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Abstract: We theoretically investigate three-dimensional plasmonic
waveguide-cavity structures, built by side-coupling stub resonators that con-
sist of plasmonic coaxial waveguides of finite length, to a plasmonic coaxial
waveguide. The resonators are terminated either in a short or an open circuit.
We show that the properties of these waveguide-cavity systems can be
accurately described using a single-mode scattering matrix theory. We also
show that, with proper choice of their design parameters, three-dimensional
plasmonic coaxial waveguide-cavity devices and two-dimensional metal-
dielectric-metal devices can have nearly identical transmission spectra.
Thus, three-dimensional plasmonic coaxial waveguides offer a platform for
practical implementation of two-dimensional metal-dielectric-metal device
designs.
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1. Introduction

Plasmonic waveguides enable subwavelength confinement of optical modes, and are therefore
important for achieving nanoscale integrated photonic devices [1–18]. In particular, plasmonic
two-conductor waveguides support a subwavelength quasi-transverse-electromagnetic (quasi-
TEM) propagating mode at a broad wavelength range which extends into the infrared and
visible [19–22]. Two-dimensional (2D) metal-dielectric-metal (MDM) plasmonic waveguides,
which are an example of such plasmonic two-conductor waveguides, have been investigated in
detail both theoretically [23–26] and experimentally [21, 27–30]. For such waveguides it has
been demonstrated that one can design sharp 90◦ bends and T-splitters with no additional loss
on top of the material loss in the metal over a very wide frequency range [31]. Sharp 90◦ bends
and T-splitters have also been recently demonstrated for three-dimensional (3D) plasmonic
coaxial waveguides with square cross section, which can be fabricated using lithography-based
techniques [32]. In addition, waveguide-cavity systems are particularly useful for the develop-
ment of several integrated photonic devices, such as optical switches, sensors, filters, reflectors,
and impedance matching elements. Several 2D plasmonic waveguide-cavity systems have been
theoretically investigated [33–44].

In this paper, we theoretically investigate 3D plasmonic waveguide-cavity structures, built
by side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length,
to a plasmonic coaxial waveguide. We first investigate structures consisting of a single plas-
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monic coaxial resonator, which is terminated either in a short or an open circuit. We find that,
in contrast to open-circuited 2D MDM plasmonic waveguides which suffer from large radiation
losses, open-circuited plasmonic coaxial waveguides have very small radiation losses, and can
therefore be used as resonators in waveguide-cavity devices. We show that the incident waveg-
uide mode is almost completely reflected on resonance, while far from the resonance the waveg-
uide mode is almost completely transmitted. We next consider waveguide-cavity structures built
by side-coupling a plasmonic coaxial waveguide to two open-circuited stub resonators. We
show that this structure is a plasmonic classical analogue of electromagnetically-induced trans-
parency (EIT), and exhibits EIT-like transmission spectra, consisting of a transparency peak in
the center of a broader transmission dip.

Fig. 1. (a) Schematic of a plasmonic coaxial waveguide side-coupled to a coaxial stub
resonator. The propagation direction of light is indicated by red arrows. (b-d) Structures
of a plasmonic coaxial waveguide side-coupled to a short-circuited, an open-circuited, and
two open-circuited coaxial stub resonators. (e) Cross section of the reference plasmonic
coaxial waveguide. Silver is used as the metal.

We also show that the properties of the waveguide-cavity systems can be accurately de-
scribed using a single-mode scattering matrix theory. The transmission and reflection coeffi-
cients at waveguide junctions can be numerically extracted using full-wave simulations, and
the results obtained with scattering matrix theory using this approach are in all cases in very
good agreement with the exact results. These coefficients can also be predicted using transmis-
sion line theory and the concept of characteristic impedance. Despite its limited accuracy, the
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transmission line model is computationally efficient, and, when combined with space mapping
algorithms, it could enable the efficient design of nanoplasmonic coaxial waveguide devices.
Finally we show that, with proper choice of their design parameters, a 3D plasmonic coaxial
waveguide-cavity device and a 2D MDM device can have nearly identical transmission spectra.
Thus, 3D plasmonic coaxial waveguides offer a platform for practical implementation of 2D
MDM device designs.

