥
⎥
⎥
⎥
⎦

, (C.26)

where A(0) and A(1) are simpli�ed using Eq. (C.17).

We obtain the two singular values σu0k0 ,1 and σu0k0 ,2 of T
u0
k0 fromA. However, since eventually

we are interested in σmin(Tu0k0 ), we focus on the smaller of the two, which is denoted by σu0k0 ,1.
Because δ is small, it is reasonable to assume that the smaller singular value of A is the
one perturbed from the smaller singular value of A(0), which is denoted by σ(0)1 . �us, we
estimate σu0k0 ,1 as the perturbation of σ(0)1 . In fact, σ

(0)
1 = 0 since det(A(0)) = 0.
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�e right singular vector v(0)1 corresponding to σ(0)1 is calculated by solving the eigen-
value problem (A(0)†A(0))v(0)1 = σ(0)1 v(0)1 as described in Eq. (2.18). �e result is

v(0)1 =
1

√
k2x0/s′′x 2 + s′′x 2k2y0

⎡
⎢
⎢
⎢
⎢
⎣

−is′′x k2y0
−ik2x0/s′′x

⎤
⎥
⎥
⎥
⎥
⎦

. (C.27)

Using Eqs. (C.26) and (C.27) in Eq. (A.13), we obtain

σu0k0 ,1 = ∣σ(0)1 + δ (v(0)⊺1 A(1)v(0)1 )∣ + O(δ2) = 2ω2ε
k2y0 − ω2µε

(s′′x 2 + 1)k2y0 − ω2µε
+ O(δ2), (C.28)

where Eqs. (C.17), (C.19), and (C.20) are used to simplify the result.

Taking the ratio between Eqs. (C.23) and (C.28), we can easily see that σu0k0 ,1 < σu0k0 ,3 in the
leading order. �erefore, we conclude that

σmin(Tu0k0 ) = 2ω
2ε

k2y0 − ω2µε
(s′′x 2 + 1)k2y0 − ω2µε

+ O(δ2), (C.29)

which is Eq. (2.58a).

Next, we derive the approximation of σmin(T sc0k0 ). �e overall procedure is very similar to
the derivation of σmin(Tu0k0 ). One singular value of T

sc0
k0 corresponding to the singular vector

[0 0 1]⊺ is σ sc0k0 ,3, which is σ sc0k,3 of Eq. (2.32) for k = k0. Using Eq. (C.21), we obtain

σ sc0k0 ,3 = ∣−
k2x0
s′′x 2µ

(1 − 2δ) +
k2y0
µ
− ω2ε∣ + O(δ2) = 2∣δ∣ (

k2y0
µ
− ω2ε) + O(δ2), (C.30)

where kx0 is expressed in terms of ky0 using Eq. (C.17). Substituting Eq. (C.20) in Eq. (C.30)
results in

σ sc0k0 ,3 =
2
s′′x

(
k2y0
µ
− ω2ε) + O(δ2). (C.31)

�e remaining two singular values of T sc0k0 correspond to the singular vectors of the form
[a b 0]⊺. �erefore, we derive the two singular values by applying the perturbation method
of Appendix A to the top-le� 2 × 2 block of T sc0k0 . Using Eqs. (C.21) and (C.24), the top-le�
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2 × 2 block of T sc0k of Eq. (2.30c) for k = k0 is approximated as

A =

⎡
⎢
⎢
⎢
⎢
⎣

k2y0
µ − ω2ε −

kx0ky0
sx µ

−
kx0ky0
sx µ

k2x0
s2x µ

− ω2ε

⎤
⎥
⎥
⎥
⎥
⎦

≃

⎡
⎢
⎢
⎢
⎢
⎣

k2y0
µ − ω2ε kx0ky0

is′′x µ
(1 − δ)

kx0ky0
is′′x µ

(1 − δ) −
k2x0
s′′x 2µ

(1 − 2δ) − ω2ε

⎤
⎥
⎥
⎥
⎥
⎦

, (C.32)

