Shortest Paths in Graphs of Convex Sets and their applications

Pablo A. Parrilo

Laboratory for Information and Decision Systems (LIDS)
Massachusetts Institute of Technology
parrilo@mit.edu

ICCOPT/MOPTA Lehigh University July 27, 2022

Wonderful coauthors

Tobia Marcucci

Jack Umenberger

Russ Tedrake

References

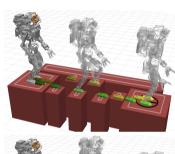
 Marcucci, Umenberger, Parrilo, Tedrake "Shortest paths in graphs of convex sets," arXiv:2101.11565

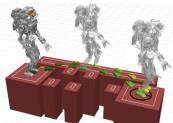
Outline

- Motivation (for us): robotics and planning
- Graphs of Convex Sets framework
- Shortest paths on GCS
- Convex relaxation and mixed-integer formulation
- Numerical results and implementation
- Conclusions and future directions

Footstep planning for legged robots

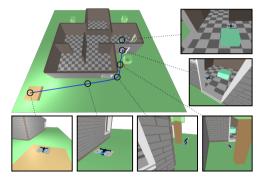
[MIT DRC (DARPA Robotics Challenge) Team]





[Deits and Tedrake '14]

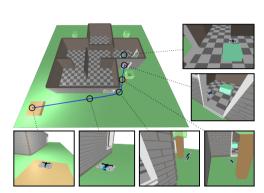
Motion planning



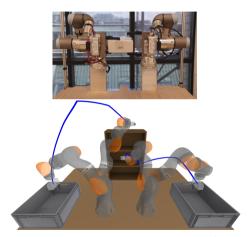
Drone navigation in 3D environments

 $^{^{1}\}mathsf{Marcucci}, \mathsf{Petersen}, \mathsf{von} \; \mathsf{Wrangel}, \; \mathsf{Tedrake} \; \text{``Motion planning around obstacles with convex optimization''} \; (2022)$

Motion planning



Drone navigation in 3D environments



Manipulation with multiple robots/tasks

 $^{^{1}\}mathsf{Marcucci},\,\mathsf{Petersen},\,\mathsf{von}\,\,\mathsf{Wrangel},\,\mathsf{Tedrake}\,\,\mathsf{``Motion}\,\,\mathsf{planning}\,\,\mathsf{around}\,\,\mathsf{obstacles}\,\,\mathsf{with}\,\,\mathsf{convex}\,\,\mathsf{optimization''}\,\,(2022)$

State of the art in robot motion planning

Atlas motion planning [1,2]

Offline:

Library of template behaviors

Online:

- Continuous blending of behaviors
- Parametric convex optimization

¹Kuindersma "Recent progress on Atlas, the world's most dynamic humanoid robot" (MIT Robotics Today 2020)

²Deits "Making Atlas Dance, Run, and Jump" (6th Workshop on Legged Robots, ICRA 2022)

State of the art in robot motion planning

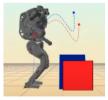
Atlas motion planning [1,2]

Offline:

Library of template behaviors

Online:

- Continuous blending of behaviors
- Parametric convex optimization



- The discrete sequence of behaviors is hand-designed
- The robot can't react to structural changes in the environment

¹Kuindersma "Recent progress on Atlas, the world's most dynamic humanoid robot" (MIT Robotics Today 2020)

²Deits "Making Atlas Dance, Run, and Jump" (6th Workshop on Legged Robots, ICRA 2022)

- Interesting, challenging, and practically relevant problems
- Both continuous and combinatorial features
- Moderately high dimension $(10^1 10^4 \text{ variables})$
- Typically, nontrivial dynamical constraints

- Interesting, challenging, and practically relevant problems
- Both continuous and combinatorial features
- ullet Moderately high dimension ($10^1 10^4$ variables)
- Typically, nontrivial dynamical constraints

Goal: An optimization-friendly abstraction to best capture their essence

- Interesting, challenging, and practically relevant problems
- Both continuous and combinatorial features
- Moderately high dimension $(10^1 10^4 \text{ variables})$
- Typically, nontrivial dynamical constraints

Goal: An optimization-friendly abstraction to best capture their essence

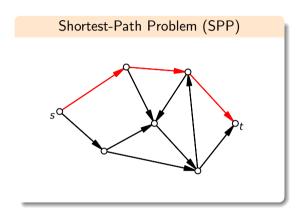
(**Goal 2:** Significantly improve over the state of the art!)

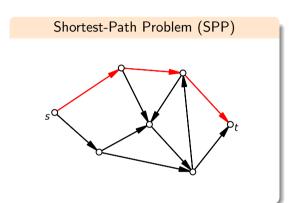
- Interesting, challenging, and practically relevant problems
- Both continuous and combinatorial features
- Moderately high dimension $(10^1 10^4 \text{ variables})$
- Typically, nontrivial dynamical constraints

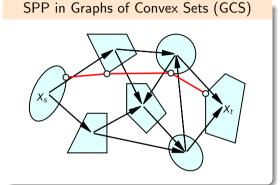
Goal: An optimization-friendly abstraction to best capture their essence

(Goal 2: Significantly improve over the state of the art!)