The remainder of the paper is organized as follows. In Sections 2 and 3, we investigate struc-
tures consisting of a plasmonic coaxial waveguide side-coupled to a single coaxial resonator,
which is terminated in a short circuit and open circuit, respectively. In Section 4, we investi-
gate structures consisting of a plasmonic coaxial waveguide side-coupled to two open-circuited
coaxial stub resonators. In Section 5, we discuss the emulation of 2D MDM plasmonic waveg-
uide devices with 3D coaxial waveguide devices. Finally, our conclusions are summarized in
Section 6.

2. Plasmonic coaxial waveguide side-coupled to a short-circuited coaxial stub resonator

Figure 1(a) shows a schematic of the waveguide-cavity structures investigated in this paper.
They are built by side-coupling a stub resonator, consisting of a plasmonic coaxial waveguide
of finite length, to a plasmonic coaxial waveguide. The metal used is silver, and the space
between the metallic parts is filled with silica. The structures are placed on top of a silicon
substrate. If the inner and outer metals at the end of the stub are connected [Fig. 1(b)], the stub
is short-circuited. Otherwise, it is open-circuited [Fig. 1(c)].

Figure 2(a) shows the top view schematic at z= 0 of a plasmonic coaxial waveguide, coupled
to a short-circuited stub resonator [Fig. 1(e)]. The power transmission characteristics of the
device are investigated using the 3D finite-difference frequency-domain (FDFD) method [45,
46]. This method allows us to directly use experimental data for dispersive materials such as
silver [47], including both the real and imaginary parts, with no approximation. We use the
stretched-coordinate perfectly matched layer (SC-PML) absorbing boundary conditions at all
boundaries of the simulation domain [48, 49]. To calculate the power transmission coefficient
of the devices, their output power is normalized by the output power from a straight waveguide
of the same length.

Figure 2(e) shows the power transmission coefficient of the coaxial waveguide side-coupled
to the short-circuited coaxial stub resonator as a function of the stub length, obtained from full-
wave FDFD simulations (dots). The operation wavelength is λ0 = 1550 nm. At this wavelength
the guide wavelength of the fundamental mode of the plasmonic coaxial waveguide was found
to be λg � 680 nm. We observe that the transmission becomes zero when the length of the
stub is approximately equal to 290 nm. The metal at the end of the short-circuited stub and the
inner metal of the main waveguide form a cavity resonator. The required stub length for zero
transmission can be estimated based on the dimensions of this cavity. Since the cavity is short-
circuited at both sides, its first resonance length will be Lc = λg/2 � 340 nm, where Lc is the
cavity length. The distance between the inner and outer metal of the plasmonic waveguide is
w = 50 nm [Fig. 1(e)]. The required stub length can therefore be estimated as L = Lc−w � 290
nm, which is in agreement with the numerically calculated value [Fig. 2(e)]. Similarly, the
second resonance length can be estimated as Lc = λg � 680 nm, and therefore the required stub
length for the second resonance is L = Lc −w � 630 nm. This is again in good agreement with
the numerically calculated value which we found to be 625 nm.

Figures 2(f) and 2(g) show the profile of the Hz field component for two different lengths of
the stub resonator. For L = 290 nm the cavity is on resonance. Since the directly transmitted
wave destructively interferes with the decaying amplitude into the forward direction of the
resonant cavity field, the transmission is approximately zero [Fig. 2(f)]. For L = 460 nm the
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Fig. 2. (a) Top view schematic at z = 0 [Fig. 1(e)] of a plasmonic coaxial waveguide side-
coupled to a short-circuited coaxial stub resonator. (b and c) Schematics defining the re-
flection coefficients r1 and r2, and transmission coefficients t1, t2, t3, and t4, when the
fundamental mode of the plasmonic coaxial waveguide is incident at a T-splitter. Note that
t3 = t4 due to symmetry. (d) Schematic defining the reflection coefficient r3 of the fun-
damental mode of the plasmonic coaxial waveguide at the boundary of a short-circuited
coaxial waveguide. (e) Transmission as a function of the stub length L for the structure of
(a), calculated using FDFD (dots), scattering matrix theory with numerically calculated co-
efficients (blue solid line), and scattering matrix theory with coefficients calculated based
on transmission line model (red dashed line) at λ0 = 1550 nm. (f and g) Magnetic field
profiles for the structure of (a), normal to the plane containing the axes of the coaxial
waveguide and coaxial stub resonator. Results are shown for L = 290 nm and 460 nm at
λ0 = 1550 nm, when the fundamental mode of the plasmonic coaxial waveguide is incident
from the left.

