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Abstract— We study two-person zero-sum games, where the
payoff function is a polynomial expression in the actions of the
players. This class of games was introduced by Dresher, Karlin,
and Shapley in 1950. We show that the value of the game, and
the corresponding optimal strategies, can be obtained by solving
a single semidefinite programming problem. In addition, we
show how the results extend, with suitable modifications, to a
general class of semialgebraic games.

I. INTRODUCTION

Game theory ([5], [12], [1]) is a well-established mathe-

matical framework used to model and analyze the decision

process of multiple decision makers having possibly conflict-

ing objectives. For games in strategic form, several different

notions of “solutions” or “equilibria” have been proposed

over the years, with the most celebrated (for the class of

games we will discuss) being the Nash equilibrium. This

notion is characterized by a “no unilateral deviation” prop-

erty. For two-player, zero-sum games, this concept coincides

with the much better understood minimax value of a game.

Although much of the research efforts have been concen-

trated in developing computational techniques for equilibria

of finite games (i.e., where each player has a finite number

of pure strategies), there is much interest, particularly with

a view towards applications, in so-called infinite games. In

this important class, the players have access to an infinite
number of non-equivalent pure strategies, and furthermore

they are allowed to randomize over their choice.

This paper presents, for the first time, an appealing com-

putational approach to the determination of optimal strategies

for zero-sum infinite games, in the case where the payoffs are

general polynomial functions, and the strategy sets are semi-

algebraic. The solution strongly relies on techniques based on

sum of squares (SOS) decompositions of polynomials, and

the associated semidefinite programming characterization of

the cone of SOS polynomials and its dual cone of moments.

Since its beginnings, game theory has been inextricably

linked with optimization, and this relationship is nowhere

stronger than in the case of zero-sum games, where con-

vex duality-based ideas permeate both the theoretical and

computational aspects of the subject. As we shall see, the

solution presented here shares many of these features, and

can be understood as a natural and complete generalization

of the well-known linear programming (LP) characterization

for finite games.

This research was funded in part by AFOSR MURI subaward 2003-
07688-1.

An outline of the paper follows: in Section II we formally

define the class of polynomial games considered. We discuss

next several previously known characterizations of their

solutions, as well as our main contributions. Section III

contains several examples illustrating the application of the

methods. In Section IV, we briefly describe several appealing

extensions to general semialgebraic sets and the conic setting.

Finally, we present some conclusions and future research

directions.

II. POLYNOMIAL GAMES

Polynomial games were originally introduced and studied

by Dresher, Karlin, and Shapley in 1950 [4]. In this paper,

we concentrate on the computational aspects. In the basic

setup of these games, there are two players (which we will

denote as Player 1 and Player 2), which simultaneously and

independently choose actions parametrized by real numbers

x, y, respectively, in the interval [−1, 1]. The payoff associ-

ated with these choices is a polynomial function in x and y
(a formal definition appears below in Section II-A).

The characterization and existence of optimal strategies

for polynomial games has been worked out in [4]. However,

no computational procedure was previously available to

efficiently obtain the value of this class of games (existing

approaches are reviewed in Section II-B). In fact, in the

preface of [10], Kuhn and Tucker present a list of several

important open questions regarding games with an infinite

number of pure strategies, and in particular they write:

(7) To find a computational technique of gen-

eral applicability for zero-sum two-person games

with infinite sets of strategies. A constructive

method for obtaining the optimal strategies for

polynomial-like games or some large class of non-

trivial continuous games would constitute a con-

siderable contribution to this problem.

The main objective in this paper is precisely to illustrate how

this goal can be achieved by using recent techniques from

sum of squares optimization and semidefinite programming.

In particular, we will show how to characterize and compute

the optimal solution of this class of games by solving a single

semidefinite programming problem.

A. Problem setup

For simplicity of presentation, we first consider games

on the square Ω = [−1, 1] × [−1, 1], as opposed to the

more common [0, 1]× [0, 1]. This is mainly for aesthetic and

notational reasons, because the semidefinite programming
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conditions take a particularly compact form in this case. It is

straightforward to convert one type of game into the other by

a linear transformation of the strategy space. Furthermore,

the results can be transparently extended to finite unions

of arbitrary intervals. Most of the results presented in this

subsection are from [4].