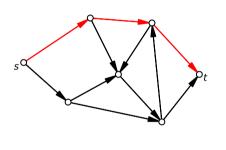
Our proposal: Shortest paths in Graphs of Convex Sets (GCS)



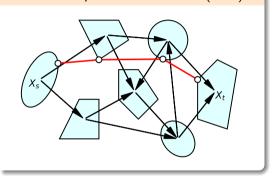




Shortest-Path Problem (SPP)

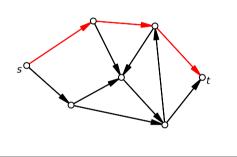


SPP in Graphs of Convex Sets (GCS)

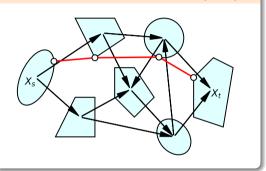


• Very versatile problem formulation

Shortest-Path Problem (SPP)



SPP in Graphs of Convex Sets (GCS)



- Very versatile problem formulation
- Efficiently solvable in practice (although NP-hard)
 - Mixed-integer formulation with very tight convex relaxation

GCS gracefully blends discrete and continuous

Why? Highlights interactions and feedback between:

Structure / Whole

- High-level decisions
- Discrete "combinatorial skeleton" of trajectory/motion (e.g. obstacle avoidance)

Details / Parts

- Lower-level optimization considerations (fuel, time, cost, etc)
- Typically continuous and "nice".

GCS gracefully blends discrete and continuous

Why? Highlights interactions and feedback between:

Structure / Whole

- High-level decisions
- Discrete "combinatorial skeleton" of trajectory/motion (e.g. obstacle avoidance)

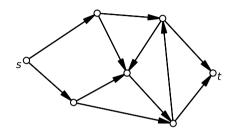
Details / Parts

- Lower-level optimization considerations (fuel, time, cost, etc)
- Typically continuous and "nice".

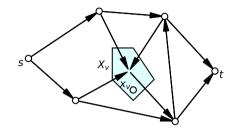
Useful guiding principle

"Easy" problems should remain easy.

• Directed Graph G = (V, E)



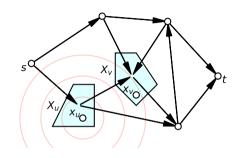
- Directed Graph G = (V, E)
- For each vertex $v \in V$ we have
 - Convex set X_v
 - Point $x_v \in X_v$



- Directed Graph G = (V, E)
- For each vertex $v \in V$ we have
 - Convex set X_v
 - Point $x_v \in X_v$
- Edge $e = (u, v) \in E$ has convex "length"

$$\ell_e: X_u \times X_v \to \mathbb{R}_{>0} \cup \{\infty\}$$

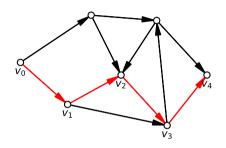
• Can enforce convex constraints $(x_u, x_v) \in X_e$



- Directed Graph G = (V, E)
- For each vertex $v \in V$ we have
 - Convex set X_v
 - Point $x_v \in X_v$
- Edge $e = (u, v) \in E$ has convex "length"

$$\ell_e: X_u \times X_v \to \mathbb{R}_{>0} \cup \{\infty\}$$

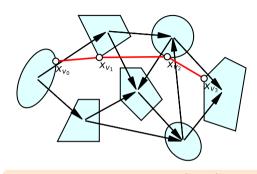
- Can enforce convex constraints $(x_u, x_v) \in X_e$
- A path π is a
 - Sequence of distinct vertices $(v_k)_{k=0}^K$
 - $v_0 = s$ and $v_K = t$
 - $(v_k, v_{k+1}) \in E$



- Directed Graph G = (V, E)
- For each vertex $v \in V$ we have
 - Convex set X_v
 - Point $x_v \in X_v$
- Edge $e = (u, v) \in E$ has convex "length"

$$\ell_e: X_u \times X_v \to \mathbb{R}_{\geq 0} \cup \{\infty\}$$

- Can enforce convex constraints $(x_u, x_v) \in X_e$
- A path π is a
 - Sequence of distinct vertices $(v_k)_{k=0}^K$
 - $v_0 = s$ and $v_K = t$
 - $(v_k, v_{k+1}) \in E$



Shortest-path problem (GCS)

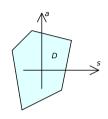
$$\min_{\pi \in \Pi} \min_{x \in X} \sum_{e \in E_{\pi}} \ell_e(x_u, x_v)$$

Optimal control as an SPP

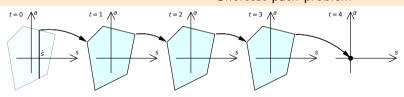
Constrained linear regulation

minimize
$$\sum_{t=0}^{T-1} c(s_t, a_t)$$

subject to $s_{t+1} = As_t + Ba_t$, $\forall t$
 $(s_t, a_t) \in D$, $\forall t$
 $s_0 = \hat{s}, \ s_T = 0$