cavity is far from resonance. Thus, the cavity mode is not excited and the incident waveguide
mode is almost completely transmitted [Fig. 2(g)].

Since the distance between the inner and outer metals of the coaxial waveguide is much
smaller than the wavelength, only the fundamental quasi-TEM mode of the waveguide [32]
propagates. Thus, we can use single-mode scattering matrix theory to account for the behav-
ior of the system [39, 50]. The complex magnetic field reflection coefficients r1 and r2, and
transmission coefficients t1, t2, t3, and t4, when the fundamental mode of the plasmonic coax-
ial waveguide is incident at a T-splitter along two different incident directions are defined as
shown in Figs. 2(b) and 2(c). Note that t3 = t4 due to the mirror symmetry of the structure. In
addition, the reflection coefficient r3 of the fundamental mode of the plasmonic coaxial waveg-
uide at the boundary of a short-circuited coaxial waveguide is defined as shown in Fig. 2(d).
The power transmission coefficient of the device can then be calculated using scattering matrix
theory as [39, 50]

T = |t1 −C|2. (1)

Here C = t2t3/(r2 − s), s = r3
−1exp(2γL), and γ = α + iβ is the complex wave vector of the

fundamental propagating quasi-TEM mode of the plasmonic coaxial waveguide [39]. The com-
plex magnetic field reflection and transmission coefficients can be numerically extracted using
full-wave FDFD simulations [39, 50]. We numerically calculated these coefficients, and the re-
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sults obtained with scattering matrix theory [Eq. (1)] using this approach (blue solid line) are
in excellent agreement with the exact results obtained using FDFD [Fig. 2(e)].

The complex magnetic field reflection and transmission coefficients can also be predicted
using transmission line theory and the concept of characteristic impedance [31, 50]. The char-
acteristic impedance of the fundamental quasi-TEM mode of the plasmonic coaxial waveguide
is defined as the ratio of electric voltage drop between the inner and outer metals to the electric
current flowing through the inner metal

Z0 =
V
I
. (2)

It can be numerically extracted by integrating the E- and H-fields of the mode [20, 32, 51].
Figure 3(a) shows the transmission line model of the plasmonic coaxial waveguide side-

coupled to the short-circuited coaxial stub resonator. The model consists of a short-circuited
transmission line resonator of length L, propagation constant γ , and characteristic impedance
Z0, which is connected in parallel to a transmission line with the same characteristic impedance
Z0 [32, 37].

Fig. 3. Schematic of the transmission line model of a plasmonic coaxial waveguide side-
coupled to (a) a short-circuited coaxial stub resonator, and (b) an open-circuited coaxial
stub resonator. Here Z0 and γ are the characteristic impedance and complex propagation
constant of the fundamental mode of the plasmonic coaxial waveguide.

The complex magnetic field transmission and reflection coefficients in Eq. (1) can then be
calculated based on this transmission line model. The T-junction of Fig. 2(b) is equivalent to a
junction between three transmission lines in the quasi-static limit. Since all three transmission
lines have the same cross sectional shape, they have the same characteristic impedance Z0

[Fig. 3(a)]. The two output transmission lines are connected in parallel, and the current flowing
through the input transmission line is equally divided into the two output lines [32]. The load
impedance seen from the input transmission line is therefore ZL = Z0/2. Thus, the reflection
coefficients r1 and r2 can be calculated as r1 = r2 = (Z0/2− Z0)/(Z0/2+ Z0) = −1/3 and
the transmission coefficients into the output lines are t1 = t2 = t3 = t4 = 1+ r1 = 2/3. Also
r3 = (ZL −Z0)/(ZL +Z0) =−1, since the stub resonator is short-circuited so that ZL = 0 [Fig.
3(a)] [52].

