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Introduction

Motivation

Potential games are games in which preferences of all players are
aligned with a global objective.

easy to analyze
pure Nash equilibrium exists
simple dynamics converge to an equilibrium

How “close” is a game to a potential game?

What is the topology of the space of preferences?

Are there “natural” decompositions of games?

How to modify a game to make it potential?

Useful as analysis methodology, but also for game design.
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Introduction

Main Contributions

Analysis of the global structure of preferences

Canonical decomposition: potential and harmonic components

Projection schemes to find the components.

Closed form solutions to the projection problem.

Equilibria of a game are ε-equilibria of its projection, and equilibria of
the projected game are ε equilibria of the initial game.

Analysis of games in terms of their components
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Potential Games Definition and Properties

Potential Games

We consider finite games in strategic form,
G = 〈M, {Em}m∈M, {um}m∈M〉.
G is an exact potential game if ∃Φ : E → R such that

Φ(xm, x−m)− Φ(ym, x−m) = um(xm, x−m)− um(ym, x−m),

Weaker notion: ordinal potential game, if the utility differences above
agree only in sign.

Potential Φ aggregates and explains incentives of all players.

Examples: congestion games, etc.
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Potential Games Definition and Properties

Potential Games

A global maximum of an ordinal potential is a pure Nash equilibrium.

Every finite potential game has a pure equilibrium.

Many learning dynamics (such as better-reply dynamics, fictitious
play, spatial adaptive play) “converge” to a pure Nash equilibrium
[Monderer and Shapley 96], [Young 98], [Marden, Arslan, Shamma
06, 07].

6 / 40



Potential Games Definition and Properties

Potential Games

When is a given game a potential game?

More important, what are the obstructions, and what is the
underlying structure?
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Potential Games Characterization

Existence of Exact Potential

A path is a collection of strategy profiles γ = (x0, . . . , xN) such that xi and
xi+1 differ in the strategy of exactly one player where xi ∈ E for
i ∈ {0, 1, . . .N}. For any path γ, let

I (γ) =
N∑
i=1

umi (xi )− umi (xi−1),

where mi denotes the player changing its strategy in the ith step of the
path.

Theorem ([Monderer and Shapley 96])

A game G is an exact potential game if and only if for all simple closed
paths, γ, I (γ) = 0. Moreover, it is sufficient to check closed paths of
length 4.
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Potential Games Characterization

Existence of Exact Potential

Let I (γ) 6= 0, if potential existed then it would increase when the
cycle is completed.

The condition for existence of exact potential is linear. The set of
exact potential games is a subspace of the space of games.

The set of exact potential games is “small”.

Theorem

Consider games with set of players M, and joint strategy space
E =

∏
m∈M Em

1 The dimension of the space of games is |M|
∏

m∈M |Em|.
2 The dimension of the subspace of exact potential games is∏

m∈M
|Em|+

∑
m∈M

∏
k∈M,k 6=m

|E k | − 1.
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Potential Games Characterization

Existence of Ordinal Potential

A weak improvement cycle is a cycle for which at each step of which
the utility of the player whose strategy is modified is nondecreasing
(and at least at one step the change is strictly positive).

A game is an ordinal potential game if and only if it contains no weak
improvement cycles [Voorneveld and Norde 97].
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Potential Games Characterization

Game Flows: 3-Player Example

1

2 3

Em = {0, 1} for all m ∈M, and payoff of player i be −1 if its
strategy is the same with its successor, 0 otherwise.
This game is neither an exact nor an ordinal potential game.

(1, 1, 0) (1, 1, 1)

(1, 0, 0) (1, 0, 1)

(0, 1, 0) (0, 1, 1)

(0, 0, 0) (0, 0, 1)
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Global Structure of Preferences

Global Structure of Preferences

What is the global structure of these cycles?

Equivalently, topological structure of aggregated preferences.

Conceptually similar to structure of (continuous) vector fields.

A well-developed theory from algebraic topology, we need the
combinatorial analogue.

12 / 40



Global Structure of Preferences Helmholtz Decomposition

Helmholtz (Hodge) Decomposition

The Helmholtz Decomposition allows orthogonal decomposition of a
vector field into three vector fields:

Gradient flow (globally acyclic component)
Harmonic flow (locally acyclic but globally cyclic component)
Curl flow (locally cyclic component).

im(grad) ker(∆1) im(curl∗)

ker(div)ker(curl)

Figure: Helmholtz Decomposition
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Global Structure of Preferences Helmholtz Decomposition

Helmholtz decomposition (a cartoon)

Globally consistent Globally inconsistent

Locally consistent Locally inconsistent

Gradient flow Harmonic flow Curl flow
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Global Structure of Preferences Helmholtz Decomposition

Redefining Potential Games

For all m ∈M let W m : E × E → R satisfy

W m(p,q) =

{
1 if p,q differ in the strategy of player m only

0 otherwise.