Shortest-path problem



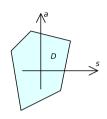
- Edge lengths $c(s_t, a_t)$
- Edge constraints $s_{t+1} = As_t + Ba_t$

Optimal control as an SPP

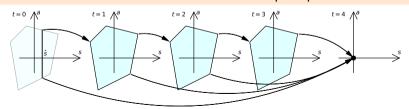
Minimum time

minimize

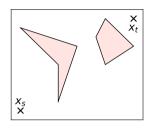
subject to $s_{t+1} = As_t + Ba_t$, $\forall t$ $(s_t, a_t) \in D$, $s_0 = \hat{s}, s_T = 0$

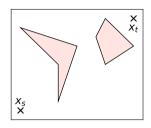


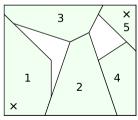
Shortest-path problem



- Edge lengths
- Edge constraints

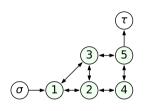


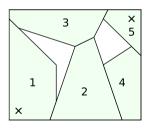




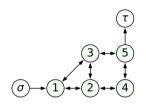
Connect x_s to x_t via a collision-free polygonal line

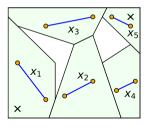
• Decompose free space in safe convex regions



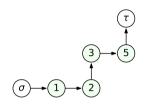


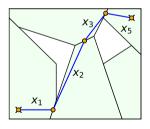
- Decompose free space in safe convex regions
- Construct adjacency graph



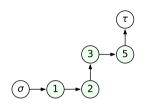


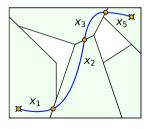
- Decompose free space in safe convex regions
- Construct adjacency graph
- Assign a line segment to each region
 - $\bullet \ \mathsf{Segment} \in \mathsf{region} \Leftrightarrow \mathsf{start} \ \mathsf{and} \ \mathsf{end} \ \mathsf{point} \in \mathsf{region}$



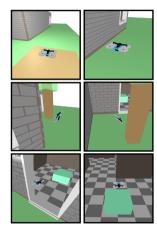


- Decompose free space in safe convex regions
- Construct adjacency graph
- Assign a line segment to each region
 - Segment \in region \Leftrightarrow start and end point \in region
- Continuity enforced as an edge constraint





- Decompose free space in safe convex regions
- Construct adjacency graph
- Assign a line segment to each region
 - Segment \in region \Leftrightarrow start and end point \in region
- Continuity enforced as an edge constraint
- Extends to polynomials using Bézier curves

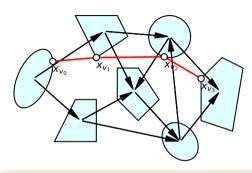


- Decompose free space in safe convex regions
- Construct adjacency graph
- Assign a line segment to each region
 - Segment \in region \Leftrightarrow start and end point \in region
- Continuity enforced as an edge constraint
- Extends to polynomials using Bézier curves
- Takes into account the timing of the trajectory
 - Velocity constraints
 - Continuity of derivatives
 - Trajectory-duration constraints

Complexity?

- Fixing either π or x, problem is "easy":
 - Fixed π (sequence): convex optimization problem over x_{ν}
 - Fixed x_v (locations): "standard" shortest path problem
- Unfortunately, NP-hard if we search for both

Bad news, but certainly expected...

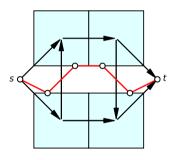


Shortest-path problem (GCS)

$$\min_{\pi \in \Pi} \min_{x \in X} \sum_{e \in E_{\pi}} \ell_e(x_u, x_v)$$

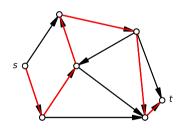
NP-Hardness: reduction from Hamiltonian-path problem

$$\ell_e(x_u, x_v) = \|x_v - x_u\|_2^2$$



"Is there a path that visits each vertex?"

Hamiltonian-path problem



- One of Karp's 21 NP-complete problems
- Reducible to our SPP in polynomial time
 - ⇒ SPP/GCS is NP-hard

(Some) Related work

Location/allocation problems (Cooper 1963)

Fermat-Weber, facility location, etc.

Computational geometry

Zookeeper problem, watchman problems, safari problems, art gallery problems, etc. Typically only 2-3 dimensions, approximation algorithms.