Figure 2(e) shows the transmission as a function of the stub length L for the structure of Fig.
2(a), predicted by the transmission line model described above (red dashed line). We observe
that there is very good agreement between the transmission line model results and the exact
results obtained using FDFD, verifying the validity and usefulness of the transmission line
model for the plasmonic coaxial waveguide structure of Fig. 2(a). We found that the difference
between the transmission line results and the exact numerical results is mostly due to the error
introduced by the transmission line model in the phase of the reflection coefficient [37, 53, 54]
at the two interfaces of the side-coupled cavity of length L. The predictions of the transmission
line model are less accurate compared to the ones of scattering matrix theory with numerically
calculated transmission and reflection coefficients [Fig. 2(e)]. However, using the transmission
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line model is a more computationally efficient approach, since it requires only computation of
the modes of the waveguide, without the need to simulate the junctions and the waveguide ends.

3. Plasmonic coaxial waveguide side-coupled to an open-circuited coaxial stub resonator

We now consider a waveguide-cavity structure built by side-coupling an open-circuited stub
resonator, consisting of a plasmonic coaxial waveguide of finite length, to a plasmonic coaxial
waveguide [Fig. 1(c)]. In this case the inner and outer metals at the end of the stub are not con-
nected, and the resonator is therefore open-circuited. Figure 4(a) shows the top view schematic
at z = 0 of the plasmonic coaxial waveguide, coupled to the open-circuited stub resonator [Fig.
1(e)].

We note that, due to the field profile of the fundamental quasi-TEM mode of the plasmonic
coaxial waveguide [32], the power radiated from an open-circuited coaxial waveguide is very
small. More specifically, we found that for an open-circuited plasmonic coaxial waveguide with
parameters as in Fig. 1(e) operating at λ0 = 1550 nm, the power reflection coefficient of the fun-
damental mode of the waveguide at the boundary is |r3|2 � 0.98. Thus, the radiation losses for
the open-circuited plasmonic coaxial waveguide are very small, and such a waveguide can be
used as a resonator in a plasmonic waveguide-cavity device. This is in contrast to open-circuited
2D MDM plasmonic waveguides which cannot be used as resonators, due to the large radia-
tion losses at the waveguide boundary. More specifically, we found that for an open-circuited
2D MDM waveguide with the same materials, metal separation, and operating wavelength as
the coaxial waveguide in Fig. 1(e) the power reflection coefficient of the fundamental mode
of the waveguide at the boundary is |r|2 � 0.68. Thus, open-circuited 2D MDM waveguides
suffer from substantial radiation losses, which are detrimental when such waveguides are used
as resonators in plasmonic waveguide-cavity devices.

Figure 4(c) shows the power transmission coefficient of the coaxial waveguide side-coupled
to the open-circuited coaxial stub resonator as a function of the stub length L, obtained from
full-wave FDFD simulations (dots). We observe that the transmission becomes zero when the
length of the stub is approximately equal to 100 nm. As in the case of the short-circuited
stub resonator (Section 2), the air-waveguide interface at the boundary of the open-circuited
stub, and the inner metal of the main waveguide form a cavity resonator. Since the cavity
is short-circuited at one side and open-circuited at the other, its first resonance length will
be Lc = λg/4 � 170 nm. The required stub length can therefore be estimated, as in the case
of the short-circuited stub resonator (Section 2), as L = Lc − w � 120 nm, which is close
to the numerically calculated value (100 nm). Similarly, the second resonance length will be
Lc = 3λg/4 � 510 nm. Therefore the required stub length for the second resonance can be es-
timated as L = Lc −w � 460 nm, which is the same as the numerically calculated value. We
note that for the first resonance the required stub length is ∼2.9 times smaller than the required
length for a short-circuited stub resonator (Section 2). Thus, using open-circuited plasmonic
coaxial stub resonators leads to much more compact waveguide-cavity devices, compared to
devices based on short-circuited resonators.