In the class of games we consider the pure actions of each

player are given by real numbers x and y, that belong to the

closed interval [−1, 1]. The payoff is given by a polynomial

expression

P (x, y) =
n∑

i=0

m∑
j=0

pijx
iyj , (1)

that assigns payments from Player 2 to Player 1. Thus,

Player 1 wants to choose his strategy x to maximize P (x, y),
while Player 2 tries to make this expression as small as

possible. Although we do not expand on this here, many

of the convenient properties of polynomial games can be

extended to separable games, where the payoff is a finite

sum of products of functions in the strategies of each player;

see Section IV-A and [19]. When these assumptions are not

satisfied, the resulting games can be quite complicated from a

computational viewpoint. In particular, Glicksberg and Gross

have given an example of a zero-sum game with rational

payoffs, whose uniquely defined value is a transcendental

number [7].

Since we are interested in zero-sum games, the appro-

priate equilibrium concept is that of a minimax (or Nash)

equilibrium. For the game described by (1), we can consider

as usual lower and upper bounds on the value of the game.

These can be derived by computing

max
x

min
y

P (x, y) and min
y

max
x

P (x, y).

Since we have made no assumptions on the payoff P (x, y),
in general the maxmin will be different from the minmax (in

other words, the game does not necessarily admit a solution

in pure strategies). As is well-known from the finite case,

an equality between these expressions can be recovered by

allowing randomization over pure strategies (i.e., allowing

mixed strategies).

The mixed strategies of each player correspond to prob-

ability measures ν, µ over the set of pure strategies, i.e.,

over the interval [−1, 1]. As we shall see, by enlarging the

allowable set of strategies in this way, we will recover the

notion of minimax equilibrium for these games. We illustrate

the concept first with an example.

Example 2.1: Consider the game on [−1, 1]×[−1, 1], with

payoff function given by P (x, y) = (x−y)2. Since Player 2

wants to minimize her payoffs, she should try to “guess”

the number chosen by Player 1. Conversely, the first player

should try to make his number as difficult to guess as possible

(in the sense defined by P (x, y)). It is easy to see in this case

that the optimal strategy for Player 1 is to randomize between

x = −1 or x = 1 with equal probability, and the optimal

strategy of Player 2 is to always choose y = 0. No player

has incentive to deviate from these strategies, and thus the

value of the game is equal to 1.

When considering mixed strategies, and similar to the

finite case, we need to consider the expressions

max
ν

min
µ

Eν×µ[P (x, y)] and min
µ

max
ν

Eν×µ[P (x, y)],

where Eν×µ[·] denotes the expectation under the product

measure. We can rewrite these as bilinear expressions

max
νi

min
µj

n∑
i=0

m∑
j=0

pijνiµj min
µj

max
νi

n∑
i=0

m∑
j=0

pijνiµj ,

(2)

where νi, µj are the moments of the measures ν, µ, i.e.,

νi :=
∫ 1

−1

xidν, µj :=
∫ 1

−1

yjdµ.

It is well-known that the moment spaces (i.e., the image of

the probability measures under the moment map given above)

are compact convex sets in R
n+1 and R

m+1 [9]. Since the

objective function in the problems (2) is bilinear, and the

feasible sets are convex and compact, a generalized version

of the standard minimax theorem can be used to show that

these two quantities are exactly equal [4]. Furthermore there

exist measures ν�, µ� that satisfy the saddle-point condition:

n∑
i=0

m∑
j=0

pijνiµ
�
j ≤

n∑
i=0

m∑
j=0

pijν
�
i µ�

j ≤
n∑

i=0

m∑
j=0

pijν
�
i µj .

(3)

The key fact here is that, due to the separable structure of

the payoffs, the optimal strategies can be characterized only

in terms of their first m (or n) moments. Higher moments

are irrelevant, at least in terms of the payoffs of the players.

From the previous discussion, we have the following

result, essentially contained in [4]:

Theorem 2.2: Consider the two-player zero-sum game on

[−1, 1] × [−1, 1], with payoff given by (1). Then, the value

of the game is well-defined, and there exist optimal mixed

strategies ν�, µ� satisfying a saddle-point condition. Further-

more, without loss of generality, the optimal measures can

be taken to be discrete, with at most min(n, m) + 1 atoms.

This result has been extended in several directions, for in-

stance general two-player zero-sum continuous-kernel games

(e.g. [1, Corollary 4.3]), Nash equilibria of separable games

[19], etc.