For all m ∈M, define a difference operator Dm such that,

(Dmφ)(p,q) = W m(p,q) (φ(q)− φ(p)) .

where p,q ∈ E and φ : E → R.

Note that a game is an exact potential game if and only if

Dmum = Dmφ

for all m ∈M.
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Global Structure of Preferences Helmholtz Decomposition

Redefining Potential Games

δ0 =
∑

m∈MDm is a combinatorial gradient operator.

Image spaces of operators Dm m ∈M are orthogonal

A game is an exact potential game if and only if∑
m∈M

Dmum =
∑
m∈M

Dmφ = δ0φ.

Exact Potential Games - Alternative Definition

A game is an exact potential game if and only if
∑

m∈MDmum is a
gradient flow.
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Global Structure of Preferences Potential and Harmonic games

Decomposition: Potential, Harmonic, and Nonstrategic

Decomposition of game flows induces a similar partition of the space of
games:

When going from utilities to flows, the nonstrategic component is
removed.

If we start from utilities (not preferences), always locally consistent.

Therefore, two flow components: potential and harmonic

Thus, the space of games has a canonical direct sum decomposition:

G = Gpotential ⊕ Gharmonic ⊕ Gnonstrategic,

where the components are orthogonal subspaces.
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Global Structure of Preferences Example: Bimatrix Games

Bimatrix games

For two-player games, simple explicit formulas.
Assume the game is given by matrices (A,B), and (for simplicity), the
non-strategic component is zero (i.e., 1TA = 0,B1 = 0). Define

S :=
1

2
(A + B), D :=

1

2
(A− B), Γ :=

1

2n
(A11T − 11TB).

Potential component:
(S + Γ, S − Γ)

Harmonic component:

(D − Γ, −D + Γ)

Notice that the harmonic component is zero sum.
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Global Structure of Preferences Example: Bimatrix Games

Harmonic games

Very different properties than potential games.
Agreement between players is never a posibility!

Simple examples: rock-paper-scissors, cyclic games, etc.

Essentially, sums of cycles.

Generically, never have pure Nash equilibria.

Uniformly mixed profile (for all players) is mixed Nash.

Other interesting static and dynamic properties (e.g., correlated equilibria,
best-response dynamics, etc.)
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Projections to Potential Games

Projection on the Set of Exact Potential Games

We solve,

d2(G) = min
φ∈C0

||δ0φ−
∑
m∈M

Dmum||22,

to find a potential function that best represents a given collection of
utilities (C0 is the space of real valued functions defined on E ) .

The utilities that represent the potential and that are close to initial
utilities can be constructed by solving an additional optimization
problem (for a fixed φ, and for all m ∈M ):

ûm = arg min
ūm

||um − ūm||22
s.t. Dmūm = Dmφ

ūm ∈ C0.

20 / 40



Projections to Potential Games

Projection on the Set of Exact Potential Games

Theorem

If all players have same number of strategies, the optimal projection is
given in closed form by

φ =

(∑
m∈M

Πm

)† ∑
m∈M

Πmum,

and

ûm = (I − Πm)um + Πm

(∑
k∈M

Πk

)† ∑
k∈M

Πkuk .

Here Πm = D∗mDm is the projection operator to the orthogonal
complement of the kernel of Dm (∗ denotes the adjoint of an operator).
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Projections to Potential Games

Projection on the Set of Exact Potential Games

For any m ∈M, Πmum and (I −Πm)um are respectively the strategic
and nonstrategic components of the utility of player m.

φ solves, ∑
m∈M

Πmφ =
∑
m∈M

Πmum.

Hence, optimal φ is a function which represents the sum of strategic
parts of utilities of different users.

ûm is the sum of the nonstrategic part of um and the strategic part of
the potential φ.
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Projections to Potential Games

Consequences

Nice and beautiful. But (if that’s not enough!) why should we care?

Provides classes of games with simpler structures, for which stronger
results can be proved.

Yields a natural mechanism for approximation, for both static and
dynamical properties.

Let’s see this...
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Projections to Potential Games Equilibria

Equilibria of a Game and its Projection

Theorem

Let G be a game and Ĝ be its projection. Any equilibrium of Ĝ is an
ε-equilibrium of G and any equilibrium of G is an ε-equilibrium of Ĝ for
ε ≤
√

2 · d(G).