Figures 4(d) and 4(e) show the profile of the Hz field component for two different lengths
of the open-circuited stub resonator. For L = 100 nm the cavity is on resonance, the directly
transmitted wave destructively interferes with the decaying amplitude into the forward direction
of the resonant cavity field, and the transmission is therefore approximately zero [Fig. 4(d)]. For
L = 300 nm the cavity is far from resonance, the cavity mode is not excited, and the incident
waveguide mode is therefore almost completely transmitted [Fig. 4(e)].

As in the case of the short-circuited stub resonator (Section 2), we can use single-mode
scattering matrix theory to calculate the power transmission coefficient of the device [Eq. (1)].
The reflection coefficient r3 of the fundamental mode of the plasmonic coaxial waveguide at
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Fig. 4. (a) Top view schematic at z = 0 [Fig. 1(e)] of a plasmonic coaxial waveguide side-
coupled to an open-circuited coaxial stub resonator. (b) Schematic defining the reflection
coefficient r3 of the fundamental mode of the plasmonic coaxial waveguide at the boundary
of an open-circuited coaxial waveguide. (c) Transmission as a function of the stub length L
for the structure of (a) calculated using FDFD (dots), scattering matrix theory with numeri-
cally calculated coefficients (blue solid line), and scattering matrix theory with coefficients
calculated based on transmission line model (red dashed line) at λ0 = 1550 nm. (d and e)
Magnetic field profiles for the structure of (a), normal to the plane containing the axes of
the coaxial waveguide and coaxial stub resonator. Results are shown for L = 100 nm and
300 nm at λ0 = 1550 nm, when the fundamental mode of the plasmonic coaxial waveguide
is incident from the left.

the boundary of an open-circuited coaxial waveguide is defined as shown in Fig. 4(b). All other
transmission and reflection coefficients in Eq. (1) are defined as before [Figs. 2(b) and 2(c)].
We numerically calculated all these coefficients, and the results obtained with scattering matrix
theory [Eq. (1)] using this approach (blue solid line) are in excellent agreement with the exact
results obtained using FDFD [Fig. 4(c)].

As in the case of the short-circuited stub resonator (Section 2), we can also use transmission
line theory to predict the behavior of the system. Figure 3(b) shows the transmission line model
of the plasmonic coaxial waveguide side-coupled to the open-circuited coaxial stub resonator,
consisting of an open-circuited transmission line resonator connected in parallel to a transmis-
sion line with the same characteristic impedance. All complex magnetic field transmission and
reflection coefficients in Eq. (1) are calculated based on this transmission line model, similar
to the short-circuited stub resonator case. The only difference is that for the open-circuited
resonator ZL → ∞, so that r3 = (ZL−Z0)/(ZL+Z0) = 1. Similar to the short-circuited stub res-
onator case, we observe that there is very good agreement between the transmission line model
results (red dashed line) and the exact results obtained using FDFD [Fig. 4(c)].
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4. Plasmonic coaxial waveguide side-coupled to two open-circuited coaxial stub res-
onators

We next consider a waveguide-cavity structure built by side-coupling a plasmonic coaxial
waveguide to two open-circuited stub resonators, each consisting of a plasmonic coaxial waveg-
uide of finite length [Fig. 1(d)]. We use open-circuited coaxial stub resonators because they lead
to much more compact waveguide-cavity devices, compared to short-circuited resonators (Sec-
tion 3). Figure 5(a) shows the top view schematic at z = 0 of the structure [Fig. 1(e)]. This
system is a plasmonic classical analogue of EIT [39, 55–58]. Such systems enable enhanced
light-matter interaction by slowing down light, and could therefore lead to nanoscale plasmonic
devices, such as switches and sensors, with enhanced performance [39].

