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First-principles simulation of active nanophotonic devices is
indispensable to optical engineering. However, direct simula-
tion of active devices with traditional time-domain methods
have been prohibitively expensive due to the inherently
large time-scale difference between optical and modulation
frequencies. To overcome this challenge, we present a multi-
frequency finite-difference frequency-domain algorithm that
efficiently performs first-principles steady-state simulations
in active devices. We validate our algorithm by simulating
a modulated waveguide device and find that the result of
the simulation is in excellent agreement with that of coupled
mode theory, while also revealing features that are neglected
in typical coupled mode theory treatments. We further dem-
onstrate that this algorithm makes it possible to effectively
simulate realistic active optical devices. Our algorithm should
facilitate and expedite the design and analysis of active nano-
photonic components. © 2016 Optical Society of America
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In recent years, there has been very significant interest in design-
ing active nanophotonic devices. For instance, there are extensive
works with electro-optical modulators for on-chip optical inter-
connects [1–15]. Such modulators have also been used in the
construction of optical isolators [16–19] and nonreciprocal meta-
surfaces [20–22], as well as in the realization of photonic topo-
logical effects [17,23–25]. In designing such active nanophotonic
devices, it is crucial to be able to simulate their performance from
the first principle of Maxwell’s equations. Nevertheless, simula-
tions of these devices present an intrinsic challenge that arises
from the inherent time scale differences in the different physical
processes in such systems. For example, in electro-optical modu-
lation devices, the modulation frequencies are typically on the
order of 10 GHz [1–15], while the optical carrier waves have
frequencies around 200 THz. Although, in principle, one could
simulate such a modulator with a standard first-principles

time-domain simulation technique such as the finite-difference
time-domain algorithm [6,16,19,20,26], a single modulation
period corresponds to around 105 optical cycles; obtaining device
performance directly from solving time-domain Maxwell’s equa-
tions is thus prohibitively expensive. Due to this constraint, many
previous active device performance instances are were only simu-
lated approximately, such as by using a combination of coupled
mode theory with passive device simulations or semi-analytical
equations [3,7,8,11–13], deriving approximate circuit models for
waveguide elements [14,15,21], or adopting the slowly varying
envelope approximation [24,25]. None of the previous methods
is exact, and they make approximations that inevitably neglect
portions of the underlying device physics. In order to accurately
and realistically simulate these active devices from first principles,
there is an urgent need to develop a computational algorithm to
efficiently perform multiple time scale simulations.

In this Letter, we introduce a multi-frequency finite-difference
frequency-domain (MF-FDFD) technique in order to perform
first-principles calculations of active devices that possess multiple
time scales. In the frequency domain, the physics of active
devices can be rigorously formulated in terms of interactions
between waves at different frequencies. Therefore, by setting
up frequency-domain simulations simultaneously at different
frequencies and allowing interactions between wave components
at these frequencies, one can directly simulate a large class of
active devices without the limitation in time-domain simulations,
as imposed by the existence of vastly differing time scales inherent
in these problems.

To start, we first briefly review the formalism of frequency-
domain simulation techniques for Maxwell’s equations [27–30].
In frequency domain, Maxwell’s equations for the electric field
E�ω� at frequency ω can be written as

∇ × μ�ω�−1∇ × E�ω� − ω2εs�ω�E�ω� − ω2P�ω� � −iωJ�ω�:
(1)

In Eq. (1), μ�ω� and εs�ω� are the permeability and static per-
mittivity at frequency ω, respectively. J�ω� is the external current
density. P�ω� is the additional polarization density component at
the frequency ω that arises from either dynamic modulation or
optical nonlinearity. The spatial dependency is assumed implicitly
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throughout the paper. In the absence of P�ω�, we can discretize
Eq. (1) in space, using, for example, the finite-difference tech-
nique on Yee’s lattice [31] to obtain

Ae � −iωj; (2)

where A is a matrix that arises from the discretization of the
operator ∇ × μ�ω�−1∇ × �� − ω2εs�ω�, and e and j are reshaped
column vectors that represent the spatially discretized E�ω�
and J�ω�, respectively. Given A and j, Eq. (2) can be solved
for e with numerical linear algebra techniques, where e is the
steady-state electric field E�ω� as represented on the discrete lat-
tice [28–31]. Solving Eq. (2) therefore allows one to treat passive
and linear devices in general.