Graph problems with neighborhoods

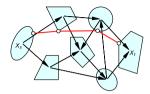
Variants of the TSP and the MSTP, sometimes with quite strong restrictions on the neighborhoods (e.g., polygonal regions on the 2D plane). Very low dimensional, tackled using mixed-integer nonconvex programming [1,2,3] – not competitive with our approach

¹Gentilini et al. "The travelling salesman problem with neighbourhoods: MINLP solution" (Optimization Methods and Software 2013)

²Blanco et al. "Minimum spanning trees with neighborhoods: Mathematical programming formulations and solution methods" (Eur. Jour. of OR 2017)

³Burdick et al. "From multi-target sensory coverage to complete sensory coverage" (ICRA 2021)

Our solution approach



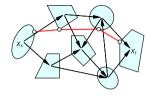
- A compact mixed-integer convex program
 - With very tight convex relaxation
 - \bullet Quite often exact, otherwise do rounding or B&B

- A compact mixed-integer convex program
 - With very tight convex relaxation
 - Quite often exact, otherwise do rounding or B&B

- Integer program of classical SPP
 - ullet Path parameterized using a "flow" variable $y_e \in \{0,1\}$ per edge e
 - Linear constraints enforce conservation of flow

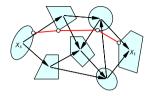
- A compact mixed-integer convex program
 - With very tight convex relaxation
 - Quite often exact, otherwise do rounding or B&B

- Linear program of classical SPP
 - Path parameterized using a "flow" variable $y_e \in [0,1]$ per edge e
 - Linear constraints enforce conservation of flow



- A compact mixed-integer convex program
 - With very tight convex relaxation
 - Quite often exact, otherwise do rounding or B&B

- Linear program of classical SPP
 - Path parameterized using a "flow" variable $y_e \in [0,1]$ per edge e
 - Linear constraints enforce conservation of flow
- Natural extension to graph of convex sets
 - Yields bilinear program (products between vertex positions x_v and flows y_e)



- A compact mixed-integer convex program
 - With very tight convex relaxation
 - Quite often exact, otherwise do rounding or B&B

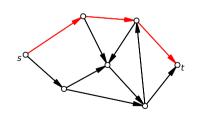
- Linear program of classical SPP
 - Path parameterized using a "flow" variable $y_e \in [0,1]$ per edge e
 - Linear constraints enforce conservation of flow
- Natural extension to graph of convex sets
 - Yields bilinear program (products between vertex positions x_v and flows y_e)
- Set-based perspective convex relaxation of the bilinearities
 - Exact when $y_e \in \{0,1\}$ for all edges e

Step 1: Linear program of classical SPP

- Convex hull of paths well understood (flow polytope)
- Edge costs c_e are nonnegative scalars
- ullet Path parameterized by the flows $arphi_e \in [0,1]$

Step 1: Linear program of classical SPP

- Convex hull of paths well understood (flow polytope)
- Edge costs c_e are nonnegative scalars
- ullet Path parameterized by the flows $arphi_e \in [0,1]$



Min-cost flow LP

minimize
$$\sum_{e \in E} c_e arphi_e$$
 subject to $arphi_v \in \Phi_v, \qquad orall v \in V$

- $\bullet \varphi_{v}$ is vector of flows incident with v
- Φ_v is (local) flow polytope
 - Flows are nonnegative
 - Flow through a vertex is conserved and at most one

Step 2: Bilinear program

Straightforward extension of the LP

minimize
$$\sum_{e=(u,v)\in E} \ell_e(x_u,x_v)\varphi_e$$
 subject to $\varphi_v \in \Phi_v, \ x_v \in X_v,$

 $\forall v \in V$

Step 2: Bilinear program

Straightforward extension of the LP

minimize
$$\sum_{e=(u,v)\in E} \ell_e(x_u,x_v)\varphi_e$$
 subject to $\varphi_V \in \Phi_V, \ x_V \in X_V$,

 $\forall v \in V$

Introduce auxiliary variables y_e and z_e

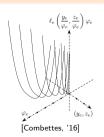
Step 2: Bilinear program

Straightforward extension of the LP

minimize
$$\sum_{e=(u,v)\in E} \ell_e(x_u,x_v)\varphi_e$$
 subject to $\varphi_v \in \Phi_v, \ x_v \in X_v,$

Introduce auxiliary variables y_e and z_e

- Convex objective (perspective function of ℓ_e)
- Nonconvex constraints (bilinear)



 $\forall v \in V$

Step 2: Compacting the notation

- Each edge has two "spatial" variables y_e , z_e (origin/destination)
- Bilinear constraints $y_e = \varphi_e x_u$ and $z_e = \varphi_e x_v$ for all edges e = (u, v)
- At each node, organize variables in matrices

$$M_{\mathbf{v}} = \begin{bmatrix} z_{\mathbf{e}_1} & z_{\mathbf{e}_2} & y_{\mathbf{e}_3} \end{bmatrix} = \begin{bmatrix} \varphi_{\mathbf{e}_1} x_{\mathbf{v}} & \varphi_{\mathbf{e}_2} x_{\mathbf{v}} & \varphi_{\mathbf{e}_3} x_{\mathbf{v}} \end{bmatrix} = \mathbf{x}_{\mathbf{v}} \boldsymbol{\varphi}_{\mathbf{v}}^{\mathsf{T}}$$