Figure 5(c) shows the transmission spectra of the coaxial waveguide side-coupled to two
open-circuited coaxial stub resonators obtained from full-wave FDFD simulations (dots). The
structure exhibits EIT-like transmission spectra, consisting of a transparency peak in the center
of a broader transmission dip. The stub lengths L1 and L2 are chosen so that the frequency of
the transparency peak is f0 � 200 THz.

Fig. 5. (a) Top view schematic at z = 0 [Fig. 1(e)] of a plasmonic coaxial waveguide side-
coupled to two open-circuited coaxial stub resonators. (b) Schematic defining the reflection
coefficient r1, and the transmission coefficients t1, t2, and t3, when the fundamental mode
of the plasmonic coaxial waveguide is incident at a waveguide crossing. Note that t2 = t3
due to symmetry. (c) Transmission spectra for the structure of (a) calculated using FDFD
(dots), scattering matrix theory (blue solid line), and transmission line theory (red dashed
line). Results are shown for L1 = 160 nm and L2 = 42 nm. Also shown are the transmission
spectra calculated using FDFD for lossless metal (black solid line). (d)-(f) Magnetic field
profiles for the structure of (a), normal to the plane containing the axes of the coaxial
waveguide and coaxial stub resonators. Results are shown for L1 = 160 nm and L2 = 42
nm at f = 150, 200, and 300 THz, when the fundamental mode of the plasmonic coaxial
waveguide is incident from the left.
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The transmission spectra are very similar to that of a 2D MDM plasmonic waveguide side-
coupled to two MDM stub resonators [39]. They feature two dips [Fig. 5(c)] at frequencies
f1 and f2, which are approximately equal to the resonant frequencies of the two cavities, i.e.,
φr1( fi)+ φr3( fi)− 2β ( fi)Li � −2π , i = 1,2, where φri = arg(ri), i = 1,3. Here the reflection
coefficient r1 is defined as shown in Fig. 5(b), while r3 is defined as shown in Fig. 4(b). When ei-
ther of the cavities is on resonance, the field intensity in that cavity is high, and the transmission
is almost zero, since the incoming wave interferes destructively with the decaying amplitude
into the forward direction of the resonant cavity field [Figs. 5(d) and 5(f)]. The transmission
spectra also feature a transparency peak at frequency f0, which is approximately equal to the
resonant frequency of the composite cavity of length L1 +L2 +ws formed by the two cavities,
i.e., 2φr3( f0)− 2β ( f0)(L1 +L2 +ws) � −2π , where ws = 150 nm is the gap between the two
stub resonators. When f = f0, the field intensity is high in the entire composite cavity [Fig.
5(e)], and the peak in the spectra is due to resonant tunneling of the incoming wave through
the composite cavity. In the lossless metal case, the transparency peak has unity transmission,
while in the presence of loss, the peak transmission is lower due to absorption in the resonators
[Fig. 5(c)].

As in the case of single resonator structures (Sections 2 and 3), we can use scattering matrix
theory to calculate the power transmission coefficient of the device. The reflection coefficient r1,
and transmission coefficients t1, t2, and t3, when the fundamental mode of the plasmonic coaxial
waveguide is incident at a waveguide crossing, are defined as shown in Fig. 5(b). Note that t2 =
t3 due to symmetry. The reflection coefficient r3 at the boundary of an open-circuited coaxial
waveguide is defined as before [Fig. 4(b)]. It turns out that the power transmission coefficient

of the device can then be calculated again using Eq. (1), where now C = t2
2(2t1−2r1+s1+s2)

t12−(r1−s1)(r1−s2)
, and

si = r3
−1exp(2γLi), i = 1,2 [39].

The results obtained with scattering matrix theory [Eq. (1)], after numerically calculating the
transmission and reflection coefficients (blue solid line), are in very good agreement with the
exact results obtained using FDFD [Fig. 5(c)]. The difference between the scattering matrix
theory results and the exact numerical results is due to coupling of higher order nonpropagating
modes of the waveguides which becomes important because of the deep subwavelength lengths
of the resonators [50].

Fig. 6. Schematic of the transmission line model of a plasmonic coaxial waveguide side-
coupled to two open-circuited coaxial stub resonators. Here Z0 and γ are the characteristic
impedance and complex propagation constant of the fundamental mode of the plasmonic
coaxial waveguide.

