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LECTURE 6

0.1 Logistic regression

Consider binary classification. When we talked about half-spaces, the prediction of any
hypothesis w was given by

sign(⟨w,x⟩).

As ⟨w,x⟩ changes sign, the prediction suddenly jumps from + to −. A useful way to produce
a more smooth decision is by first calculating

1

1 + exp{− ⟨w,x⟩}
(1)

and using this value (which is between 0 and 1) as the confidence in the choice of the class
+1 vs −1. If ⟨w,x⟩ is close to zero, the value is around 1/2. As the inner product becomes
large, the value approaches 0 or 1, indicating a more confident choice.

The confidence is often interpreted as probability assigned by the forecaster to the
two events (class 1 and class −1). A common way to evaluate probability is via negative
logarithmic loss of probability assigned by the forecaster to the realized outcome. That is,
if y = 1, the prediction is more correct if (1) is close to 1, but should be penalized if it is
close to 0. Hence, if y = 1, the hyperplane w will incur a cost of

− log(
1

1 + exp{− ⟨w,x⟩}
) = log (1 + exp{− ⟨w,x⟩}) (2)

and if y = −1, the loss is

− log(1 −
1

1 + exp{− ⟨w,x⟩}
) = log (1 + exp{⟨w,x⟩}) . (3)

The two cases can be combined by simply writing the logistic loss function

`(w, (x, y)) = log (1 + exp{−y ⟨w,x⟩}) . (4)

0.2 Multiclass logistic regression (softmax)

If y ∈ {1, . . . , k}, the idea is again to produce k scores that measure the affinity of x ∈ Rd

to each of the classes. Let us only concentrate on the linear case. For a given k × d matrix
W , the scores are then given by ⟨Wj , x⟩, j = 1, . . . , k. To interpret them as probabilities, we
map the scores to normalized scores

exp{⟨Wj , x⟩}

∑i exp{⟨Wi, x⟩}
, j = 1, . . . , k
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and the loss function is the negative logarithm of the probability assigned to the correct
class:

`(W, (x, y)) = − log(
exp{⟨Wy, x⟩}

∑i exp{⟨Wi, x⟩}
) = − ⟨Wy, x⟩ + log(∑

i

exp{⟨Wi, x⟩})

Let sj = ⟨Wj , x⟩ denote the score for class j given by W , and pj =
exp{⟨Wj ,x⟩}

∑i exp{⟨Wi,x⟩
. Then

∂`

∂sj
= −1{j = y} + pj (5)

and

dsj

dWj
= xT. (6)

Hence,

∂`

∂Wj
= (−1{j = y} + pj)x

T (7)

and

∂`

∂W
= zxT (8)

where z = [p1, . . . , py − 1, . . . , pk]
T. We can now use this expression directly in the SGD

update.
Homework: add bj to the linear form ⟨Wj , x⟩. The vector b ∈ Rk is now an additional

parameter. Find the subgradient with respect to b.
In the process of calculation softmax, one may quickly run into numerical problems.

To mitigate these issues in practice, observe that we may subtract any constant from each
⟨Wj , x⟩ before exponentiating, without changing the distribution. For instance, we can
subtract off maxj ⟨Wj , x⟩, ensuring that the maximum value after exponentiating is no
larger than 1.

0.3 A discussion of loss functions

At this point it might be worthwhile to draw the various loss functions for binary classifica-
tion: indicator loss, hinge, logistic. We may think of them as functions of ŷtyt, where ŷt is the
output of a classifier, and yt is the label for the data point xt: 1{ŷtyt < 0}, max{0,1− ŷtyt},
etc.

Let us also introduce squared-hinge (which gives rise to the so-called L2-SVM):

`(w, (x, y)) = max{0,1 − y ⟨w,x⟩}2

This loss function is widely used in practice. Squared hinge is smooth, and hence con-
vergence might be faster. It penalizes errors heavier than hinge or logistic (which may or
may not be a desirable quality), and becomes zero once the margin of 1 is satisfied just
like regular hinge (this is often viewed as a positive thing). On the other hand, logistic
is closer to hinge in terms of its penalization of errors, yet it is “never happy” — even if
prediction is correct. Especially in the case of multiclass categorization, softmax might keep
being unhappy with one of the classes, and that will lead to global changes because updates
are coupled through a probability distribution based on scores. Depending on a particular
situation, one loss may be more preferable than another.
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0.4 Nonlinearities

So far in this course we have studied linear classifiers: we compute ⟨w,x⟩, interpreted
as a “score” of the classifier, and then apply a possibly nonlinear function that gives a
prediction (sign for binary classification, probability distribution for multiclass logistic), and
a nonlinear loss function (indicator, hinge, logarithm). Regardless of the nonlinear loss, the
decision boundary is still linear in the space where x lives (or, k-linear for multiclass). This
limits the applicability of the methods we described in some real-world problems, where
the decision boundary (if we could only peek into this high-dimensional space) would be
nonlinear.

There are two popular ways to make the function of x more wiggly. First is to replace
⟨w,x⟩ with ⟨w,φ(x)⟩ for some feature map φ into a high (or infinite) dimensional space.
We will discuss this “kernel methods” approach later. Notably it still leads to a convex
optimization objective, but over the coefficients of the wiggly functions. Just because the
decision boundary becomes non-convex does not mean we can’t have a convex optimization
problem over the coefficients of these functions!