Step 2: Compacting the notation

- Each edge has two "spatial" variables y_e , z_e (origin/destination)
- Bilinear constraints $y_e = \varphi_e x_u$ and $z_e = \varphi_e x_v$ for all edges e = (u, v)
- At each node, organize variables in matrices

$$M_{\mathbf{v}} = \begin{bmatrix} z_{\mathbf{e}_1} & z_{\mathbf{e}_2} & y_{\mathbf{e}_3} \end{bmatrix} = \begin{bmatrix} \varphi_{\mathbf{e}_1} x_{\mathbf{v}} & \varphi_{\mathbf{e}_2} x_{\mathbf{v}} & \varphi_{\mathbf{e}_3} x_{\mathbf{v}} \end{bmatrix} = \mathbf{x}_{\mathbf{v}} \boldsymbol{\varphi}_{\mathbf{v}}^{\mathsf{T}}$$

• Define $\Omega_{\mathbf{v}} = \{(\varphi, x, M) : \varphi \in \Phi_{\mathbf{v}}, \ x \in X_{\mathbf{v}}, \ M = x\varphi^{\mathsf{T}}\}$

Step 2: Compacting the notation

- Each edge has two "spatial" variables y_e , z_e (origin/destination)
- Bilinear constraints $y_e = \varphi_e x_u$ and $z_e = \varphi_e x_v$ for all edges e = (u, v)
- At each node, organize variables in matrices

$$M_{\mathbf{v}} = \begin{bmatrix} z_{\mathbf{e}_1} & z_{\mathbf{e}_2} & y_{\mathbf{e}_3} \end{bmatrix} = \begin{bmatrix} \varphi_{\mathbf{e}_1} x_{\mathbf{v}} & \varphi_{\mathbf{e}_2} x_{\mathbf{v}} & \varphi_{\mathbf{e}_3} x_{\mathbf{v}} \end{bmatrix} = \mathbf{x}_{\mathbf{v}} \boldsymbol{\varphi}_{\mathbf{v}}^{\mathsf{T}}$$

• Define $\Omega_{\mathbf{v}} = \{(\varphi, \mathbf{x}, \mathbf{M}) : \varphi \in \Phi_{\mathbf{v}}, \ \mathbf{x} \in \mathbf{X}_{\mathbf{v}}, \ \mathbf{M} = \mathbf{x} \varphi^{\mathsf{T}}\}$

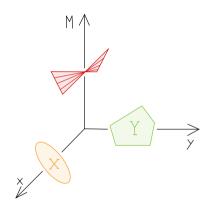
The bilinear program

minimize
$$\sum_{e \in E} \ell_e \left(\frac{y_e}{\varphi_e}, \frac{z_e}{\varphi_e} \right) \varphi_e$$
 subject to
$$(\varphi_V, x_V, M_V) \in \Omega_V,$$

 $\forall v \in V$

Goal: find (good) convex outer approximation Ω' of

$$\Omega = \left\{ (x, y, M) : x \in X, \ y \in Y, \ M = xy^{\top} \right\}$$



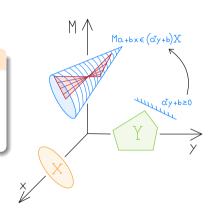
Goal: find (good) convex outer approximation Ω' of

$$\Omega = \left\{ (x, y, M) : x \in X, \ y \in Y, \ M = xy^{\top} \right\}$$

Main lemma (lifting valid inequalities)

- Assume $a^{\top}y + b \ge 0$ for all $y \in Y$
- All points $(x, y, M) \in \Omega$ verify the constraint

$$Ma + bx \in (a^{\top}y + b)X$$



Goal: find (good) convex outer approximation Ω' of

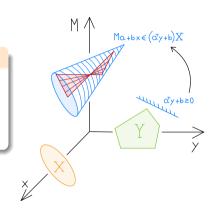
$$\Omega = \left\{ (x, y, M) : x \in X, \ y \in Y, \ M = xy^{\top} \right\}$$

Main lemma (lifting valid inequalities)

- Assume $a^T y + b \ge 0$ for all $y \in Y$
- All points $(x, y, M) \in \Omega$ verify the constraint

$$Ma + bx \in (a^{\top}y + b)X$$

• Easy: $x \in X \Rightarrow x(y^T a + b) \in (y^T a + b)X$



Goal: find (good) convex outer approximation Ω' of

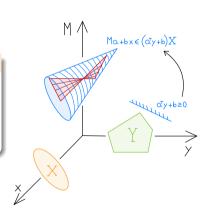
$$\Omega = \left\{ (x, y, M) : x \in X, \ y \in Y, \ M = xy^{\top} \right\}$$

Main lemma (lifting valid inequalities)

- Assume $a^{\top}y + b \ge 0$ for all $y \in Y$
- All points $(x, y, M) \in \Omega$ verify the constraint

$$Ma + bx \in (a^{\top}y + b)X$$

- Easy: $x \in X \Rightarrow x(y^T a + b) \in (y^T a + b)X$
- Constraint is convex in (x, y, M)!