B. Earlier results and approaches

Polynomial games generated considerable excitement

shortly after they were introduced, as a possible bridge

between finite and infinite games. However, the lack of

efficient computational methods soon caused somewhat of

a disappointment. In [8, p. 78], we find:

”It was soon realized that polynomial games of

large degree possess solutions of great complexity

which are impossible to so much as describe in

qualitative terms, let alone calculate.”

As we will see, the notable advances in optimization theory

in the last decade can be put to good use to update in a

significant manner this assessment. Indeed, there were good
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reasons for the lack of satisfactory solutions to this problem.

Until the development of semidefinite programming, and the

connections with sums of squares techniques, even the simple

minimization of a univariate polynomial was not amenable to

convex methods. Since solving a game cannot be easier than

optimizing (consider, e.g., a game that does not depend on

the actions of one of the players), this fact was a significant

roadblock towards an efficient solution method.

Among several other interesting results for polynomial

games worth mentioning, Gale and Gross [6] have shown

how to explicitly produce a polynomial game that has two a
priori specified measures as the unique minimax equilibria.

In terms of computation, besides the relatively direct

schemes that approximate the infinite game by a (large)

matrix game obtained by discretizing the strategy space,

we have found in the related literature only two earlier

references on effective computational methods for this kind

of games. The first one is an approach presented by Karlin

in [8], and is a technique based on the explicit mapping

of convex sets. While relatively easy to implement for low

dimension, its complexity quickly becomes unmanageable

for larger problems. The other approach, by Tiskin, is based

on a generic cutting plane method, and appears in [20].

C. The value of the game

The derivation of the value of the game can be done in a

very similar way as in the finite actions case. We characterize

first “security strategies” that provide a minimum guaranteed

payoff. We can then invoke convex duality to prove that this

actually yields the unique value of the game.

Proceeding along these lines, by analogy to the finite case,

a security strategy of Player 2 can be computed by solving

min
γ,µ

γ s.t.

{
Eµ[P (x, y)] ≤ γ ∀x ∈ [−1, 1]∫ 1

−1
dµ(y) = 1.

(4)

Indeed, if Player 2 plays the mixed strategy µ obtained from

the solution of this problem, the best that Player 1 can do

is to choose a value of x that maximizes Eµ[P (x, y)], thus

limiting his gain (and Player 2’s loss) to γ.

Since P (x, y) is polynomial, this expectation can be

equivalently written in terms of the first n moments of the

measure µ, i.e.,

Eµ[P (x, y)] =
∫ 1

−1

P (x, y)dµ(y) =
n∑

i=0

m∑
j=0

pijµjx
i.

Notice that this is a univariate polynomial in the action x
of Player 1, with coefficients that depend affinely on the

moments µj of the mixed strategy of Player 2. This property

will be crucial in our developments.

Consider now the problem (4), but instead of writing it

in terms of the decision variable µ (which is a probability

measure), let us use instead the moments {µj}m
j=0. The

problem is then reduced to the minimization of the safety

level γ, subject to the conditions:

• The univariate polynomial γ − ∑n
i=0

∑m
j=0 pijx

iµj is

nonnegative on [−1, 1].

• The sequence {µj}m
j=0 is a valid moment sequence for

a probability measure supported in [−1, 1].
We can rewrite this in a more compact form, as the

optimization problem

min γ s.t.

⎧⎨
⎩

γ − ∑n
i=0

∑m
j=0 pijx

iµj ∈ Pn

µ ∈ Mm

µ0 = 1
(5)

where Pn is the set of univariate polynomials of degree n
nonnegative in [−1, 1], and Mm is the set of m + 1 first

moments of a nonnegative measure with support on the same

interval.

In order to convert the abstract formulation (5) into a

concrete optimization problem that we can solve, we need a

computationally convenient representation of these sets. This

is provided in the next section.

D. SDP characterization of nonnegativity and moments

We show in this section that the sets Pn, Mm introduced

above are exactly representable in terms of semidefinite

programming conditions. These results are relatively well-

known by now, and follow directly from the fact that

nonnegative univariate polynomials are sums of squares, and

classical results on the moment problem.

We characterize below a few basic properties of the sets

of nonnegative polynomials and measures.

Lemma 2.3: The sets Pn,Mn are (n + 1)-dimensional

proper cones (i.e., closed, convex, pointed and solid). Fur-

thermore, they are convex duals, i.e., Pn = M∗
n.

Remarkably, these cones admit nice representations in terms

of semidefinite programming conditions. We introduce below

some simple notation that will allow for a concise and

explicit presentation of the results.

