Consistency of Preferences and Near-Potential Games

Ozan Candogan, Ishai Menache, Asu Ozdaglar and Pablo A. Parrilo

Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

LCCC - Lund - March 2010

Outline

Introduction

- Potential Games
 - Definition and Properties
 - Characterization
- Global Structure of Preferences
 - Helmholtz Decomposition
 - Potential and Harmonic games
 - Example: Bimatrix Games
 - Projections to Potential Games
 - Equilibria
 - Ovnamics
- - Application: Wireless Power Control
 - Model
 - Approximation and Analysis

Motivation

- Potential games are games in which preferences of all players are aligned with a global objective.
 - easy to analyze
 - pure Nash equilibrium exists
 - simple dynamics converge to an equilibrium
- How "close" is a game to a potential game?
- What is the topology of the space of preferences?
- Are there "natural" decompositions of games?
- How to modify a game to make it potential?
- Useful as analysis methodology, but also for game design.

Main Contributions

- Analysis of the global structure of preferences
- Canonical decomposition: potential and harmonic components
- Projection schemes to find the components.
- Closed form solutions to the projection problem.
- Equilibria of a game are ε-equilibria of its projection, and equilibria of the projected game are ε equilibria of the initial game.
- Analysis of games in terms of their components

Potential Games

- We consider finite games in strategic form, $\mathcal{G} = \langle \mathcal{M}, \{E^m\}_{m \in \mathcal{M}}, \{u^m\}_{m \in \mathcal{M}} \rangle.$
- \mathcal{G} is an exact potential game if $\exists \Phi : E \to \mathbb{R}$ such that

$$\Phi(x^m, x^{-m}) - \Phi(y^m, x^{-m}) = u^m(x^m, x^{-m}) - u^m(y^m, x^{-m}),$$

- Weaker notion: ordinal potential game, if the utility differences above agree only in sign.
- Potential Φ aggregates and explains incentives of all players.
- Examples: congestion games, etc.

Potential Games

- A global maximum of an ordinal potential is a pure Nash equilibrium.
- Every finite potential game has a pure equilibrium.
- Many learning dynamics (such as better-reply dynamics, fictitious play, spatial adaptive play) "converge" to a pure Nash equilibrium [Monderer and Shapley 96], [Young 98], [Marden, Arslan, Shamma 06, 07].

Potential Games

- When is a given game a potential game?
- More important, what are the obstructions, and what is the underlying structure?

Existence of Exact Potential

A path is a collection of strategy profiles $\gamma = (x_0, \ldots, x_N)$ such that x_i and x_{i+1} differ in the strategy of exactly one player where $x_i \in E$ for $i \in \{0, 1, \ldots, N\}$. For any path γ , let

$$I(\gamma) = \sum_{i=1}^{N} u^{m_i}(x_i) - u^{m_i}(x_{i-1}),$$

where m_i denotes the player changing its strategy in the *i*th step of the path.

Theorem ([Monderer and Shapley 96])

A game G is an exact potential game if and only if for all simple closed paths, γ , $I(\gamma) = 0$. Moreover, it is sufficient to check closed paths of length 4.

Existence of Exact Potential

- Let $I(\gamma) \neq 0$, if potential existed then it would increase when the cycle is completed.
- The condition for existence of exact potential is linear. The set of exact potential games is a subspace of the space of games.
- The set of exact potential games is "small".

Theorem

Consider games with set of players \mathcal{M} , and joint strategy space $\mathbf{F} - \mathbf{\Pi} = \mathbf{F}^m$

- $E = \prod_{m \in \mathcal{M}} E^m$
 - **9** The dimension of the space of games is $|\mathcal{M}| \prod_{m \in \mathcal{M}} |E^m|$.
 - **②** The dimension of the subspace of exact potential games is

$$\prod_{m\in\mathcal{M}}|E^m|+\sum_{m\in\mathcal{M}}\prod_{k\in\mathcal{M},k\neq m}|E^k|-1.$$

Existence of Ordinal Potential

- A weak improvement cycle is a cycle for which at each step of which the utility of the player whose strategy is modified is nondecreasing (and at least at one step the change is strictly positive).
- A game is an ordinal potential game if and only if it contains no weak improvement cycles [Voorneveld and Norde 97].

Game Flows: 3-Player Example

- $E^m = \{0,1\}$ for all $m \in \mathcal{M}$, and payoff of player *i* be -1 if its strategy is the same with its successor, 0 otherwise.
- This game is neither an exact nor an ordinal potential game.

