
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 21 AND 22

1. ONLINE LINEAR OPTIMIZATION: DETERMINISTIC METHODS

For the experts problem (and its close relative B1/B∞ linear game) we have developed a de-
terministic method (Exponential Weights) and a randomized method (Follow the Perturbed
Leader). Both the deterministic and randomized methods extend to other online prediction
problems where the loss is linear in the decision of the learner and linear in the outcome.
We have seen that the geometry of the two sets (decisions and outcomes) plays a crucial
role, both for computational tractability and for attainable regret guarantees. (Recall the
online shortest path problem with its flow polytope, the online ranking problem with the
Birkhoff polytope or the semidefinite representation)

In this lecture, we present techniques for deriving deterministic methods that take ad-
vantage of the geometry of the decision/outcome sets. We illustrate several closely related
techniques on the B2/B2 analysis, since the solution is very clean and immediately suggests
generalization to other norms.

1.1 B2/B2 online linear optimization

To restate the problem, let B2 be the unit Euclidean ball. The protocol is

For t = 1, . . . , n

Predict ŷt ∈ B2

Observe costs zt ∈ B2

with regret defined as the difference

n

∑
t=1

⟨ŷt, zt⟩ −min
v∈B2

n

∑
t=1

⟨v, zt⟩ . (1)

Recall that

−min
v∈B2

n

∑
t=1

⟨v, zt⟩ = max
v∈B2

n

∑
t=1

⟨v,−zt⟩ = ∥Ln∥ (2)

with Ln = ∑
n
t=1 zt.

1.2 How to relax

A relaxation at step n is an upper bound on the benchmark term. The randomized methods
developed in the previous lectures dealt directly with (2). Today, we will get further upper
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bounds. The first inequality that comes to mind in relaxing (2) is triangle inequality
∥Ln∥ ≤ ∥Ln−1∥ + 1. However, this relaxation is too loose (why?). A tighter relaxation is

∥Ln∥ =
√

∥Ln∥
2
=

√

∥Ln−1∥
2
+ 2 ⟨Ln−1, zn⟩ + ∥zn∥ ≤

√

∥Ln−1∥
2
+ 2 ⟨Ln−1, zn⟩ + 1 (3)

or we may equivalently write the above as

inf
η

{
1

2η
+
η

2
(∥Ln−1∥

2
+ 2 ⟨Ln−1, zn⟩ + 1)} . (4)

The second relaxation follows from a useful and trivial inequality that for a, b > 0,

2
√
a ⋅ b = min

η
{aη + bη−1} . (5)

The two relaxations (3) and (4) are identical, but the second one is more amenable to
extensions (in particular, the convex conjugate form defined later in this lecture).

1.3 B2/B2 analysis based on (3)

We take

Rel(z1∶n) =
√

∥Ln−1∥
2
+ 2 ⟨Ln−1, zn⟩ + 1. (6)

for Ls = ∑
s
t=1 zt. The minimax problem for the last step is

min
ŷn∈B2

max
zn∈B2

{⟨ŷn, zn⟩ +
√

∥Ln−1∥
2
+ 2 ⟨Ln−1, zn⟩ + 1} (7)

One can actually solve this expression by considering the direction Ln−1 and any other
orthogonal direction. To save time, let us just state the strategy:

ŷn = −
Ln−1

√

∥Ln−1∥
2
+ 1

. (8)

Observe that
−
α

√
A
+
√
A + 2α

is maximized at α = 0. Hence, the optimal response zn is orthogonal to Ln−1. This gives an
upper bound of

√

∥Ln−1∥
2
+ 1 (9)

on the minimax value (7). Further upper bounding gives

√

∥Ln−1∥
2
+ 1 ≤

√

∥Ln−2∥
2
+ 2 ⟨Ln−2, zn−1⟩ + 2 ≜Rel(z1∶n−1). (10)

We established

Rel(z1∶t) =
√

∥Lt−1∥
2
+ 2 ⟨Lt−1, zt⟩ + (n − t + 1)

and an admissible strategy for this relaxation is

ŷt = −
Lt−1

√

∥Lt−1∥
2
+ (n − t + 1)

. (11)
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Noting that Lt = ∑
t
s=1 zs, the solution is an interesting form of “gradient descent” with

adaptive step size. Finally, the regret bound is

Rel(∅) =
√
n.