Let Sd denote the set of d × d real symmetric matrices,

and define the linear operator H : R
2d−1 → Sd as:

H :

⎡
⎢⎢⎢⎣

a1

a2

...
a2d−1

⎤
⎥⎥⎥⎦ �→

⎡
⎢⎢⎢⎣

a1 a2 . . . ad

a2 a3 . . . ad+1

...
... . .

. ...
ad ad+1 . . . a2d−1

⎤
⎥⎥⎥⎦ .

By its definition, H simply takes a vector, and constructs the

associated Hankel matrix. Its corresponding adjoint is given

by a linear map H∗ : Sd → R
2d−1,

H∗ :

⎡
⎢⎢⎢⎣

m11 m12 . . . m1d

m12 m22 . . . m2d

...
... . .

. ...
m1d m2d . . . mdd

⎤
⎥⎥⎥⎦ �→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m11

2m12

m22 + 2m13

...
md−1,d−1 + 2md−2,d

mdd

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

that “flattens” a matrix into a vector by adding all the entries

along antidiagonals.

A polynomial f(x) is a sum of squares (SOS) if it can

be written as f(x) =
∑

i gi(x)2 for some polynomials gi.

Using the notation above, we can write the following simple

SDP condition for polynomial nonnegativity:
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Lemma 2.4: The polynomial p(x) =
∑2d

k=0 pkxk is non-

negative (or SOS) if and only if there exists S ∈ Sd+1, S � 0
such that ⎡

⎢⎢⎢⎣
p0

p1

...
p2d

⎤
⎥⎥⎥⎦ = H∗(S).

Proof: For univariate polynomials, nonnegativity is

equivalent to SOS (see, e.g., [16], [14]). Furthermore, letting

[x]d := [1, x, . . . , xd]T , for every S ∈ Sd+1 we have

p(x) = 〈H∗(S), [x]2d〉 = [x]Td S [x]d,

and factorizing S � 0, we obtain a sum of squares decom-

position of p(x).
We can give a similar characterization of polynomials non-

negative in an interval. For this, define

L1 =
[

Id×d

01×d

]
, L2 =

[
01×d

Id×d

]
.

Lemma 2.5: The polynomial p(x) =
∑2d

k=0 pkxk is non-

negative in [−1, 1] if and only if there exist Z ∈ Sd+1,W ∈
Sd, Z � 0, W � 0 such that⎡

⎢⎢⎢⎣
p0

p1

...
pn

⎤
⎥⎥⎥⎦ = H∗(Z + L1WLT

1 − L2WLT
2 ).

Proof: Follows directly from the characterization

of univariate polynomials nonnegative in an interval, and

Lemma 2.4. Indeed, it is well known that

p(x) ≥ 0 ∀x ∈ [−1, 1] ⇔ p(x) = z(x)+w(x)(1−x2),

where z(x), w(x) ∈ R[x] are sums of squares.

Dualizing the previous conditions, or invoking classical re-

sults on moment spaces (e.g. [9], [17]), we have a similar

characterization for Mn.

Lemma 2.6: The vector µ = [µ0, µ1, . . . , µn]T is a valid

set of moments for a probability measure in [−1, 1] if and

only if
µ0 = 1

H(µ) � 0

LT
1 H(µ)L1 − LT

2 H(µ)L2 � 0.

(6)

Proof: This result follows from the previous lemma, by

the duality between nonnegative polynomials and moment

spaces, and the fact that [−1, 1] is compact. Alternatively, a

direct proof is presented, e.g., in [9].

We remark that these SDP characterizations of univariate

nonnegative polynomials and moments have been used, in

different contexts, in earlier work of Shor [18], Nesterov

[13], and Parrilo [14]. On the dual side, the moment ap-

proach has been described by Bertsimas and Popescu [2]

and Lasserre [11].

Remark 2.7: It is possible to give slightly improved for-

mulations of Lemmas 2.5 and 2.6, depending on whether

the degree of the polynomial (or the number of moments)

is even or odd. For simplicity, we do not discuss these here,

but notice that the formulations presented will always give

correct results.

E. SDP reformulation

The results in the previous section directly provide

semidefinite representations of the sets Pn and Mm ap-

pearing in (5). For concreteness, we present below the

explicit semidefinite program that results from combining

these expressions:

min
γ,µ,Z,W

γ

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H(µ) � 0
LT

1 H(µ)L1 − LT
2 H(µ)L2 � 0

H∗(Z + L1WLT
1 − L2WLT

2 ) = γ e1 − Pµ
eT
1 µ = 1

Z,W � 0,
(7)

where µ ∈ R
m+1, P ∈ R

(n+1)×(m+1) contains the coeffi-

cients pij of the polynomial P (x, y), and e1 ∈ R
m+1 has all

entries equal to zero, except for a one in the first row.