In order to treat active optical devices, we incorporate the
polarization density P�ω� that arises from permittivity modula-
tion into Eq. (1). In what follows, we show that one can explicitly
treat the effect of P�ω� by developing a matrix equation similar to
Eq. (2). This treatment is similar in setup to those described in the
harmonic balance method used for nonlinear circuit simulations
[32,33], as well as frequency-domain algorithms developed to
solve for the steady-state solutions of lasers under nonlinear effects
due to saturation gain [34]. Consider a device whose relative
permittivity function is modulated in time with the form

ε�t� � εs � δ cos�Ωt � ϕ� � εs �
δ

2
eiΩt�iϕ � δ

2
e−iΩt−iϕ; (3)

where δ is the modulation strength, Ω is the modulation fre-
quency, and ϕ is the modulation phase. Under such modulation,
there arises a polarization P̃�t� of the form

P̃�t� �
�
δ

2
eiΩt�iϕ � δ

2
e−iΩt−iϕ

�
Ẽ�t�: (4)

By Fourier transforming Eq. (4) in time, we obtain

P�ω� � δ

2
eiϕE�ω −Ω� � δ

2
eiϕE�ω�Ω�: (5)

Consider the case when an active optical device is excited at a
frequency ω0 with current density J�ω0�. Modulation at a fre-
quency Ω induces a number of sideband components at frequen-
cies ωn � ω0 � nΩ, where n is an integer. Therefore, under
modulation, the time-domain electric field Ẽ�t� in the system
in general is of the form

Ẽ�t� � Re

�X
n

E�ωn�eiωnt

�
; (6)

where E�ωn� is the field component at frequency ωn. In the sim-
ulations, we limit n to be between −N and N and check that the
solution converges as we increase N . In substituting Eqs. (5) and
(6) into Eq. (1) and matching specific frequency components
with temporal eiωnt variations, we obtain the following linear
equations:

∇ × μ�ωn�−1∇ × E�ωn� − ω2
nεs�ωn�E�ωn�

−
1

2
ω2
nδeiϕE�ωn−1� −

1

2
ω2
nδe−iϕE�ωn�1� � −iωJ�ω0�δn0; (7)

where δn0 is the Kronecker delta function.
By discretizing Eq. (7) and keeping a total of 2N + 1 frequency

components, we obtain a linear matrix equation of the form of
Eq. (2), which is the equation of the MF-FDFD algorithm for
active devices. The solution e can be obtained through conven-
tional linear algebra techniques such as matrix factorization [35] or

various iterative methods such as the biconjugate gradient method
[36] and quasi-minimal residual method [37]. Once E�ωn� for
−N ≤ n ≤ N are calculated from Eq. (7), the time-domain electric
field Ẽ�t� can be recovered from Eq. (6). Compared to other algo-
rithms used in nonlinear circuit and laser simulations [32–34],
which all require the solution of a system of nonlinear equations,
the MF-FDFD technique requires the solution of a system of linear
equations and is thus less computationally complex.

Having presented the theoretical formalism for the MF-FDFD
method, we first verify the MF-FDFD algorithm by demonstrat-
ing modal conversion in a waveguide structure with harmonically
modulated permittivity. We consider a slab waveguide geometry,
as shown in Fig. 1(a). This geometry has been previously consid-
ered as the basis for a dynamic isolator [18]. The waveguide core
has a relative permittivity of εWG � 4 that is surrounded by
vacuum, and it is 10 μm long and 750 nm wide. In the vicinity
of λ � 1.5 μm, the waveguide supports two transverse electric
(TE) modes (with nonzero Ez , Hx and Hy field components):
the even TE0 mode and the odd TE1 mode. In Figs. 1(b) and
1(c), we show the profiles of a TE0 mode at λ0 � 1.55 μm
(ω0 � 1.215 × 1015 rad∕s) and TE1 mode at λ1 � 1.50 μm
(ω1 � 1.256 × 1015 rad∕s) with propagation constants β0 �
7.47 μm−1 and β1 � 5.73 μm−1 respectively. To achieve modal
conversion between the modes above, we apply a modulation fre-
quency of Ω � ω1 − ω0 � 40.5 × 1012 rad∕s with a strength of
jδj � 0.1 in the 5 μm long modulation region shown in Fig. 1(a),
where the top half and bottom half of the waveguide are modu-
lated with a relative phase of π to maximize the coupling between
the TE0 and TE1 modes.