Similar to single resonator structures (Sections 2 and 3), we can also use transmission line
theory to account for the behavior of the coaxial waveguide side-coupled to two resonators.
Figure 6 shows the transmission line model of the structure, consisting of two open-circuited
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transmission line resonators connected in parallel to a transmission line with the same char-
acteristic impedance. All transmission and reflection coefficients are calculated based on this
model. Thus, the waveguide crossing of Fig. 5(b) is equivalent to a junction between four trans-
mission lines with the same characteristic impedance Z0. The three output transmission lines are
connected in parallel, and the load impedance seen from the input transmission line is therefore
ZL = Z0/3. The reflection coefficient can then be calculated as r1 = (Z0/3−Z0)/(Z0/3+Z0) =
−1/2, and the transmission coefficients into the output lines are t1 = t2 = t3 = 1+ r1 = 1/2.

We observe that there is qualitative agreement between the transmission line model results
and the exact results obtained using FDFD [Fig. 5(c)]. While the transmission at the trans-
parency peak is correctly predicted by the transmission line model, the peak frequency obtained
using transmission line theory is blue-shifted with respect to the FDFD result [Fig. 5(c)]. The
reason for the significant difference between the transmission line results and the exact numeri-
cal results for the transmission spectra of the coaxial waveguide side-coupled to two resonators
is that the spectra result from the interference of two resonant pathways [34]. Despite its limited
accuracy for structures with multiple components, the transmission line model is computation-
ally efficient, and, when combined with space mapping algorithms, it could enable the efficient
design of nanoplasmonic coaxial waveguide devices [59].

5. Emulation of 2D MDM plasmonic waveguide devices with 3D coaxial waveguide de-
vices

In the previous section, we saw that the transmission spectra of a 3D plasmonic coaxial waveg-
uide side-coupled to two open-circuited coaxial stub resonators are very similar to that of a 2D
MDM waveguide side-coupled to two MDM stub resonators. Here we show that, with proper
choice of their design parameters, a 3D plasmonic coaxial waveguide-cavity device and a 2D
MDM waveguide-cavity device can have nearly identical transmission spectra.

Fig. 7. Emulation of two-dimensional metal-dielectric-metal plasmonic waveguide de-
vices with three-dimensional plasmonic coaxial waveguide devices. (a) Schematic of a
two-dimensional silver-air-silver MDM plasmonic waveguide side-coupled to two short-
circuited MDM stub resonators. (b) Transmission spectra for the two-dimensional structure
of (a) calculated using FDFD for w = 50 nm, L1 = 354 nm, and L2 = 154 nm (solid green
line). Also shown are the transmission spectra for the three-dimensional structure of Fig.
5(a) calculated using FDFD for L1 = 160 nm and L2 = 42 nm (red dots).

More specifically, we consider a 2D silver-air-silver MDM plasmonic waveguide side-
coupled to two short-circuited MDM stub resonators [Fig. 7(a)]. The transmission spectra of the
3D plasmonic coaxial waveguide side-coupled to two open-circuited coaxial stub resonators,
which we discussed in the previous section, are shown in Fig. 5(c). We use the space mapping
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algorithm [59] to find the optimum match between the responses of the 2D [Fig. 7(a)] and
3D [Fig. 1(d)] plasmonic waveguide devices. Using this approach, we find that, when the stub
lengths L1 and L2 of the 2D MDM device [Fig. 7(a)] are optimized, its transmission spectra
almost exactly match the spectra of the 3D device [Fig. 7(b)].