As it will become clear from its dual, the solution of the

SDP (7) exactly corresponds to the value of the game, and

the moments of the optimal strategies.

F. Duality

It is well known that in zero-sum games there is a

natural relationship between the game-theoretic role of the

two players, and the convex duality properties of the corre-

sponding optimization problem. Informally, going to the dual

optimization problem is equivalent to switching the role of

the players.

Allowing for a sign change of the optimal value, the dual

SDP problem can be written as:

min
α,ν,A,B

α

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H(ν) � 0
LT

1 H(ν)L1 − LT
2 H(ν)L2 � 0

H∗(A + L1BLT
1 − L2BLT

2 ) = α e1 + PT ν
eT
1 ν = 1

A,B � 0.
(8)

This expression agrees exactly with the primal SDP (7),

except for the change in the payoff matrix from P to −PT ,

which naturally corresponds to the same game, but from

the point of view of the other player. We have therefore a

perfect correspondence between the primal and dual sides

of the game, given by the mapping (P,Z,W, µ, γ) ↔
(−PT , A, B, ν, α). In view of the original polynomial payoff

defined by (1), the mapping that takes the matrix P into −PT

corresponds to P (x, y) ↔ −P (y, x).
We can then formally state our main result as follows.
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Theorem 2.8: Consider a two-player zero-sum polynomial

game in [−1, 1] × [−1, 1], with payoff as described in (1).

The value of the game, and optimal mixed strategies, can

be obtained by solving the primal-dual SDP pair given by

(7)-(8).

This result provides a quite natural and complete general-

ization of the classical linear programming solution of zero-

sum finite games. Furthermore, it shares the same desirable

properties of self-duality.

G. Recovering the optimal strategies

The decision variables of the SOS/SDP problems pre-

sented earlier were the moments of the mixed strategies.

The corresponding measures can be easily recovered from

the optimal primal-dual solutions of the SDP, in particular

the matrices H(µ) and H(ν). By complementary slackness

(or a simple game theoretic argument), it is easy to see that

the support of the atomic measures will be given by the zeros

of the polynomials with coefficients given by γe1 −Pµ and

αe1 + PT ν. The corresponding weights can be obtained by

solving a linear system.

The procedure to recover a univariate atomic measure from

its moments is classical, and can be found, e.g., in Shohat and

Tamarkin [17], Karlin and Shapley [9], Devroye [3], among

others. We omit the details from this version of the paper

due to space reasons.

H. Pure strategy solutions

In many applications (e.g., networking and economics) it

is of interest of study conditions under which a game is

guaranteed to possess optimal solutions that are pure, i.e.,

are not probabilistic mixtures of strategies. A well-known

result about continuous games (e.g., [1, Theorem 4.5]) is the

following:

Theorem 2.9: Consider the polynomial game in [−1, 1]×
[−1, 1] described by P (x, y). If P (x, y) is strictly concave

in x for each y ∈ [−1, 1] and strictly convex in y for each

x ∈ [−1, 1], then both players have optimal strategies that

are pure.

For games of this kind, then the primal/dual SDP pair (7)-

(8) will admit rank one solutions (which will be unique, if the

game has a unique equilibria). It should be noticed, however,

that if it is known that the game has this convex-concavity

property, there is no computational advantage in working on

the moment spaces rather than in the natural strategy spaces

of the game.

III. EXAMPLES

We present next two simple examples. The first game

has as solutions only pure strategies, while the other one

(extracted from the literature) require mixed strategies in

order to achieve the optimal value of the game.

Example 3.1: Consider the payoff function on [−1, 1] ×
[−1, 1] given by:

P (x, y) = 2xy2 − x2 − y

What are the optimal strategies of the two players, and what

is the value of the game?

The SDP (7) can be formulated as:

maximize γ

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1 µ1

µ1 µ2

]
� 0, 1 − µ2 � 0,

γ + x2 − 2xµ2 + µ1 =
[

1
x

]T

Z

[
1
x

]
+ (1 − x2)W,

Z � 0,W � 0.