Global Structure of Preferences

- What is the global structure of these cycles?
- Equivalently, topological structure of aggregated preferences.
- Conceptually similar to structure of (continuous) vector fields.
- A well-developed theory from algebraic topology, we need the combinatorial analogue.

Helmholtz (Hodge) Decomposition

The Helmholtz Decomposition allows orthogonal decomposition of a vector field into three vector fields:

- Gradient flow (globally acyclic component)
- Harmonic flow (locally acyclic but globally cyclic component)
- Curl flow (locally cyclic component).

Figure: Helmholtz Decomposition

Helmholtz decomposition (a cartoon)

Redefining Potential Games

• For all
$$m \in \mathcal{M}$$
 let $W^m : E \times E \to \mathbb{R}$ satisfy

 $W^{m}(\mathbf{p},\mathbf{q}) = \begin{cases} 1 & \text{if } \mathbf{p},\mathbf{q} \text{ differ in the strategy of player } m \text{ only} \\ 0 & \text{otherwise.} \end{cases}$

• For all $m \in \mathcal{M}$, define a difference operator D_m such that,

$$(D_m\phi)(\mathbf{p},\mathbf{q}) = W^m(\mathbf{p},\mathbf{q}) (\phi(\mathbf{q}) - \phi(\mathbf{p})).$$

where $\mathbf{p}, \mathbf{q} \in E$ and $\phi : E \to \mathbb{R}$.

Note that a game is an exact potential game if and only if

$$D_m u^m = D_m \phi$$

for all $m \in \mathcal{M}$.

Redefining Potential Games

- $\delta_0 = \sum_{m \in \mathcal{M}} D_m$ is a combinatorial gradient operator.
- Image spaces of operators D_m $m \in \mathcal{M}$ are orthogonal
- A game is an exact potential game if and only if

$$\sum_{m\in\mathcal{M}}D_m u^m=\sum_{m\in\mathcal{M}}D_m\phi=\delta_0\phi.$$

Exact Potential Games - Alternative Definition

A game is an exact potential game if and only if $\sum_{m \in \mathcal{M}} D_m u^m$ is a gradient flow.

Decomposition: Potential, Harmonic, and Nonstrategic

Decomposition of game flows induces a similar partition of the space of games:

- When going from utilities to flows, the nonstrategic component is removed.
- If we start from utilities (not preferences), always locally consistent.
- Therefore, two flow components: potential and harmonic

Thus, the space of games has a canonical direct sum decomposition:

 $G = G_{\text{potential}} \oplus G_{\text{harmonic}} \oplus G_{\text{nonstrategic}},$

where the components are orthogonal subspaces.

Bimatrix games

For two-player games, simple explicit formulas.

Assume the game is given by matrices (A, B), and (for simplicity), the non-strategic component is zero (i.e., $\mathbf{1}^T A = 0, B\mathbf{1} = 0$). Define

$$S := \frac{1}{2}(A+B), \quad D := \frac{1}{2}(A-B), \quad \Gamma := \frac{1}{2n}(A\mathbf{1}\mathbf{1}^T - \mathbf{1}\mathbf{1}^T B).$$

• Potential component:

$$(S + \Gamma, S - \Gamma)$$

• Harmonic component:

$$(D - \Gamma, -D + \Gamma)$$

Notice that the harmonic component is zero sum.

Harmonic games

Very different properties than potential games. Agreement between players is never a posibility!

- Simple examples: rock-paper-scissors, cyclic games, etc.
- Essentially, sums of cycles.
- Generically, never have pure Nash equilibria.
- Uniformly mixed profile (for all players) is mixed Nash.

Other interesting static and dynamic properties (e.g., correlated equilibria, best-response dynamics, etc.)

Projection on the Set of Exact Potential Games

• We solve,

$$d^2(\mathcal{G}) = \min_{\phi \in \mathcal{C}_0} \quad ||\delta_0 \phi - \sum_{m \in \mathcal{M}} D_m u^m||_2^2,$$

to find a potential function that best represents a given collection of utilities (C_0 is the space of real valued functions defined on E).