Provided that the projection distance is small, equilibria of the
projected game are close to the equilibria of the initial game.
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Projections to Potential Games Dynamics

Simulation example

Consider an average opinion game on a graph.
Payoff of each player satisfies,

um(p) = 2M̂ − (M̂m − pm)2,

where M̂m is the median of pk , k ∈ N(m).

1

2

3

5

4

This game is not an exact (or ordinal) potential game.
With small perturbation in the payoffs, it can be projected to the set of
potential games.
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Projections to Potential Games Dynamics

0 50 100 150 200 250
−10

0

10
Original and Projected Payoffs for Different Players

 

 

0 50 100 150 200 250
−10

0

10

0 50 100 150 200 250
−10

0

10

0 50 100 150 200 250
−10

0

10

0 50 100 150 200 250
−10

0

10

Strategy Profile

P
ay

of
fs

 o
f p

la
ye

rs

 

 

Original payoff
Payoff after projection

26 / 40



Application: Wireless Power Control Model

Wireless Power Control Application

A set of mobiles (users) M = {1, . . . ,M} share the same wireless spectrum
(single channel).

We denote by p = (p1, . . . , pM) the power allocation (vector) of the mobiles.

Power constraints: Pm = {pm | Pm ≤ pm ≤ P̄m}, with Pm > 0.

Upper bound represents a constraint on the maximum power usage
Lower bound represents a minimum QoS constraint for the mobile

The rate (throughput) of user m is given by

rm(p) = log (1 + γ · SINRm(p)) ,

where, γ > 0 is the spreading gain of the CDMA system and

SINRm(p) =
hmmpm

N0 +
∑

k 6=m hkmpk
.

Here, hkm is the channel gain between user k ’s transmitter and user m’s
receiver.
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Application: Wireless Power Control Model

User Utilities and Equilibrium

Each user is interested in maximizing a net rate-utility, which captures a
tradeoff between the obtained rate and power cost:

um(p) = rm(p)− λmpm,

where λm is a user-specific price per unit power.

We refer to the induced game among the users as the power game and
denote it by G.

Existence of a pure Nash equilibrium follows because the underlying game is
a concave game.

We are also interested in “approximate equilibria” of the power game, for
which we use the concept of ε-(Nash) equilibria.

For a given ε, we denote by Iε the set of ε-equilibria of the power game
G, i.e.,

Iε = {p | um(pm,p−m) ≥ um(qm,p−m)−ε, for all m ∈M, qm ∈ Pm}
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Application: Wireless Power Control Model

System Utility

Assume that a central planner wishes to impose a general performance
objective over the network formulated as

max
p∈P

U0(p),

where P = P1 × · · · × Pm is the joint feasible power set.

We refer to U0(·) as the system utility-function.

We denote the optimal solution of this system optimization problem by p∗

and refer to it as the desired operating point.

Our goal is to set the prices such that the equilibrium of the power game
can approximate the desired operating point p∗.
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Application: Wireless Power Control Approximation and Analysis

Potential Game Approximation

We approximate the power game with a potential game.

We consider a slightly modified game with player utility functions given by

ũm(p) = r̃m(p)− λmpm

where r̃m(p) = log (γSINRm(p)).

We refer to this game as the potentialized game and denote it by
G̃ = 〈M, {ũm}, {Pm}〉.

For high-SINR regime (γ satisfies γ � 1 or hmm � hkm for all k 6= m),the
modified rate formula r̃m(p) ≈ rm(p) serves as a good approximation for the
true rate, and thus ũm(p) ≈ um(p).
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Application: Wireless Power Control Approximation and Analysis

Pricing in the Modified Game

Theorem

The modified game G̃ is a potential game. The corresponding potential function
is given by

φ(p) =
∑
m

log(pm)− λmpm.

G̃ has a unique equilibrium.

The potential function suggests a simple linear pricing scheme.

Theorem

Let p∗ be the desired operating point. Assume that the prices λ∗ are given by

λ∗m =
1

p∗m
, for all m ∈M.

Then the unique equilibrium of the potentialized game coincides with p∗.
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Application: Wireless Power Control Approximation and Analysis

Near-Optimal Dynamics

We will study the dynamic properties of the power game G when the prices
are set equal to λ∗.

A natural class of dynamics is the best-response dynamics, in which each
user updates his strategy to maximize its utility, given the strategies of other
users.

Let βm : P−m → Pm denote the best-response mapping of user m, i.e.,

βm(p−m) = arg max
pm∈Pm

um(pm,p−m).

Discrete time BR dynamics:

pm ← pm + α (βm(p−m)− pm) for all m ∈M,

Continuous time BR dynamics:

ṗm = βm(p−m)− pm for all m ∈M.