which is decomposed as

A ≃ A(0) + δA(1) =
⎡
⎢
⎢
⎢
⎢
⎣

k2x0
s′′x 2µ

kx0ky0
is′′x µ

kx0ky0
is′′x µ

−
k2y0
µ

⎤
⎥
⎥
⎥
⎥
⎦

+ δ
⎡
⎢
⎢
⎢
⎢
⎣

0 −
kx0ky0
is′′x µ

−
kx0ky0
is′′x µ

2k2x0
s′′x 2µ

⎤
⎥
⎥
⎥
⎥
⎦

, (C.33)

where A(0) and A(1) are simpli�ed using Eq. (C.17).

We solve the eigenvalue problem (A(0)†A(0))v(0)1 = σ(0)1 v(0)1 for σ(0)1 = 0 to obtain

v(0)1 =
1

√
k2x0/s′′x 2 + k2y0

⎡
⎢
⎢
⎢
⎢
⎣

ky0
−ikx0/s′′x

⎤
⎥
⎥
⎥
⎥
⎦

. (C.34)

Using Eqs. (C.33) and (C.34) in Eq. (A.13), we obtain the singular value of Aperturbed from
σ(0)1 :

σ sc0k0 ,1 = ∣σ(0)1 + δ (v(0)⊺1 A(1)v(0)1 )∣ + O(δ2) = 2
s′′x

ω2ε
k2y0 − ω2µε
2k2y0 − ω2µε

+ O(δ2), (C.35)

where Eqs. (C.17), (C.19), and (C.20) are used to simplify the result.

Taking the ratio between Eqs. (C.31) and (C.35), we can easily see that σ sc0k0 ,1 < σ sc0k0 ,3 in the
leading order. �erefore, we conclude that

σmin(T sc0k0 ) =
2
s′′x

ω2ε
k2y0 − ω2µε
2k2y0 − ω2µε

+ O(δ2), (C.36)

which is Eq. (2.58b).
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C.3 Lowest-order approximation of σmin(Tu0k )/σmin(Tsc0k )

around k = ŷ(ω/c)

In this section, we derive the lowest-order approximation of σmin(Tu0k )/σmin(T sc0k ) around
k = ŷ(ω/c), or equivalently around kx = 0 and ky = ω/c; the approximation is used in
Eq. (2.62) in Sec. 2.3.4.

First, we derive the lowest-order approximation of [σmin(Tu0k )]2. According to Eq. (2.18),
the squares of the singular values of Tu0k are the eigenvalues of (Tu0k )†Tu0k . From Tu0k of
Eq. (2.30b), the eigenvalue of (Tu0k )†Tu0k corresponding to the eigenvector [0 0 1] is

(σu0k,3)
2 =

1
µ2

[
k2x
1 − is′′x

+ (1 − is′′x ) (k2y −
ω2
c2

)] [
k2x
1 + is′′x

+ (1 + is′′x ) (k2y −
ω2
c2

)] , (C.37)

which is the square of σu0k,3 in Eq. (2.32). We expand Eq. (C.37) into a Taylor series with re-
spect to two variables ∆kx = kx−0 and ∆ky = ky−ω/c. �e lowest-order-term representation
of the series, shown in the order of ascending powers of ∆kx , is

(σu0k,3)
2 = [

4(s′′x 2 + 1)
µ2

ω2
c2
∆2ky + O(∆3ky)] + [−

4
µ2

s′′x 2 − 1
s′′x 2 + 1

ω
c
∆ky + O(∆2ky)]∆

2
kx

+ [
1

(s′′x 2 + 1)µ2
]∆4kx . (C.38)

�e remaining two eigenvalues of (Tu0k )†Tu0k correspond to the eigenvectors of the form
[a b 0]⊺. Solving the eigenvalue equation directly, we obtain the smaller of the two:

(σu0k,1)
2 =

1
2(s′′x 2 + 1)µ2

[ f u0(kx , ky) −
√

gu0(kx , ky)] , (C.39)

where

f u0(kx , ky) = (k2x + k2y)2 + 2 ((s′′x
2
− 1)k2x − k2y)