• The utilities that represent the potential and that are close to initial utilities can be constructed by solving an additional optimization problem (for a fixed ϕ , and for all $m \in \mathcal{M}$):

$$egin{array}{ll} \hat{u}^m = rg\min_{ar{u}^m} & ||u^m - ar{u}^m||_2^2 \ s.t. & D_mar{u}^m = D_m\phi \ ar{u}^m \in C_0. \end{array}$$

Projection on the Set of Exact Potential Games

Theorem

If all players have same number of strategies, the optimal projection is given in closed form by

$$\phi = \left(\sum_{m \in \mathcal{M}} \Pi_m\right)^{\dagger} \sum_{m \in \mathcal{M}} \Pi_m u^m,$$

and

$$\hat{u}^m = (I - \Pi_m)u^m + \Pi_m \left(\sum_{k \in \mathcal{M}} \Pi_k\right)^{\dagger} \sum_{k \in \mathcal{M}} \Pi_k u_k.$$

Here $\Pi_m = D_m^* D_m$ is the projection operator to the orthogonal complement of the kernel of D_m (* denotes the adjoint of an operator).

Projection on the Set of Exact Potential Games

 For any m ∈ M, Π_mu^m and (I − Π_m)u^m are respectively the strategic and nonstrategic components of the utility of player m.

• ϕ solves,

$$\sum_{m\in\mathcal{M}}\Pi_m\phi=\sum_{m\in\mathcal{M}}\Pi_mu^m.$$

Hence, optimal ϕ is a function which represents the sum of strategic parts of utilities of different users.

û^m is the sum of the nonstrategic part of *u^m* and the strategic part of the potential φ.

Consequences

Nice and beautiful. But (if that's not enough!) why should we care?

- Provides classes of games with simpler structures, for which stronger results can be proved.
- Yields a natural mechanism for approximation, for both static and dynamical properties.

Let's see this...

Equilibria of a Game and its Projection

Theorem

Let \mathcal{G} be a game and $\hat{\mathcal{G}}$ be its projection. Any equilibrium of $\hat{\mathcal{G}}$ is an ϵ -equilibrium of \mathcal{G} and any equilibrium of \mathcal{G} is an ϵ -equilibrium of $\hat{\mathcal{G}}$ for $\epsilon \leq \sqrt{2} \cdot d(\mathcal{G})$.

• Provided that the projection distance is small, equilibria of the projected game are close to the equilibria of the initial game.

Dynamics

Simulation example

• Consider an average opinion game on a graph. Payoff of each player satisfies,

$$u^m(\mathbf{p})=2\hat{M}-(\hat{M}^m-\mathbf{p}^m)^2,$$

where \hat{M}^m is the median of \mathbf{p}^k , $k \in N(m)$.

This game is not an exact (or ordinal) potential game. With small perturbation in the payoffs, it can be projected to the set of potential games.

Wireless Power Control Application

- A set of mobiles (users) $\mathcal{M} = \{1, \ldots, M\}$ share the same wireless spectrum (single channel).
- We denote by $\mathbf{p} = (p_1, \dots, p_M)$ the power allocation (vector) of the mobiles.
- Power constraints: $\mathcal{P}_m = \{p_m \mid \underline{P}_m \leq p_m \leq \overline{P}_m\}$, with $P_m > 0$.
 - Upper bound represents a constraint on the maximum power usage
 - Lower bound represents a minimum QoS constraint for the mobile
- The rate (throughput) of user *m* is given by

$$r_m(\mathbf{p}) = \log (1 + \gamma \cdot \text{SINR}_m(\mathbf{p})),$$

where, $\gamma > 0$ is the spreading gain of the CDMA system and

$$\mathrm{SINR}_m(\mathbf{p}) = \frac{h_{mm}p_m}{N_0 + \sum_{k \neq m} h_{km}p_k}$$

Here, h_{km} is the channel gain between user k's transmitter and user m's receiver.

Model

User Utilities and Equilibrium

• Each user is interested in maximizing a net rate-utility, which captures a tradeoff between the obtained rate and power cost:

$$u_m(\mathbf{p})=r_m(\mathbf{p})-\lambda_m p_m,$$

where λ_m is a user-specific price per unit power.