The continuous-time BR dynamics is similar to continuous time fictitious
play dynamics and gradient-play dynamics [Flam, 2002], [Shamma and
Arslan, 2005], [Fudenberg and Levine, 1998].
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Application: Wireless Power Control Approximation and Analysis

Convergence Analysis – 1

If users use BR dynamics in the potentialized game G̃, their strategies
converge to the desired operating point p∗.

This can be shown through a Lyapunov analysis using the potential
function of G̃, [Hofbauer and Sandholm, 2000]
Our interest is in studying the convergence properties of BR dynamics
when used in the power game G.

Idea: Use perturbation analysis from system theory

The difference between the utilities of the original and the potentialized
game can be viewed as a perturbation.
Lyapunov function of the potentialized game can be used to
characterize the set to which the BR dynamics for the original power
game converges.
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Application: Wireless Power Control Approximation and Analysis

Convergence Analysis – 2

Our first result shows BR dynamics applied to game G converges to the set
of ε-equilibria of the potentialized game G̃, denoted by Ĩε.
We define the minimum SINR:

SINRm =
Pmhmm

N0 +
∑

k 6=m hkmPk

We say that the dynamics converges uniformly to a set S if there exists
some T ∈ (0,∞) such that pt ∈ S for every t ≥ T and any initial operating
point p0 ∈ P.

Lemma

The BR dynamics applied to the original power game Gconverges uniformly to the
set Ĩε, where ε satisfies

ε ≤ 1

γ

∑
m∈M

1

SINRm

.

The error bound provides the explicit dependence on γ and SINRm.
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Application: Wireless Power Control Approximation and Analysis

Convergence Analysis – 3

We next establish how “far” the power allocations in Ĩε can be from the
desired operating point p∗.

Theorem

For all ε, p ∈ Ĩε satisfies

|p̃m − p∗m| ≤ Pm

√
2ε for every p̃ ∈ Ĩε and every m ∈M

Idea: Using the strict concavity and the additively separable structure of the
potential function, we characterize Ĩε.
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Application: Wireless Power Control Approximation and Analysis

Convergence and the System Utility

Under some smoothness assumptions, the error bound enables us to
characterize the performance loss in terms of system utility.

Theorem

Let ε > 0 be given. (i) Assume that U0 is a Lipschitz continuous function, with a
Lipschitz constant given by L. Then

|U0(p∗)− U0(p̃)| ≤
√

2εL

√∑
m∈M

P
2

m, for every p̃ ∈ Ĩε.

(ii) Assume that U0 is a continuously differentiable function so that | ∂U0

∂pm
| ≤ Lm,

m ∈M. Then

|U0(p∗)− U0(p̃)| ≤
√

2ε
∑
m∈M

PmLm, for every p̃ ∈ Ĩε.
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Application: Wireless Power Control Approximation and Analysis

Numerical Example – 1

Consider a system with 3 users and let the desired operating point be given
by p∗ = [5, 5, 5].

We choose the prices as λ∗m = 1
p∗
M

and pick the channel gain coefficients

uniformly at random.

We consider three different values of γ ∈ {5, 10, 50}.

(a) The evolution of the power levels
under best response dynamics.

(b) The distance ||pt−p∗|| between
the current and desired power allo-
cations.
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Application: Wireless Power Control Approximation and Analysis

Sum-rate Objective

We next consider the natural system objective of maximizing the sum-rate in
the network.

U0(p) =
∑
m

rm(p).

The performance loss in our pricing scheme can be quantified as follows.

Theorem

Let p∗ be the operating point that maximizes sum-rate objective, and let Ĩε be
the set of ε-equilibria of the modified game to which the BR dynamics converges.
Then

|U0(p∗)− U0(p̃)| ≤
√

2ε(M − 1)
∑
m∈M

Pm

Pm

, for every p̃ ∈ Ĩε.
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Application: Wireless Power Control Approximation and Analysis

Numerical Example – 2

Consider M = 10 users and assume that the power bounds are given by
Pm = 10−2, Pm = 10 for all m ∈M.

(c) The change in sum-rate as a func-
tion of time for γ = 10.

(d) The effect of γ on performance
loss.
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Summary

Summary

Analysis of the global structure of preferences

Decomposition: nonstrategic, potential and harmonic components

Projection to “closest” potential game

Preserves ε-approximate equilibria and dynamics

Enables extension of many tools to non-potential games

Want to know more?

Candogan, Menache, Ozdaglar, P., Flow representations of games: harmonic
and potential games. Preprint.

Candogan, Menache, Ozdaglar, P., Near-optimal power control in wireless
networks: a potential game approach. INFOCOM 2010.
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