ω2
c2

+ ((s′′x
2
+ 1)2 + 1)

ω4
c4

(C.40)
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and

gu0(kx , ky) = (k2x + k2y)4 + 4(k2x + k2y)2 ((s′′x
2
− 1)k2x − k2y)

ω2
c2

+ 2 [(3s′′x
4
− 2s′′x

2
+ 2)k4x + 2 ((s′′x

2
+ 1)2 + 1) k2xk2y − ((s′′x

2
+ 1)2 − 3) k4y]

ω4
c4

+ 4s′′x
2
(s′′x

2
+ 2) ((s′′x

2
− 1)k2x + k2y)

ω6
c6

+ s′′x
4
(s′′x

2
+ 2)2

ω8
c8
. (C.41)

We expandEq. (C.39) into a Taylor series with respect to ∆kx and ∆ky . �e lowest-order-term
representation of the series, shown in the order of ascending powers of ∆kx , is

(σu0k,1)
2 = [

4
(1 + s′′x 2)µ2

ω2
c2
∆2ky + O(∆3ky)] + [−

4
µ2

s′′x 2 − 1
(s′′x 2 + 1)3

ω
c
∆ky + O(∆2ky)]∆

2
kx

+ [
1

(s′′x 2 + 1)3µ2
+ O(∆ky)]∆4kx + O(∆5kx). (C.42)

Because ∆kx ≃ 0 and ∆ky ≃ 0, the O(∆n
kx) and O(∆n

ky) terms in Eqs. (C.38) and (C.42)
can be ignored. �en, we realize that (σu0k,1)2 ≃ (σu0k,3)2/(s′′x

2 + 1)2 and thus (σu0k,1)2 ≪ (σu0k,3)2.
�erefore, the lowest-order approximation of [σmin(Tu0k )]2 around kx = 0 and ky = ω/c is

[σmin(Tu0k )]2 ≃ [
4

(1 + s′′x 2)µ2
ω2
c2
∆2ky] − [

4
µ2

s′′x 2 − 1
(s′′x 2 + 1)3

ω
c
∆ky]∆2kx + [

1
(s′′x 2 + 1)3µ2

]∆4kx .

(C.43)
�e lowest-order approximation of [σmin(T sc0k )]2 can be derived similarly by expanding

(σ sc0k,3 )
2 and (σ sc0k,1 )

2 into Taylor series and choosing the smaller of the two:

[σmin(T sc0k )]2 ≃ [
4
µ2

ω2
c2
∆2ky] + [−

4
µ2

s′′x 2 − 1
(s′′x 2 + 1)2

ω
c
∆ky]∆2kx + [

1
(s′′x 2 + 1)2µ2

]∆4kx . (C.44)

We realize that Eq. (C.43) is proportional to Eq. (C.44) with the proportionality factor
1/(1 + s′′x 2). �erefore, around k = ŷ(ω/c) we have

σmin(Tu0k )

σmin(T sc0k )
≃

1
√
1 + s′′x 2

=
1

∣sx ∣
, (C.45)

which is Eq. (2.62).



Appendix D

Eigenvalues and eigenfunctions of
∇× (∇× ) and∇(∇⋅ )

Using the k-space representations of the operators, in this section we derive the eigenvalues
Eq. (3.11) of ∇ × (∇× ) and Eq. (3.12) of ∇(∇⋅ ) as well as their corresponding eigen-
functions.

Because both∇×(∇× ) and∇(∇⋅ ) are translationally invariant, their eigenfunctions
have the form [48Sec. 2.3.2, 49Sec. 2.6.1]

F = Fke−ik⋅r, (D.1)

where r represents position, k = x̂kx + ŷky + ẑkz is a real constant wavevector, and Fk =

x̂Fx
k + ŷF y

k + ẑFz
k is a k-dependent vector.