While here we found a 2D structure which matches the response of a 3D structure, the oppo-
site process is also possible: we can use the space mapping algorithm [59] to find a 3D struc-
ture with nearly identical response to that of a 2D structure. This is particularly useful for the
practical implementation of plasmonic waveguide-cavity devices. Most of the theoretical inves-
tigations of plasmonic waveguide-cavity systems have focused on 2D structures [33–44]. This
is due to the smaller computational cost of full-wave electromagnetic simulations in 2D com-
pared to 3D, as well as the simplicity of visualizing and understanding the underlying optical
physics in 2D [60]. However, practical realization of these waveguide-cavity systems requires
the use of 3D structures. Since with proper choice of design parameters 3D plasmonic coaxial
waveguide-cavity devices can have nearly identical transmission spectra to that of 2D MDM
devices, the 2D designs can be translated into 3D designs suitable for experimental realization.
Thus, 3D plasmonic coaxial waveguides offer a platform for practical implementation of 2D
MDM devices.

6. Conclusions

In this paper, we theoretically investigated 3D plasmonic waveguide-cavity structures, built by
side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length, to a
plasmonic coaxial waveguide. We used plasmonic coaxial waveguides with square cross section
which can be fabricated using lithography-based techniques.

We first investigated structures consisting of a single plasmonic coaxial resonator, which is
terminated in a short circuit. The power transmission characteristics of the device were inves-
tigated using the 3D FDFD method. We showed that the incident waveguide mode is almost
completely reflected on resonance, while far from the resonance the waveguide mode is almost
completely transmitted. We also showed that the properties of this waveguide-cavity system
can be accurately described using a single-mode scattering matrix theory. The transmission
and reflection coefficients at waveguide junctions can be numerically extracted using full-wave
simulations, and the results obtained with scattering matrix theory using this approach are in
excellent agreement with the exact results. These coefficients can also be predicted using trans-
mission line theory and the concept of characteristic impedance. We found that there is very
good agreement between the transmission line model results and the exact results obtained
using FDFD, verifying the validity and usefulness of the transmission line model for this plas-
monic coaxial waveguide structure.

We next investigated structures consisting of a single plasmonic coaxial resonator, which is
terminated in an open circuit. We found that, in contrast to open-circuited 2D MDM plasmonic
waveguides which suffer from large radiation losses, open-circuited plasmonic coaxial waveg-
uides have very small radiation losses, and can therefore be used as resonators in waveguide-
cavity devices. We also found that using open-circuited plasmonic coaxial stub resonators leads
to much more compact waveguide-cavity devices, compared to devices based on short-circuited
resonators.

We next considered waveguide-cavity structures built by side-coupling a plasmonic coaxial
waveguide to two open-circuited stub resonators. We showed that this structure is a plasmonic
classical analogue of EIT, and its transmission spectra consist of a transparency peak in the
center of a broader transmission dip. We found that these spectra are very similar to that of a
2D MDM plasmonic waveguide side-coupled to two MDM stub resonators. We also found that
for this structure there are differences between the scattering matrix theory results and the exact
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numerical results, due to coupling of higher order nonpropagating modes of the waveguides.
In addition, the peak frequency obtained using transmission line theory is blue-shifted with
respect to the exact result, because in this case the spectra result from the interference of two
resonant pathways. Despite its limited accuracy for structures with multiple components, the
transmission line model is computationally efficient, and, when combined with space mapping
algorithms, it could enable the efficient design of nanoplasmonic coaxial waveguide devices.

Finally we showed that, with proper choice of their design parameters, 3D plasmonic coaxial
waveguide-cavity devices and 2D MDM devices can have nearly identical transmission spectra.
More specifically, we used the space mapping algorithm to find the optimum match between
the responses of a 2D and a 3D device, and found that, using this approach, the transmission
spectra of the 2D device almost exactly match the spectra of the 3D device. Thus, 3D plasmonic
coaxial waveguides offer a platform for practical implementation of 2D MDM device designs.

As final remarks, we note that in plasmonic coaxial waveguides the propagation length of
the fundamental propagating mode is limited by material loss in the metal. As an example, the
propagation length of the fundamental mode of the plasmonic coaxial waveguide of Fig. 1(e)
for λ0 = 1550 nm is Lp = 6.82 μm [32]. Thus, for longer distances dielectric waveguides will
have to be used to carry the optical signal [61]. Couplers between plasmonic coaxial waveg-
uides and dielectric waveguides will therefore be essential components for integrated photonics
applications.
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