- We refer to the induced game among the users as the power game and denote it by *G*.
- Existence of a pure Nash equilibrium follows because the underlying game is a *concave game*.
- We are also interested in "approximate equilibria" of the power game, for which we use the concept of ϵ -(Nash) equilibria.
 - For a given $\epsilon,$ we denote by \mathcal{I}_ϵ the set of $\epsilon\text{-equilibria}$ of the power game $\mathcal{G},$ i.e.,

$$\mathcal{I}_{\epsilon} = \{ \mathbf{p} \mid u_m(p_m, \mathbf{p}_{-m}) \geq u_m(q_m, \mathbf{p}_{-m}) - \epsilon, \quad \text{for all } m \in \mathcal{M}, \ q_m \in \mathcal{P}_m \}$$

System Utility

 Assume that a central planner wishes to impose a general performance objective over the network formulated as

$\max_{\mathbf{p}\in\mathcal{P}}U_0(\mathbf{p}),$

where $\mathcal{P} = \mathcal{P}_1 \times \cdots \times \mathcal{P}_m$ is the joint feasible power set.

- We refer to $U_0(\cdot)$ as the system utility-function.
- We denote the optimal solution of this system optimization problem by p* and refer to it as the desired operating point.
- Our goal is to set the prices such that the equilibrium of the power game can approximate the desired operating point p^* .

Potential Game Approximation

- We approximate the power game with a potential game.
- We consider a slightly modified game with player utility functions given by

$$\tilde{\mu}_m(\mathbf{p}) = \tilde{r}_m(\mathbf{p}) - \lambda_m p_m$$

where $\tilde{r}_m(\mathbf{p}) = \log (\gamma \text{SINR}_m(\mathbf{p})).$

- We refer to this game as the potentialized game and denote it by $\tilde{\mathcal{G}} = \langle \mathcal{M}, \{\tilde{u}_m\}, \{\mathcal{P}_m\} \rangle.$
- For high-SINR regime (γ satisfies γ ≫ 1 or h_{mm} ≫ h_{km} for all k ≠ m), the modified rate formula r̃_m(**p**) ≈ r_m(**p**) serves as a good approximation for the true rate, and thus ũ_m(**p**) ≈ u_m(**p**).

Pricing in the Modified Game

Theorem

The modified game $\tilde{\mathcal{G}}$ is a potential game. The corresponding potential function is given by

$$\phi(\mathbf{p}) = \sum_{m} \log(p_m) - \lambda_m p_m.$$

- $\tilde{\mathcal{G}}$ has a unique equilibrium.
- The potential function suggests a simple linear pricing scheme.

Theorem

Let \mathbf{p}^* be the desired operating point. Assume that the prices λ^* are given by

$$\lambda_m^* = rac{1}{p_m^*}, \quad \text{ for all } m \in \mathcal{M}.$$

Then the unique equilibrium of the potentialized game coincides with p^* .

Near-Optimal Dynamics

- We will study the dynamic properties of the power game G when the prices are set equal to λ*.
- A natural class of dynamics is the best-response dynamics, in which each user updates his strategy to maximize its utility, given the strategies of other users.
- Let $\beta_m : \mathcal{P}_{-m} \to \mathcal{P}_m$ denote the best-response mapping of user *m*, i.e.,

$$\beta_m(\mathbf{p}_{-m}) = \arg \max_{p_m \in \mathcal{P}_m} u_m(p_m, \mathbf{p}_{-m}).$$

• Discrete time BR dynamics:

$$p_m \leftarrow p_m + \alpha \left(\beta_m(\mathbf{p}_{-m}) - p_m\right)$$
 for all $m \in \mathcal{M}$,

• Continuous time BR dynamics:

$$\dot{p}_m = eta_m(\mathbf{p}_{-m}) - p_m$$
 for all $m \in \mathcal{M}$.

• The continuous-time BR dynamics is similar to continuous time fictitious play dynamics and gradient-play dynamics [Flam, 2002], [Shamma and Arslan, 2005], [Fudenberg and Levine, 1998].

Convergence Analysis – 1

- If users use BR dynamics in the potentialized game $\tilde{\mathcal{G}}$, their strategies converge to the desired operating point p^* .
 - This can be shown through a Lyapunov analysis using the potential function of $\tilde{\mathcal{G}}$, [Hofbauer and Sandholm, 2000]
 - Our interest is in studying the convergence properties of BR dynamics when used in the power game *G*.
- Idea: Use perturbation analysis from system theory
 - The difference between the utilities of the original and the potentialized game can be viewed as a perturbation.
 - Lyapunov function of the potentialized game can be used to characterize the set to which the BR dynamics for the original power game converges.