Why did we mention “gradient descent”? The connection, as explained in class, is sim-
ple. An algorithm for online linear optimization is also an algorithm for convex optimization,
where zt’s are the gradients of the function we are optimizing.

1.4 B2/B2 analysis based on (4)

Rel(z1∶n) = inf
η

{
1

2η
+
η

2
(∥Ln−1∥

2
+ 2 ⟨Ln−1, zn⟩ + 1)} . (12)

The minimax problem for the last step is

min
ŷn∈B2

max
zn∈B2

{⟨ŷn, zn⟩ + inf
η

{
η

2
(∥Ln−1∥

2
+ 2 ⟨Ln−1, zn⟩ + 1) +

1

2η
}} (13)

which is upper bounded by

inf
η

min
ŷn∈B2

max
zn∈B2

{⟨ŷn, zn⟩ +
η

2
(∥Ln−1∥

2
+ 2 ⟨Ln−1, zn⟩ + 1) +

1

2η
} (14)

which simplifies to (can you show this?)

inf
η

min
ŷn∈B2

{∥ŷn + ηLn−1∥ +
η

2
(∥Ln−1∥

2
+ 1) +

1

2η
} (15)

One may check (by taking derivatives) that the optimal choice of η occurs at a value that
ensures ηLn−1 ∈ B2 and the optimal choice for ŷn is

ŷn = −ηLn−1.

Continuing in this fashion,

Rel(z1∶t) = inf
η

{
1

2η
+
η

2
(∥Lt−1∥

2
+ 2 ⟨Lt−1, zt⟩ + (n − t + 1))} , (16)

with

Rel(∅) = inf
η

{
1

2η
+
ηn

2
} =

√
n

if we choose η = 1/
√
n.

2. RELAXATIONS BASED ON CONVEX CONJUGACY

For a real-valued function φ ∶ A → R ∪ {∞}, the convex conjugate φ∗ ∶ B → R ∪ {∞} is
defined by

φ∗(b) = sup
a∈A

⟨b, a⟩ − φ(a). (17)
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Technically, A and B are dual spaces, but let’s not worry about these details. We will take
φ convex. Oftentimes, the supremum in the above definition is taken to be unconstrained.

As in the beginning of the course, we say that φ is σ-strongly convex with respect to a
norm ∥⋅∥ if

φ(a) ≥ φ(b) + ⟨∇φ(b), a − b⟩ +
σ

2
∥a − b∥2 (18)

Then φ∗ is smooth with respect to the dual norm:

φ∗(a) ≤ φ∗(b) + ⟨∇φ∗(b), a − b⟩ +
1

2σ
∥a − b∥2∗ (19)

Examples are in order (see [SS07] for more)

• The function φ(a) = 1
2 ∥a∥2, half Euclidean norm squared, is conjugate to itself: φ∗(b) =

1
2 ∥b∥2. This function is strongly convex with respect to Euclidean norm.

• The entropy function

φ(a) =
N

∑
i=1
ai log ai + logN (20)

over the probability simplex in N dimensions is strongly convex with respect to the
`1 norm ∥⋅∥1. The conjugate is

φ∗(b) = log(
1

N

N

∑
i=1
ebi) (21)

Recall that the starting relaxation is defined as an upper bound on

− inf
v∈K

⟨v,Ln⟩ = sup
v∈K

⟨v,−Ln⟩ . (22)

Convex conjugacy gives a principled way of choosing a good relaxation for the given set
K. We aim to find a function φ that is strongly convex over the set K. To gain intuition,
suppose φ(0) = 0, the minimum of φ, and K is a ball with respect to a norm. If φ is
2-strongly convex with respect to this norm, it means that the value of function is at least
1 at the boundary of K. If we ensure that φ is not too large over K, then φ “respects” the
geometry of the set.