We reformulate the eigenvalue equations∇×(∇×F) = λF and∇(∇ ⋅F) = λF by substi-
tuting Eq. (D.1) for F. �en, the eigenvalue equation for ∇× (∇× ) is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k2y + k2z −kxky −kxkz
−kykx k2z + k2x −kykz
−kzkx −kzky k2x + k2y

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fx
k

F y
k

Fz
k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= λ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fx
k

F y
k

Fz
k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (D.2)
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and the eigenvalue equation for ∇(∇⋅ ) is

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k2x kxky kxkz
kykx k2y kykz
kzkx kzky k2z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fx
k

F y
k

Fz
k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= λ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fx
k

F y
k

Fz
k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (D.3)

By solving Eqs. (D.2) and (D.3) for a given k, we obtain

λ = 0, ∣k∣2, ∣k∣2, (D.4)

which is Eq. (3.11), as the eigenvalues of ∇× (∇× ), and

λ = −∣k∣2, 0, 0, (D.5)

which is Eq. (3.12), as the eigenvalues of ∇(∇⋅ ), and Eq. (D.1) with

Fk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

kx
ky
kz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

kz
0
−kx

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−ky
kx
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(D.6)

as the eigenfunctions corresponding to both Eqs. (D.4) and (D.5).
Wenote fromEqs. (D.4) and (D.5) that∇×(∇× ) and∇(∇⋅ ) are positive-semide�nite

and negative-semide�nite, respectively.



Appendix E

E�ect of the smallest root of p̃m ∈ Pm on
the slopes at the roots

In this section, we show that the slopes at the roots of a polynomial p̃m ∈ Pm with all posi-
tive roots become steeper when the smallest root decreases in magnitude. �is behavior is
illustrated in Fig. 3.6.

Since p̃m ∈ Pm satis�es the condition (3.16), it can be factored as

p̃m(ζ) =
dm
∏
i=1

(1 −
ζ
ζi
) , (E.1)

where dm ≤ m is the degree of p̃m and ζi ’s are the roots of p̃m. Hence, the slope of p̃m at a
root ζk is

p̃′m(ζk) = −
1
ζk
∏
i≠k

(1 −
ζk
ζi

) . (E.2)

Now, suppose that 0 < ζ1 < ⋯ < ζdm . We can easily show that ∣p̃′m(ζk)∣ increases for any
k when ζ1 decreases toward zero (while remaining positive) as follows. For k = 1, we have

∣p̃′m(ζ1)∣ =
1
ζ1

(1 −
ζ1
ζ2

)⋯(1 −
ζ1

ζdm
) , (E.3)
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which clearly increases as ζ1 decreases to 0. For k > 1, we have

∣p̃′m(ζk)∣ = (
ζk
ζ1
− 1)[

1
ζk
∏
i≠1,k

∣1 −
ζk
ζi

∣] , (E.4)

where the parentheses enclose the only quantity that is dependent on ζ1. We can therefore
see that ∣p̃′m(ζk)∣ increases as ζ1 decreases for k > 1 as well. �erefore, for a given p̃m ∈ Pm

whose roots are all positive, the slopes of p̃m at the roots become steeper if the smallest
root decreases in magnitude while remaining positive. �is situation is illustrated by the
transition from Fig. 3.6a to Fig. 3.6b.

�e slopes at the roots also become steeper when the originally positive ζ1 is replaced by
a negative value, as long as the negative value is smaller in magnitude than the original ζ1.
Replacing the originally positive ζ1 with a negative quantity that is smaller in magnitude is
equivalent to �rst replacing ζ1with a smaller positive value and then �ipping its sign. Because
we have already shown above that the slopes get steeper when the originally positive ζ1 is
replaced by a smaller positive value, it is su�cient to show that �ipping the sign of ζ1 makes
the slopes even steeper. For a negative ζ1, the slopes at the roots are