The second approach is:

0.5 Neural networks

The second popular approach is to forego convexity and introduce nonlinearity in a way
that does not look like ⟨w,φ(x)⟩. One way to do this is to map x into Wx for some matrix
W ∈ Rd1×d and then apply a nonlinear function σ ∶ R→ R coordinate-wise:

x↦ σ(Wx).

There are many variants for the function σ; most popular are sigmoid a↦ (1 + exp(−a))−1

and positive part a↦max{0, a} (also called ReLU). The resulting d1-dimensional vector can
now be used, for instance, with a linear classifier and hinge loss, resulting in the following
optimization problem:

min
w,W

1

n

n

∑
t=1

max{0,1 − yt ⟨w,σ(Wxt)⟩}. (9)

This would be called a neural network with 1 hidden layer which is then combined in a
linear fashion via w to yield prediction. One may also put a nonlinearity at the final output
stage, as we will do later.

We may build a more complex model with more than 1 hidden layer. For instance, a
two-layer network may look like

min
w,W 1,W 2

1

n

n

∑
t=1

max{0,1 − yt ⟨w,σ(W
2σ(W 1xt))⟩}, (10)

where W 1 ∈ Rd1×d, W 2 ∈ Rd2×d1 , w ∈ Rd2 . And so forth. Note that combining several layers
dramatically increases the number of linear pieces that make up the decision boundary.

We may use this architecture with multiclass softmax, which leads to

min
W,W 1,W 2

1

n

n

∑
t=1

− log
⎛

⎝

exp{⟨Wyt , σ(W
2σ(W 1xt))⟩}

Z

⎞

⎠
(11)

And so forth.
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The bottom line is that all these formulations are nonconvex. Yet, in practice, SGD still
performs well. There is almost no theory as to why this happens. On the other hand, there
are plenty of heuristic motivations for the use of multiple layers (depth). These motivations
include hierarchical organization, reuse of information within the network, and so on. There
is also some theoretical evidence that the representational power with an additional layer
is significantly greater than adding these nodes to an existing layer.

Note: so far, we have not isolated a constant shift of the linear functions and instead
included it as an additional coordinate. It is more common to write it explicitly and update
it in SGD separately, without having to augment x’s.

We now turn to the question of implementing SGD. To this end, we need to find a
gradient or a subgradient of the loss with respect to each parameter. For this, all we need is
to remember the chain rule from calculus since some of these parameters are buried within
other functions. The calculation is termed “backpropagation” because the chain rule has a
nice modular implementation as a backward pass following a forward calculation.

0.6 Backprop

Consider a network with r layers, and take square loss (for simplicity) as the loss function:

1

n

n

∑
t=1

1

2
[yt − σ(W

rσ(. . . σ(W 1x)))]
2
. (12)

Once again, the nonlinearity σ is applied coordinate-wise, and so the dimensions of the
matrices W r, . . . ,W 1 are (1× dr−1), (dr−1 × dr−2), . . . , (d1 × d), and x ∈ Rd. Let us introduce
the notation:

Oj
= σ(N j

), N j
=W jσ(. . . σ(W 1x))

with Or being the output of the network.
We have

dOj
i

dN j
i

= Oj
i (1 −O

j
i )

for the case of sigmoid, while for ReLU

dOj
i

dN j
i

= 1{N j
i > 0} .

Define a shorthand

ξji ≜
∂`

∂Oj
i

×
∂Oj

i

∂N j
i

.

Then

∂`

∂W j
i,m

=
∂`

∂N j
i

×
∂N j

i

∂W j
i,m

=
∂`

∂Oj
i

×
∂Oj

i

∂N j
i

×
∂N j

i

∂W j
i,m

= ξjiO
j−1
m (13)

where we define O0
m = xm. If j ≠ r (not the final layer),

∂`

∂Oj
i

=

dj+1

∑
s=1

∂`

∂N j+1
s

∂N j+1
s

∂Oj
i

=

dj+1

∑
s=1

∂`

∂Oj+1
s

∂Oj+1
s

∂N j+1
s

∂N j+1
s

∂Oj
i

(14)

=

dj+1

∑
s=1

ξj+1s W j+1
s,i (15)
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and thus

ξji =
∂`

∂Oj
i

×
∂Oj

i

∂N j
i

=
∂Oj

i

∂N j
i

dj+1

∑
s=1

ξj+1s W j+1
s,i . (16)

The key observation is that the quantities ξ can be calculated in a backward manner,
starting with the output layer. Let us detail this for the sigmoid function. Then

∂Oj
i

∂N j
i

= Oj
i ⋅ (1 −O

j
i )

If the layer is not final (j ≠ r), then

ξji = O
j
i ⋅ (1 −O

j
i )

dj+1

∑
s=1

ξj+1s W j+1
s,i . (17)

On the other hand, if j = r, then (keeping in mind that the output final dimension is 1),

ξr =
∂`

∂Or
×
∂Or

∂N r
= (Or

− y)Or
(1 −Or

). (18)

Now that the recursive definition of ξ is complete, we recall (13) to define all the partial
derivatives:

∂`

∂W j
i,m

= ξjiO
j−1
m (19)

Note that Oj ’s are calculated during the forward pass and ξj ’s are calculated during the
backward pass.
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