Write, for any η > 0,

sup
v∈K

⟨v,−Ln⟩ = sup
v∈K

{⟨v,−Ln⟩ −
1

η
φ(v) +

1

η
φ(v)} (23)

which is upper bounded, for any η > 0, by

1

η
sup
v∈K

{⟨v,−ηLn⟩ − φ(v)} +
1

η
sup
v∈K

φ(v) =
1

η
φ∗ (−ηLn) +

1

η
R (24)

for R = supv∈K φ(v). This step can be seen as relaxing the indicator IK(v) constraint for
v ∈K by a convex function φ that “mimics” the shape of K.
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By smoothness, we have

φ∗ (−ηLn) ≤ φ
∗
(−ηLn−1) + ⟨∇φ∗ (−ηLn−1) , zn⟩ +

1

2σ
∥zn∥

2
∗ (25)

and so

sup
v∈K

⟨v,−Ln⟩ ≤ inf
η

{
1

η
(φ∗ (−ηLn−1) + ⟨∇φ∗ (−ηLn−1) , zn⟩ +

1

2σ
G2

) +
1

η
R} (26)

where ∥zn∥
2
∗ ≤ G

2 and R = supv∈K φ(v).
This last upper bound can be taken as a relaxation, and it gives the Dual Averaging

solution. Relaxation in (26) should be compared to (12). The latter is a particular case of
the former when φ(a) = 1

2 ∥a∥2. For a general set K, the method is also known as Follow
the Regularized Leader:

ŷt = argmin
v∈K

⟨v, ηLt−1⟩ + φ(v) (27)

If ỹt is the unconstrained minimum in (27), we see that

∇φ(ỹt) = −ηLt−1. (28)

Under some conditions (the conjugate needs to be unconstrained), the functional inverse of
∇φ(⋅) is ∇φ∗, and so

ỹt = ∇φ
∗
(−ηLt−1), (29)

and ŷt is just a projection of ỹt onto the set K. This projection needs to be done with
respect to the geometry induced by φ. More precisely, one defines a Bregman divergence

Dφ(u, v) = φ(u) − φ(v) − ⟨∇φ(v), u − v⟩ ,

the difference between the value of φ at u and its first-order approximation. The projection
with respect to φ is then

ŷt = argmin
y∈K

Dφ(y, ỹt). (30)

It can be shown that (30) with (29) is equivalent to (27). Sometimes, this algorithm is
called lazy projection because it keeps a running sum of Lt and projects onto the set K
at every step to calculate the prediction ŷt. A closely related method of Mirror Descent
(discussed below) keeps track of the previous projection, rather than Lt−1, as a sufficient
statistic.

2.1 Example: Exponential Weights

Take the entropy function (20) φ and its dual φ∗. The gradient

[∇φ(a)]i = log(ai) + 1

and the gradient of the dual is

[∇φ∗(b)]i =
ebi

∑i e
bi

which can be immediately recognized as the Exponential Weights algorithm.
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3. MIRROR DESCENT

As mentioned above, Mirror Descent (MD) keeps track of ŷt rather than Lt as the sufficient
statistic. In other words, relaxation Rel(z1∶t) can be written as Rel(gt(z1∶t−1), zt).

The MD algorithm is

gt+1 = argmin
v∈K

⟨v, zt⟩ + η
−1Dφ(v, gt) (31)

for some η that will be calculated later. Let g̃t+1 be the unrestricted minimum in (31).
By taking derivatives of the objective and setting to zero (use the definition of Bregman
divergence), we see that

−ηzt = ∇φ(g̃t+1) − ∇φ(gt).

That is, Mirror Descent can be viewed as: map gt via ∇φ to the dual space, then make
a gradient step, then map back via the inverse map ∇φ∗, and then project onto K. The
difference with respect to FTRL is the interleaved projections, but that’s about it.

Let’s see if we can recover the algorithm through relaxations. We set

max
v∈K

⟨v,−Ln⟩ ≤ max
v∈K

{⟨v,−Ln⟩ + η
−1Dφ(v, gn)} ≜Rel(gn, zn) (32)

The last step is

min
ŷn

max
zn

{⟨ŷn, zn⟩ +max
v∈K

{⟨v,−Ln⟩ + η
−1Dφ(v, gn)}} (33)

= min
ŷn

max
zn

max
v∈K

{⟨v,−Ln−1⟩ + ⟨ŷn − v, zn⟩ + η
−1Dφ(v, gn)} (34)

The optimality condition for (31) says that

⟨gn − v, − ηzn −∇φ(gn) + ∇φ(gn−1)⟩ ≥ 0 (35)

(that is, negative gradient direction has positive inner product with gn − v for any v ∈ K).
Rearranging,

⟨gn − v, ηzn⟩ ≤ ⟨v − gn, ∇φ(gn−1) − ∇φ(gn)⟩ . (36)

We now use an elementary property of Bregman divergences:

Dφ(a, b) +Dφ(b, c) =Dφ(a, c) + ⟨a − b,∇φ(c) − ∇φ(b)⟩ (37)