∣p̃′m(ζ1)∣ =
1
∣ζ1∣

(1 +
∣ζ1∣
ζ2

)⋯(1 +
∣ζ1∣
ζdm

) (E.5)

and
∣p̃′m(ζk)∣ = (

ζk
∣ζ1∣

+ 1)[
1
ζk
∏
i≠1,k

∣1 −
ζk
ζi

∣] (E.6)

for k > 1. �ese slopes are steeper than Eqs. (E.3) and (E.4), respectively, which are the slopes
for a positive ζ1 with the samemagnitude. �erefore, for a given p̃m ∈ Pm whose roots are all
positive, the slopes of p̃m at the roots become steeper if the smallest root is replaced by the
one that is smaller in magnitude but negative. �is situation is illustrated by the transition
from Fig. 3.6a to Fig. 3.6c.



Appendix F

Trend in the slopes of a polynomial at the
roots

In this section, we consider a polynomial p with all real roots, and show that the slope of
p evaluated at a root closer to the median of the roots tends to be gentler than the slope
evaluated at a root farther away from the median of the roots. �is behavior is illustrated in
Fig. 3.8.

Consider a polynomial of degree m,

p(ζ) = α
m
∏
i=1

(ζ − ζi), (F.1)

with ζ1 < ⋯ < ζm. �e slope of p at a root ζk is

p′(ζk) = α∏
i≠k

(ζk − ζi). (F.2)

Now, we evaluate ∣p′(ζk+1)∣/∣p′(ζk)∣. We �rst consider the case where the roots are evenly
spaced, i.e., ζi+1 − ζi = (const.), for which we have

∣p′(ζk+1)∣
∣p′(ζk)∣

=
k! (m − k − 1)!

(k − 1)! (m − k)!
=

k
m − k

. (F.3)

Equation (F.3) is an increasing function of k for 1 ≤ k ≤ m − 1, and it is less than 1 for
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k < m/2 and greater than 1 for k > m/2. �erefore, ∣p′(ζk)∣ is largest for k = 1 and k = m,
and it decreases as k becomes closer to k = ⌊(m + 1)/2⌋ and k = ⌈(m + 1)/2⌉, which are the
medians of the indices. In other words, for p with evenly spaced roots, the slopes of p get
gentler at the roots closer to the median of the roots.
It is reasonable to expect that the above trend in the slopes also holds for pwith unevenly

spaced roots, unless the unevenness is too severe. To verify the expectation, we examine
∣p′(ζk+1)∣/∣p′(ζk)∣ without assuming ζi+1 − ζi = (const.):

∣p′(ζk+1)∣
∣p′(ζk)∣

=
∏i≠k+1 ∣ζk+1 − ζi ∣
∏i≠k ∣ζk − ζi ∣

= ∏
i≠k,k+1

∣ζk+1 − ζi ∣
∣ζk − ζi ∣

=
k−1
∏
i=1

(
ζk+1 − ζi
ζk − ζi

)
m
∏
i=k+2

(
ζi − ζk+1
ζi − ζk

)

= [
k−1
∏
i=1

(1 +
ζk+1 − ζk
ζk − ζi

)][
m
∏
i=k+2

(1 −
ζk+1 − ζk
ζi − ζk

)] . (F.4)

Here, the factors within the �rst (second) brackets are always greater (less) than 1, so the
number of factors greater (less) than 1 increases (decreases) for increasing k. �erefore,
∣p′(ζk+1)∣/∣p′(ζk)∣ tends to be less than 1 for smaller k, and it tends to be greater than 1 for
larger k. �is means that as k increases ∣p′(ζk)∣ tends to decrease �rst and then tends to
increase. Hence, even if the roots of p are unevenly spaced, the slopes of p tend to get gentler
at the roots closer to the median of the roots.
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telecommunication wavelength, 11, 83
transmission line, 86

vacuum impedance, 4, 18
variational method, 24, 39

waveguide
metal-dielectric-metal (MDM), 44, 81
plasmonic coaxial, 83
bend, 85
splitter, 88
plasmonic slot, 11, 82
rectangular dielectric, 12
V-groove, 82
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