In the simulation, we set up the MF-FDFD algorithm to ana-
lyze a total of 2N � 1 � 9 frequency components. The spatial
discretization of the simulation domain is Δx � Δy � 25 nm,
and the simulation space is surrounded by 20 layers of stretched-
coordinate perfectly matched layers (SC-PMLs) to suppress spu-
rious reflection at the boundaries [38]. At the x � 1 μm position,
we excite a continuous wave at ω0 (λ0 � 1.55 μm), whose guided
power is normalized to 1 W∕μm. As the wave propagates inside
the modulation region, part of its amplitude is converted to the
ωn � ω0 � nΩ components. First, in Fig. 2(a) we plot the maxi-
mum amplitude of the electric field pattern at each ωn (with
n ∈ �−4; 4�), and note that the maximum electric field amplitude
decreases exponentially as we increase jnj. This indicates that

Fig. 1. (a) Schematic of the waveguide structure with the source
location and modulation region indicated. In the modulation region,
the top and bottom halves of the waveguide are modulated with a relative
phase difference of π. (b), (c) Modal profiles of the TE0 and TE1 modes
of the waveguide at λ0 � 1.55 μm and λ1 � 1.50 μm, respectively. Both
modes carry a guided power normalized to 1 W∕μm.
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convergence of the solution can be reached by considering a
relatively small number of frequency components.

Next, we examine the details of the MF-FDFD solution. On
the left side of Fig. 2(b), we provide the field profiles for the
n ∈ �−2; 2� sidebands, which have frequencies from ω0 − 2Ω to
ω0 � 2Ω. On the right side of Fig. 2(b), we plot the power am-
plitude along the propagation direction for each of the sidebands
and compare them with coupled mode theory (CMT) [39] [for
the CMT treatment, see Supplement 1]. We observe excellent
agreement between the solution from the MF-FDFD method
and CMT, which provides validation for our algorithm.

It is interesting to note that the MF-FDFD solution reveals
additional features that are neglected in standard CMT calcula-
tions. On the right side of Fig. 2(b), for the MF-FDFD solution,
there exist small oscillations in the power amplitudes within the
modulation region that are absent in CMT, and we attribute this
effect to the generation of backward propagating modes. For
instance, for the field component at the frequency ω0 �Ω, the
periodicity of such small oscillations is Λ1 � 2π∕�β0 � β1� �
0.476 μm, which corresponds to the highly phase-mismatched
coupling to a backward mode from modulation. The generation
of such a backward wave can be further observed visually from the
field profiles in Fig. 2(b) to the left of the modulation region
(x ≤ 3 μm). Due to the large phase mismatch, backward coupling
is typically ignored in standard CMT treatments. On the other
hand, the MF-FDFD solution, being a first-principles method,
can capture all possible wave interactions in a system.

Having observed excellent agreement between the MF-FDFD
algorithm and CMT, we now demonstrate the application of the

MF-FDFD algorithm to a realistic system with small modulation
strength and slow modulation frequency compared with the op-
tical frequency. The structure we consider consists of an external
waveguide coupled to a modulated ring resonator, as shown in
Fig. 3(a). Such a device has previously been demonstrated as a
miniaturized on-chip electro-optical modulator [1,2]. In our
structure, both the external and ring waveguides have a width
of 280 nm. Both waveguides are single mode. The external wave-
guide has a relative permittivity of εWG � 4. The ring has a diam-
eter of 5.80 μm as measured at the middle of the ring, and it is
separated from the external waveguide by an edge-to-edge dis-
tance of 480 nm. In the simulation, the discretization of space
is chosen as Δx � Δy � 40 nm, and the simulation domain is
surrounded by 20 SC-PMLs on each boundary [38].