Convergence Analysis – 2

- Our first result shows BR dynamics applied to game G converges to the set of ε-equilibria of the potentialized game G̃, denoted by Ĩ_ε.
- We define the minimum SINR:

$$\underline{SINR}_{m} = \frac{\underline{P}_{m}h_{mm}}{N_{0} + \sum_{k \neq m}h_{km}\overline{P}_{k}}$$

 We say that the dynamics converges uniformly to a set S if there exists some T ∈ (0,∞) such that p^t ∈ S for every t ≥ T and any initial operating point p⁰ ∈ P.

Lemma

The BR dynamics applied to the original power game \mathcal{G} converges uniformly to the set $\tilde{\mathcal{I}}_{\epsilon}$, where ϵ satisfies

$$\epsilon \leq \frac{1}{\gamma} \sum_{m \in \mathcal{M}} \frac{1}{\underline{SINR}_m}.$$

The error bound provides the explicit dependence on γ and <u>SINR</u>_m.

Convergence Analysis – 3

• We next establish how "far" the power allocations in $\tilde{\mathcal{I}}_{\epsilon}$ can be from the desired operating point \mathbf{p}^* .

Theorem

For all ϵ , $\mathbf{p} \in \tilde{\mathcal{I}}_{\epsilon}$ satisfies

 $|\tilde{p}_m - p_m^*| \leq \overline{P}_m \sqrt{2\epsilon} \quad \text{for every } \tilde{p} \in \tilde{\mathcal{I}}_\epsilon \text{ and every } m \in \mathcal{M}$

• Idea: Using the strict concavity and the additively separable structure of the potential function, we characterize $\tilde{\mathcal{I}}_{\epsilon}$.

Convergence and the System Utility

• Under some smoothness assumptions, the error bound enables us to characterize the performance loss in terms of system utility.

Theorem

Let $\epsilon > 0$ be given. (i) Assume that U_0 is a Lipschitz continuous function, with a Lipschitz constant given by L. Then

$$|U_0(\mathbf{p}^*) - U_0(\mathbf{ ilde p})| \leq \sqrt{2\epsilon}L \sqrt{\sum_{m\in\mathcal{M}}\overline{P}_m^2}, \quad \textit{for every } \mathbf{ ilde p} \in ilde{\mathcal{I}}_\epsilon.$$

(ii) Assume that U_0 is a continuously differentiable function so that $|\frac{\partial U_0}{\partial p_m}| \leq L_m$, $m \in \mathcal{M}$. Then

$$|U_0(\mathbf{p}^*) - U_0(\mathbf{\tilde{p}})| \leq \sqrt{2\epsilon} \sum_{m \in \mathcal{M}} \overline{P}_m L_m, \quad \text{for every } \mathbf{\tilde{p}} \in \tilde{\mathcal{I}}_{\epsilon}.$$

Numerical Example – 1

- Consider a system with 3 users and let the desired operating point be given by $\mathbf{p}^* = [5, 5, 5]$.
- We choose the prices as $\lambda_m^* = \frac{1}{p_M^*}$ and pick the channel gain coefficients uniformly at random.
- We consider three different values of $\gamma \in \{5, 10, 50\}$.

Sum-rate Objective

• We next consider the natural system objective of maximizing the sum-rate in the network.

$$U_0(\mathbf{p})=\sum_m r_m(\mathbf{p}).$$

• The performance loss in our pricing scheme can be quantified as follows.

Theorem

Let \mathbf{p}^* be the operating point that maximizes sum-rate objective, and let \tilde{I}_{ϵ} be the set of ϵ -equilibria of the modified game to which the BR dynamics converges. Then

$$|U_0(\mathbf{p}^*) - U_0(\mathbf{\tilde{p}})| \leq \sqrt{2\epsilon}(M-1)\sum_{m\in\mathcal{M}}rac{\overline{P}_m}{\underline{P}_m}, \qquad ext{for every } \mathbf{\tilde{p}}\in \mathcal{\tilde{I}}_\epsilon.$$

Numerical Example – 2

• Consider M = 10 users and assume that the power bounds are given by $\underline{P}_m = 10^{-2}$, $\overline{P}_m = 10$ for all $m \in \mathcal{M}$.

Summary

- Analysis of the global structure of preferences
- Decomposition: nonstrategic, potential and harmonic components
- Projection to "closest" potential game
- Preserves ϵ -approximate equilibria and dynamics
- Enables extension of many tools to non-potential games

Want to know more?

- Candogan, Menache, Ozdaglar, P., Flow representations of games: harmonic and potential games. Preprint.
- Candogan, Menache, Ozdaglar, P., Near-optimal power control in wireless networks: a potential game approach. INFOCOM 2010.