Goal: find (good) convex outer approximation Ω' of

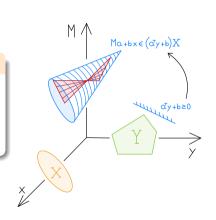
$$\Omega = \left\{ (x, y, M) : x \in X, \ y \in Y, \ M = xy^{\top} \right\}$$

Main lemma (lifting valid inequalities)

- Assume $a^{\top}y + b \ge 0$ for all $y \in Y$
- All points $(x, y, M) \in \Omega$ verify the constraint

$$Ma + bx \in (a^{\top}y + b)X$$

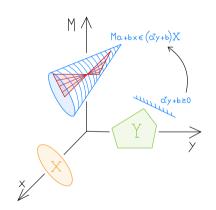
- Easy: $x \in X \Rightarrow x(y^T a + b) \in (y^T a + b)X$
- Constraint is convex in (x, y, M)!
- Set-based relaxation, don't care about description of X
 (cf. Lovasz-Schrijver vs. RLT, also OOP-friendly)



Goal: Find (good) convex outer approximation Ω' of

$$\Omega = \left\{ (x, y, M) : x \in X, \ y \in Y, \ M = xy^{\top} \right\}$$

For simplicity, let Y be polyhedral (e.g., flow polytope).



Goal: Find (good) convex outer approximation Ω' of

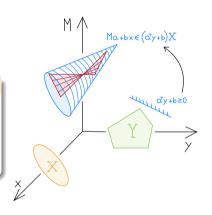
$$\Omega = \left\{ (x, y, M) : x \in X, y \in Y, M = xy^{\top} \right\}$$

For simplicity, let Y be polyhedral (e.g., flow polytope).

Main lemma (lifting valid inequalities)

- Assume $a^{\top}y + b \ge 0$ for all $y \in Y$
- All points $(x, y, M) \in \Omega$ verify

$$Ma + bx \in (a^{\top}y + b)X$$



Goal: Find (good) convex outer approximation Ω' of

$$\Omega = \left\{ (x, y, M) : x \in X, y \in Y, M = xy^{\top} \right\}$$

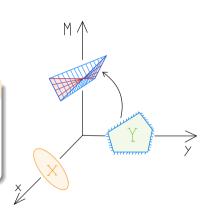
For simplicity, let Y be polyhedral (e.g., flow polytope).

Main lemma (lifting valid inequalities)

- Assume $a^{\top}y + b \ge 0$ for all $y \in Y$
- All points $(x, y, M) \in \Omega$ verify

$$Ma + bx \in (a^{\top}y + b)X$$

• Apply lemma to each facet of Y to obtain $\Omega' \supseteq \Omega$



Goal: Find (good) convex outer approximation Ω' of

$$\Omega = \left\{ (x, y, M) : x \in X, y \in Y, M = xy^{\top} \right\}$$

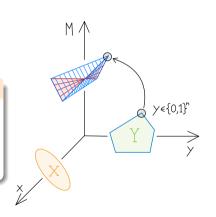
For simplicity, let Y be polyhedral (e.g., flow polytope).

Main lemma (lifting valid inequalities)

- Assume $a^{\top}y + b \ge 0$ for all $y \in Y$
- All points $(x, y, M) \in \Omega$ verify

$$Ma + bx \in (a^{\top}y + b)X$$

- Apply lemma to each facet of Y to obtain $\Omega' \supseteq \Omega$
- (persistence) $\Omega' = \Omega$ when restricting $y \in \{0, 1\}^n$



Shortest path: standard vs GCS

Problem statement

min
$$\sum_{e \in E_{\pi}} c_e$$
s.t. $\pi \in \Pi$

(Mixed Integer) Convex program

$$\min \quad \sum_{e \in E} c_e \varphi_e$$

$$\begin{split} \text{s.t.} \quad & \sum_{e \in I_{V}} \varphi_{e} - \sum_{e \in O_{V}} \varphi_{e} = \delta_{sv}, \quad \forall v \in V - \{t\} \\ & \varphi_{e} \geq 0, \quad \forall e \in E \qquad \varphi_{e} \in \{0, 1\} \end{split}$$

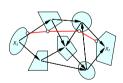
Shortest path: standard vs GCS

min
$$\sum_{e \in E_{\pi}} c_e$$
s.t. $\pi \in \Pi$

(Mixed Integer) Convex program

$$\min \quad \sum_{e \in E} c_e \varphi_e$$

$$\begin{split} \text{s.t.} \quad & \sum_{e \in I_{V}} \varphi_{e} - \sum_{e \in O_{V}} \varphi_{e} = \delta_{sv}, \quad \forall v \in V - \{t\} \\ & \varphi_{e} \geq 0, \quad \forall e \in E \qquad \varphi_{e} \in \{0, 1\} \end{split}$$