Solving the SDPs as described above, we directly obtain:

γ = α4 − α µ1 = α µ2 = α2

Z =
[

α4 −α2

−α2 1

]
W = 0,

where α = 4−
1
3 � 0.62996. The value of the game is

therefore γ ≈ −0.47247.

For this simple game, we can easily extract the optimal

strategies, by decomposing the matrices Z,W . In this case,

the solution is given by pure strategies, where Player 1

always chooses x = α2, and Player 2 always chooses y = α.

The fact that the optimal strategies are pure is to be

expected, in view of Theorem 2.9 and the fact that the payoff

function is concave in x. This equilibrium corresponds to the

unique saddle-point of the function P (x, y) on the domain

of the function. We notice that since in this case there is

a unique solution in pure strategies, the saddle point could

have also been computed in a more direct way by using the

“reaction curve” method; see e.g. [12], [1].

Example 3.2: The payoff function is given by:

P (x, y) = 5xy − 2x2 − 2xy2 − y,

which is neither convex nor concave. After solving the prob-

lem using the SOS/SDP optimization approach described, we

obtain:

γ = −0.48 µ1 = 0.56 µ2 = 1

Z =
[

0.08 −0.4
−0.4 2

]
W = 0.

This corresponds to a mixed strategy, where Player 1 always

picks x = 0.2, and Player 2 chooses y = 1 with probability

0.78, and y = −1 with probability 0.22. The corresponding

conditional payoffs are shown in Figure 1, where we can

graphically verify that these measures indeed corresponds to

the equilibrium of the game.

IV. EXTENSIONS AND GENERALIZATIONS

The results presented here are a natural starting point for

a wide variety of extensions and generalizations. We outline

some of them below, in order of generality.

A. Extensions

There are several possible variations that are a quite

straightforward generalization of these results. Among them,

we mention:

• Strategy sets that are finite unions of intervals. As

mentioned earlier, the results directly extend to this

setting.
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−3.5

−3

−2.5

−2

−1.5

−1
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0

t

Value of the game = −0.48

P(0.2,t)
0.22*P(t,−1)+0.78*P(t,1)

Fig. 1. Solution for Example 3.2. The upper curve represents the expected
payoff of Player 2, if Player 1 plays the optimal strategy. Conversely,
the lower curve is the expected payoff of Player 1, when Player 2 plays
optimally. We can see that the minimum of the first curve is equal to the
maximum of the second one, giving the value of the game γ = −0.48. The
points at which these extrema are achieved give the support of the respective
optimal measures.

• Discrete-continuous games, where one of the players

has a finite set of pure strategies, while the other player

has a continuum (e.g., an interval).

• Trigonometric games. Here the payoff is a trigonometric

polynomial of the decision variables given by angles

θ1, θ2, corresponding to the two players.

In all these cases, the solution proceeds along the exact

same lines, since we can use SOS methods to provide SDP

characterization of nonnegative trigonometric polynomials

or univariate nonnegative rational functions (and their dual

moment cones). Details, which are more or less standard, are

omitted from this version of the paper for space reasons.

B. Semialgebraic games

For simplicity of exposition, in this paper we have de-

scribed in detail only the univariate case. Our solution can be

easily extended to a much more general setup, with general

strategy sets X ⊂ R
n,Y ⊂ R

m that are basic semialgebraic,

i.e., are given by a finite number of polynomial equations

and inequalities, and a polynomial payoff. In this case,

however, as opposed to the setting discussed earlier, the

problem of determining the value of the game immediately

becomes NP-hard, since both polynomial nonnegativity and

the recognition of valid moment sequences are hard prob-

lems. However, as in [14], [15], [11] we can approximate

arbitrarily tightly these conditions using results based on the

Positivstellensatz or Schmüdgen/Putinar representations. In

some cases (“Hilbert” games), we can obtain guaranteed

solutions, or hard bounds on the value of the game. The

details are omitted from this version for space reasons.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented an exact semidefinite pro-

gramming solution to the computation of the optimal value

and optimal strategies of zero-sum polynomial games. The

approach relies on the connections between nonnegative

polynomials, sums of squares, and semidefinite program-

ming. The developments closely parallel the classical linear

programming-based solution of finite games, and shares

many of the same appealing convexity and self-duality prop-

erties. We have also described how the techniques extend

to the much more general semialgebraic case. Some further

extensions of these techniques to the nonzero sum case have

been developed in [19].
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bringing Karlin’s quote in Section II-B to my attention.

REFERENCES
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