In the absence of modulation, the relative permittivity of the
ring is set at εring � 4 − 5 × 10−4i so that at λ0 � 1564.55 nm,
the ring resonator is critically coupled to the external waveguide—
the transmission reaches zero due to a combination of material
and radiation losses of the ring, as shown in Fig. 3(b).

To include modulation, we assume that the permittivity of the
ring has the form described in Eq. (3), with Ω � 10 × 109 rad∕s
and δ∕εWG � 5 × 10−4, both of which are achievable in realistic
electro-optical modulators [2,3,40]. For the input wave with the
same wavelength of λ0 � 1564.55 nm as above, the generated
sideband components can now couple from the ring to the wave-
guide, resulting in nonzero transmission. The field profiles of the
first two sidebands are shown in Figs. 3(c) and 3(d), and the trans-
mitted power amplitudes at all nine frequency components are

Fig. 2. (a) Plot of maximum field amplitude that exists in each fre-
quency sideband as indexed with n. The field amplitude decreases expo-
nentially with n. (b) (left) Field profiles of frequency components with
n ∈ �−2; 2� and (right) comparison of the MF-FDFD results with
coupled mode theory (CMT).

Fig. 3. (a) Schematic of the ring resonator geometry. (b) At
λ � 1564.55 nm, the TE0 mode from the waveguide is critically coupled
to the ring resonator. (c), (d) Field profiles for waves at the n � 1; 2 side-
bands, respectively. The power inside the ring at these sidebands is
coupled to the waveguide and can be detected at the probe.
(e) Power amplitude at the probe at each frequency. (f ) Plot of power
at the probe as a function of time.
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shown in Fig. 3(e). The transmitted power decreases exponen-
tially with n, and the dominant transmitted power occurs at the
first sidebands where ω � ω0 �Ω. In Fig. 3(f ), the transmitted
power upon modulation is plotted in time, and the power follows
the waveform of the sinusoidal modulation. The calculation here
provides a first-principles analysis of a ring resonator electro-optic
modulator with no further approximations.

In the examples presented above, as an illustration we per-
formed two-dimensional MF-FDFD simulations under transverse
electric polarization. Nevertheless, because the theory behind our
algorithm is completely general, this algorithm can be applied to
more complicated simulation setups, such as three-dimensional,
nonlinear, or anisotropic simulations [41]. Furthermore, we are
free to prescribe a spatially varying modulation phase profile in
the simulation domain, which makes it possible to simulate a trav-
eling wave index modulation system such as those induced by
acousto-optics. Finally, our algorithm is not restricted by the
choice of spatial discretization methods, and therefore it can be
formulated for other first-principles frequency-domain simulation
techniques such as finite element analysis [42].

In obtaining the two-dimensional MF-FDFD solutions above,
since the discretized system equation in Eq. (7) is sparse and not
symmetric, we use the UMFPACK package built into MATLAB
to efficiently solve Eq. (7) [35,43]. For three-dimensional MF-
FDFD simulations, one can use iterative techniques for solving
large linear systems, such as the biconjugate gradient [36] or
quasi-minimal residual [37] method, in which case one may need
to precondition the system matrix as detailed in Ref. [28] to
obtain solutions with accelerated convergence.

In summary, we have presented the formulation and appli-
cations of the MF-FDFD algorithm that can efficiently per-
form simulations where a large time scale difference exists. When
incorporating the polarization density into Maxwell’s equations,
we can construct system equations that capture the interactions
between different frequency components in modulated optical
systems. Using this general technique, we demonstrate that
one can effectively simulate, from first principles, devices that
have frequency components with arbitrarily large discrepancies
in their time scales.
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