Shortest path: standard vs GCS

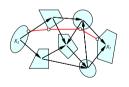
min
$$\sum_{e \in E_\pi} c_e$$

s.t. $\pi \in \Pi$

(Mixed Integer) Convex program

$$\min \quad \sum_{e \in E} c_e \varphi_e$$

s.t.
$$\sum_{e \in I_{v}} \varphi_{e} - \sum_{e \in O_{v}} \varphi_{e} = \delta_{sv}, \quad \forall v \in V - \{t\}$$
$$\varphi_{e} \geq 0, \quad \forall e \in E \qquad \varphi_{e} \in \{0, 1\}$$



$$\min \quad \sum_{e \in E_{\pi}} \ell_e(x_u, x_v)$$

s.t.
$$\pi \in \Pi$$
 $x_v \in X_v$. $\forall v \in \pi$

$$\min \sum_{e \in E} \ell_e \left(\frac{y_e}{\varphi_e}, \frac{z_e}{\varphi_e} \right) \varphi_e$$

$$\sum_{e \in E} \left[z_e \right] \sum_{e \in E} \left[z_e \right]$$

s.t.
$$\sum_{e \in I_{v}} \begin{bmatrix} z_{e} \\ \varphi_{e} \end{bmatrix} - \sum_{e \in O_{v}} \begin{bmatrix} y_{e} \\ \varphi_{e} \end{bmatrix} = \delta_{sv} \begin{bmatrix} x_{v} \\ 1 \end{bmatrix}, \quad \forall v \in V - \{t\}$$
$$y_{e} \in \varphi_{e} X_{u}, \ z_{e} \in \varphi_{e} X_{v}, \quad \forall e = (u, v) \in E$$
$$\varphi_{e} \geq 0, \quad \forall e \in E \qquad \varphi_{e} \in \{0, 1\}$$

Further comments

Convex relaxation

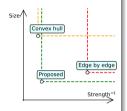
- Applies to sets $\{(\alpha, \beta, M) : \alpha \in A, \beta \in B, M = xy^{\top}\}$
- Very tight in practice
 - Exact when sets X_v are singletons
- Compact: $O((|V| + |E|) \dim(X_v))$ variables and constraints
- Typically, linear or second-order-cone programs



Further comments

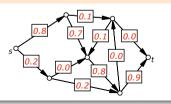
Convex relaxation

- Applies to sets $\{(\alpha, \beta, M) : \alpha \in A, \beta \in B, M = xy^{\top}\}$
- Very tight in practice
 - Exact when sets X_{ν} are singletons
- Compact: $O((|V| + |E|)\dim(X_{\nu}))$ variables and constraints
- Typically, linear or second-order-cone programs



What if (after solving) flows are not 0/1?

- A. Rounding the solution of the convex relaxation
 - Flows $\varphi_e \in [0,1]$ are interpretable as probabilities
 - Automatically provides optimality bounds



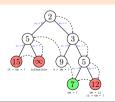
Further comments

Convex relaxation

- Applies to sets $\{(\alpha, \beta, M) : \alpha \in A, \beta \in B, M = xy^{\top}\}$
- Very tight in practice
 - Exact when sets X_{ν} are singletons
- Compact: $O((|V| + |E|)\dim(X_{\nu}))$ variables and constraints
- Typically, linear or second-order-cone programs

What if (after solving) flows are not 0/1?

- A. Rounding the solution of the convex relaxation
 - Flows $\varphi_e \in [0,1]$ are interpretable as probabilities
 - Automatically provides optimality bounds
- B. Branch and bound

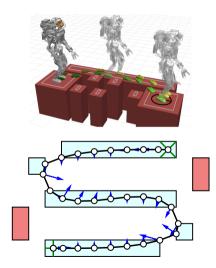


Mature software implementation in Drake

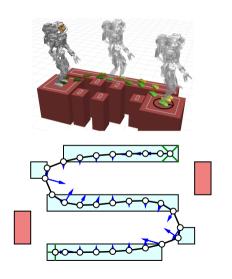
- Implemented in robotics software Drake (TRI), C++/Python
- Off-the-shelf solvers (Gurobi/MOSEK/SCS/CSDP/ SNOPT/IPOPT/NLOPT)
- Customized solvers/algorithms (experimental)

