
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 18

1. THE MAGIC OF RANDOM PLAYOUT

Let us now describe a very useful technique for coming up with efficient randomized strate-
gies. The technique is an analogue of “hallucinating future coin flips” in the Cover result.
We call it a magical technique because it allows us to seemingly pass an expectation through
min max, something that generally does not hold. In the following lecture, we will show
that the famous “Follow the Perturbed Leader” technique is a particular consequence of
the general approach.

Suppose we have an abstract optimization problem

min
q

max
b

{Ea∼q`(a, b) +Ez∼pΦ(z, b)} (1)

where q is a mixed strategy for our choice a. The optimization problem might be computa-
tionally difficult due to the presence of the expected value Ez∼p. However, suppose we are
able to simulate z ∼ p. The random playout technique says that it’s “enough” to be able to
solve a version of (1) without the expected value. Specifically,

▷ Draw z ∼ p

▷ Output q̃(z), a solution to

q̃(z) = argmin
q̃

max
b

{Ea∼q`(a, b) +Φ(z, b)} (2)

This process defines a mixed strategy which we denote by q̂. Drawing a ∼ q̂ requires double
randomization: first draw z, then solve for q̃(z), then draw a ∼ q̃(z). How good is this
strategy q̂ ?

Lemma 1. Let
V (q) = max

b
{Ea∼q`(a, b) +Ez∼pΦ(z, b)}

be the value in (1) attained by a strategy q. The strategy q̂ defined earlier attains

V (q̂) ≤ Ez∈p min
q

max
b

{Ea∼q`(a, b) +Φ(z, b)} . (3)

This simple result should be a standard tool of anyone looking to develop an efficient
randomized strategies. Of course, the question is how good the upper bound (3) is. It turns
out, in the questions we consider, it’s pretty much as good as it can get. Note that the
difference is only in the location of Ez∼p: in (1) it is inside, while in the upper bound (3) it
is outside. However, this is not Jensen’s inequality: while E can pass through the max, it
cannot pass through the min. The proof, however, is simple:

1



Proof. By taking q̂ as a particular choice in (1),

min
q

max
b

{Ea∼q`(a, b) +Ez∼pΦ(z)} ≤ max
b

{Ez∼pEa∼q̃(z)`(a, b) +Ez∼pΦ(z)} (4)

≤ Ez∼p max
b

{Ea∼q̃(z)`(a, b) +Φ(z)} (5)

= Ez∼p min
q̃

max
b

{Ea∼q̃`(a, b) +Φ(z)} (6)

The first inequality is due to the particular (potentially suboptimal) choice of q̂. The second
is by linearity and Jensen’s inequality (using convexity of max). The third equality is by
the definition of q̃(z).

The bottom line is that problems of the form (1) can be solved by drawing a random
variable and solving (2), thus avoiding the costly integration over the random variable.

2. ONLINE LINEAR OPTIMIZATION

We are now back to the setting of online learning. Recall the experts problem: on round
t, we decide on a distribution ŷt ∈ ∆(N) on the N experts and then observe the costs
incurred by the experts. We denote this vector of costs by zt ∈ [−1,1]N . The cumulative
cost incurred by the learner is

n

∑
t=1

⟨ŷt, zt⟩ ,

while the best cumulative cost in hindsight attained by any expert is

min
v∈{e1,...,eN}

n

∑
t=1

⟨v, zt⟩

(ej are the standard basis vectors).
We can view this problem as a game: player I chooses actions in ∆(N), player II chooses

actions in [−1,1]N , and the benchmark is defined as

min
v∈∆(N)

n

∑
t=1

⟨v, zt⟩ .

The minimization is over the simplex since the minimum of a linear function is achieved at
the vertex.

To develop a more general machinery we shall consider a slightly different problem: we
expand the set ∆(N) to be the unit `1 ball

B1 =
⎧⎪⎪⎨⎪⎪⎩
v ∶

N

∑
j=1

∣v(j)∣ ≤ 1

⎫⎪⎪⎬⎪⎪⎭
= {v ∶ ∥v∥1 ≤ 1} .

Clearly, B1 includes ∆(N). Dual to `1 norm is the `∞ norm:

∥z∥
∞
= max

j
∣z(j)∣,

and the dual ball B∞ is precisly [−1,1]N . We arrived at the following online learning
protocol:
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For t = 1, . . . , n

Predict ŷt ∈ B1

Observe costs zt ∈ B∞

One can check easily that

−min
v∈B1

n

∑
t=1

⟨v, zt⟩ = max
v∈B1

⟨v,
n

∑
t=1

−zt⟩ = ∥
n

∑
t=1

zt∥
∞

(7)

and thus the (unnormalized by n) regret

n

∑
t=1

⟨ŷt, zt⟩ −min
v∈B1

n

∑
t=1

⟨v, zt⟩ (8)

of the algorithm with respect to the best “signed” expert ±ej can be written as

n

∑
t=1

⟨ŷt, zt⟩ + ∥
n

∑
t=1

zt∥
∞

. (9)

Aside: The choice of the pair B1/B∞ is not arbitrary. As we will see shortly, the analysis
remains unchanged for any pair of dual balls: e.g B2/B2, Bp/Bq with 1/p + 1/q = 1, and so
on. An abstract online linear optimization problem with dual balls B and B∗ is defined as
a repeated game where player I chooses from B, player II chooses from B∗, and regret is
the difference of inner products of the choices relative to a single choice by player I.