Choosing v = a, gn = b, gn−1 = c, and dividing by η, (36) becomes

⟨gn − v, zn⟩ ≤ η
−1Dφ(v, gn−1) − η

−1Dφ(v, gn) + η
−1Dφ(gn, gn−1). (38)

Finally (this requires some work),

η−1Dφ(gn, gn−1) = η
−1Dφ∗(∇φ(gn),∇φ(gn−1)) ≤ η

−1 1

2σ
∥ηzn∥

2
∗ ≤

η

2σ
G2

where we used the fact that φ is strongly convex while φ∗ is smooth with respect to the
dual norm.
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Putting everything together, (34) is equal to

min
ŷn

max
zn

max
v∈K

{⟨v,−Ln−1⟩ + ⟨ŷn − gn, zn⟩ + ⟨gn − v, zn⟩ + η
−1Dφ(v, gn)} (39)

which is upper bounded, in view of the above calculations, by

min
ŷn

max
zn

max
v∈K

{⟨v,−Ln−1⟩ + ⟨ŷn − gn, zn⟩ + η
−1Dφ(v, gn−1)} +

η

2σ
G2 (40)

Now the terms decouple and we get

min
ŷn

max
zn

⟨ŷn − gn, zn⟩ +max
v∈K

{⟨v,−Ln−1⟩ + η
−1Dφ(v, gn−1)} +

η

2σ
G2 (41)

The optimal strategy for ŷn is to set ŷn = gn. This proves the recursion for the last step.
One can see that

Rel(z1∶t) =Rel(gt(z1∶t−1), zt) = max
v∈K

{⟨v,−Lt⟩ + η
−1Dφ(v, gt)} +

(n − t + 1)η

2σ
G2.

In particular,

Rel(∅) = η−1R2
+
G2ηn

2σ

for R2 = maxv∈KDφ(v, g0). It remains to tune η to conclude that

Lemma 1. Mirror Descent with a σ-strongly convex function φ (with respect to a norm ∥⋅∥

over K) with η = (R/G)

√
2σ
n , R2 = maxv∈KDφ(v, g0), guarantees that

n

∑
t=1

⟨ŷt, zt⟩ −min
v∈K

n

∑
t=1

⟨v, zt⟩ ≤
√

2
RG
√
σ

√
n (42)

for any sequence z1, . . . , zn.

4. ADDING EXTRA KNOWLEDGE

It is sometimes argued that online algorithms are overly pessimistic. While the benchmark
term does capture some of the prior knowledge of the practitioner, the result still protects
against all sequences. Below, we provide one of the ways in which extra knowledge can be
infused into the method. Imagine a linear optimization problem where on each step we first
observe a guess Mt of the next zt. This guess may come from external sources, or as an extra
statistic believed to be important for this time step. How can we use this information, yet
still be protective of the worst-case behavior? The algorithm below addresses this problem.
We shall call it “Optimistic Mirror Descent” because it uses the extra information Mt, and
the regret becomes tighter if the information is relevant, and matches the usual guarantee if
the information is irrelevant. The method has been used already in a number of applications,
including faster convergence in zero-sum games, coarse correlated equilibria in multiplayer
normal form games, maximum flow problems, etc. The algorithm is a procedure that keeps
track of two sequences:

gt+1 = argmin
v∈K

η ⟨v, zt⟩ +Dφ(v, gt) (43)

ŷt+1 = argmin
v∈K

η ⟨v,Mt+1⟩ +Dφ(v, gt+1) (44)

Note that if Mt = 0, we recover Mirror Descent.
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Lemma 2. If K is convex set and φ is 1-strongly convex on K with respect to ∥⋅∥. Then
Optimistic Mirror Descent yields, for any sequence z1, . . . , zn,

n

∑
t=1

⟨ŷt, zt⟩ −min
v∈K

n

∑
t=1

⟨v, zt⟩ ≤ cR

¿
Á
ÁÀ

n

∑
t=1

∥zt −Mt∥
2
∗ + 1 (45)

where R2 = maxv∈K φ(v) −minv∈K φ(v) and c is a constant.

The lemma above needs to choose η in a time-varying manner, and we refer to [RS12]
for this.

The extra information can significantly decrease the regret bound by subtracting off the
predictable part of the process, just as in Statistics we regress a variable and subtract a
seasonal trend until only the unpredictable noise remains.
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