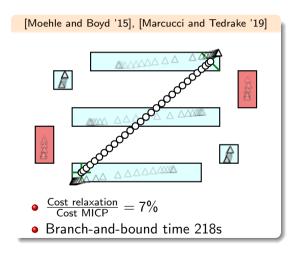
Give it a try: pip install drake

Optimal control of a hybrid system

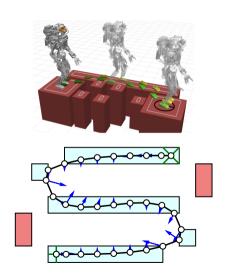


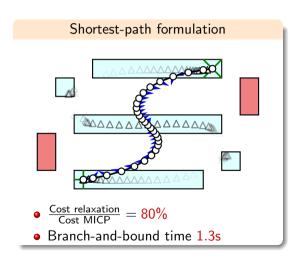
Optimal control of a hybrid system



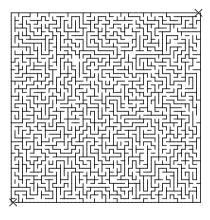


Optimal control of a hybrid system



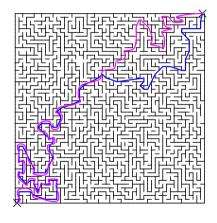


Motion planning in a maze



- Easy to find a path via discrete graph search
- If we have differential costs and constraints?
 - Local optimization: hopeless
 - Sampling based: inefficient and non-differentiable
 - Prev. mixed-integer: $(\# \text{ cells})^2 \approx 6 \cdot 10^6 \text{ binaries}$

Motion planning in a maze



- Easy to find a path via discrete graph search
- If we have differential costs and constraints?
 - Local optimization: hopeless
 - Sampling based: inefficient and non-differentiable
 - Prev. mixed-integer: $(\# \text{ cells})^2 \approx 6 \cdot 10^6 \text{ binaries}$

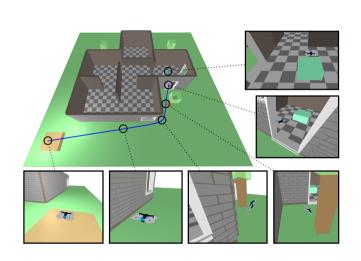
Graphs of convex sets

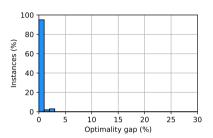
- Minimum distance
- Minimum time
 - With velocity limits and acceleration penalty
- Convex relaxation is exact in both cases!
- Only O(# cells) flow variables

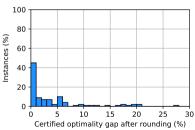
Quadrotor flying around obstacles

- Exact decomposition of free space in convex sets
- Planning in (x, y, z) + differential flatness
- Penalties on length, velocity, acceleration, and duration

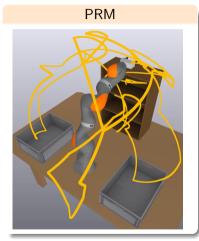
Convex relaxation + randomized rounding



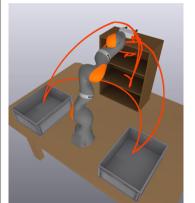




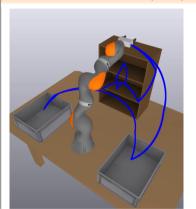
Comparison with Probabilistic RoadMap (PRM)



PRM with shortcuts

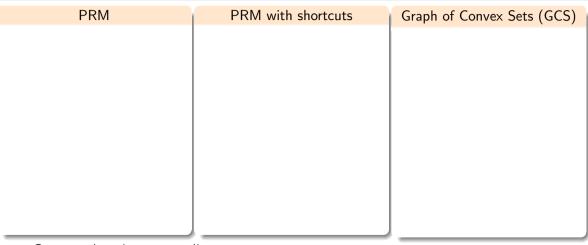


Graph of Convex Sets (GCS)



- Convex relaxation + rounding
- [Amice et al., '22] for the decomposition of configuration space

Comparison with Probabilistic RoadMap (PRM)



- Convex relaxation + rounding
- [Amice et al., '22] for the decomposition of configuration space

Planning in 14 dimensions

- Collision-free motion planning in 14 dimensions using convex optimization
- PRM hardly scales beyond 7/8 dimensions

Preliminary hardware results

Motion generated via a single convex optimization!

Pablo A. Parrilo Shortest Paths in Graphs of Convex Sets July 27, 2022

30 / 32

Wrapping up

Shortest-path problem in graphs of convex sets

- Exciting new optimization framework, flexible and powerful
- Efficiently solvable in practice
 - Tight convex relaxation + rounding
 - Strong mixed-integer convex formulation + branch and bound

Current and future directions

- Customized ADMM solver on GPU (eventually a standalone toolbox)
- Alternative algorithmic approaches? Scale to huge graphs?
- Other combinatorial problems in graphs of convex sets (TSP, MSTP)
- Extensions/applications: underactuated dynamics, temporal logic, stochastics, SLAM...

Wrapping up

Shortest-path problem in graphs of convex sets

- Exciting new optimization framework, flexible and powerful
- Efficiently solvable in practice
 - Tight convex relaxation + rounding
 - Strong mixed-integer convex formulation + branch and bound

Current and future directions

- Customized ADMM solver on GPU (eventually a standalone toolbox)
- Alternative algorithmic approaches? Scale to huge graphs?
- Other combinatorial problems in graphs of convex sets (TSP, MSTP)
- Extensions/applications: underactuated dynamics, temporal logic, stochastics, SLAM...
- Your new algorithms?

Thanks for your attention!

Thanks for your attention!

Questions?