2.1 Preparing for the magic

Unfortunately, in the problem of online linear optimization, the form of the relaxation is
not in the form (1). The technique we describe here fixes this problem.

Lemma 2. Let D be a uniform distribution on {±1}N . Then for any v ∈ RN and any
distribution p on B∞ (which may be chosen based on v),

Ez∼p ∥v + (z −E[z])∥
∞
≤ Eu∼D ∥v + 6u∥

∞
(10)

The proof of this lemma is simple and is left as an exercise. But what does the lemma
say? Imagine that you know a vector v, and your task is to come up with a distribution
on {±1}N such that, on average over the draw of z from this distribution, the maximum
coordinate of v when perturbed by (z−E[z]) is as large as possible (this may or may not be
the largest coordinate of v itself). Suppose there is some best distribution p∗(v) to achieve
this task. The lemma says that one can do no worse by taking a uniform distribution D
(that does not depend on the particular v) and measuring the maximum coordinate of v
when perturbed by 6 times the draw from this distribution. That is, up to a constant 6,
there is no gain in tailoring p to the particular value of v.

A couple of remarks. First, the constant 6 may be improvable, but this value allows for
a simple proof. Second, many other choices for D are possible. Of particular interest in a
gaussian distribution with independent coordinates.

The lemma, while being very simple, allows us to relate martingales back to i.i.d. random
variables. This can be seen in the proof in the next section. Statements as in Lemma 2
imply equivalence of learning with i.i.d. and worst-case sequences.
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2.2 Non-algorithmic analysis of online linear optimization for B1/B∞

To find an upper bound on the optimal value of regret and to develop a near-minimax
strategy, consider the last step:

min
ŷn∈B1

max
zn∈B∞

{⟨ŷn, zn⟩ +Rel(z1∶n)} (11)

with

Rel(z1∶n) = ∥
n

∑
t=1

zt∥
∞

.

Now that we learned about minimax basics, we can understand why the min and max
are over the deterministic choices (can you see why?) The inner maximization is over the
deterministic choice zn since the inner player can be deterministic. How about the outer
min? The B1 ball is convex, and the objective inside the curly brackets is linear (convex)
in ŷn. Hence, we may appeal to the lemma from the previous lecture.

However, we cannot perform the minimax swap since the objective function is convex
(rather than concave) in zn (can you see why?). The solution is to linearize the choice by
moving to the space of distributions. This is the first key step in our analysis, and one
should always keep this possibility in mind when facing a minimax expression.

We can equivalently write (11) as

min
ŷn∈B1

max
pn∈∆(B∞)

Ezn∼pn {⟨ŷn, zn⟩ + ∥
n

∑
t=1

zt∥
∞

} , (12)

with the maximum over probability distributions on zn ∈ B∞. The objective is now linear in
ŷn and linear in pn. Compactness and continuity required by the theorem from the previous
lecture hold, and so the above expression is equal to

max
pn∈∆(B∞)

min
ŷn∈B1

Ezn∼pn {⟨ŷn, zn⟩ + ∥
n

∑
t=1

zt∥
∞

} . (13)

Now, the expectation distributes over the two terms (by linearity of expectation) and the
minimum only applies to the first term. Hence, the preceding expression is equal to

max
pn∈∆(B∞)

{ min
ŷn∈B1

⟨ŷn,Ezn∼pn[zn]⟩ +Ezn∼pn ∥
n

∑
t=1

zt∥
∞

} . (14)

But

min
ŷn∈B1

⟨ŷn,Ezn⟩ = − ∥Ezn∥∞ , (15)

and, hence, by triangle inequality, the minimax expression is upper bounded by

max
pn∈∆(B∞)

Ezn∼pn ∥
n−1

∑
t=1

zt + (zn −Ezn)∥
∞

. (16)

We now appeal to Lemma 2 and upper bound the above expression by

Eun∼D ∥
n−1

∑
t=1

zt + 6un∥
∞

≜Rel(z1∶n−1) (17)
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Continuing in this manner,

Rel(z1∶t) = Eut+1∶n∼D

XXXXXXXXXXX

t

∑
j=1

zj + 6
n

∑
s=t+1

us

XXXXXXXXXXX∞
(18)

and

Rel(∅) = 6Eu1∶n∼D ∥
n

∑
s=1

us∥
∞

(19)

where D is uniform on {±1}n. Let us examine the vector U = ∑n
s=1 us. Each coordinate i of

U is a sum of n independent Rademacher random variables, and thus

E exp{λU(i)} ≤ exp{nλ2/2}

(prove this using the inequality we already discussed). Using the soft-max argument from
previous lectures,

Eu1∶n∼D ∥
n

∑
s=1

us∥
∞

≤ 6
√

2n logN. (20)

Once again we proved the experts bound, but this time we did not specify the algorithm.
The soft-max relaxation was only used at the very end.

In the next lecture, we ask what algorithm corresponds to the above relaxation. We will
see that it is the famous Follow-the-Perturbed-Leader. This algorithm is always presented
as an ad-hoc algorithm, but we see that it corresponds to a very particular sequence of
relaxation steps. Once this is understood, the technique can be applied in a principled
manner where no prediction method is presently known.
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