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Abstract 

An efficient algorithm for the numerical solution 
of LMIs arising from the Kalman-Yakubovich-Popov 
lemma is presented. The procedure is an outer approx- 
imation method based on the algorithms used in the 
computation of X, norms for LTI systems. The result 
is especially useful for systems with large state dimen- 
sion. 

1 Introduction 

The KYP lemma (Kalman-Yakubovich-Popov [lo], see 
[9] for an elementary proof) establishes the equivalence 
between a frequency domain inequality and the feasibil- 
ity of a particular kind of LMI (linear matrix inequal- 
ity). It is an important generalization of classical linear 
control results, such as the bounded real and positive 
real lemma. 

It is also a fundamental tool in the practical application 
of the IQC (integral quadratic constraints) framework 
[7] to the analysis of uncertain systems. The theorem 
replaces an infinite family of LMIs, parameterized by 
w,  by a finite dimensional problem. This is extremely 
useful from a practical viewpoint, since it allows for the 
use of standard finite dimensional LMI solvers. 

However, in the case of systems with large state dimen- 
sion n, the KYP approach is not very efficient, since 
the matrix variable P appearing in the LMI ( 2 )  has 
(n2 + n ) / 2  components, and therefore the computa- 
tional requirements are quite large, even for medium 
sized problems. For example, for a problem with a 
plant having 100 states (which is not uncommon in 
certain applications), the resulting problem has more 
than 5000 variables, beyond the limits of what can be 
solved within reasonable time and space requirements 
using current LMI software. 

In this paper, we present an efficient algorithm for the 
solution of this type of inequalities. The approach is 

an outer approximation method [8], and is based on 
the algorithms used in the computation of ?f, system 
norms. The idea is to impose the frequency domain 
inequality (1) only at a discrete number of frequencies. 
These frequencies are then updated by a mechanism 
similar to the 7-1, norm computation case. 

Previous related work includes of course the literature 
on the computation of 7-1, system norms. In particu- 
lar, references [2, 4, 11 developed quadratically conver- 
gent algorithms, based explicitly on the Hamiltonian 
approach. Also, a somewhat related approach in [SI im- 
plements a cutting-plane based algorithm, where linear 
constraints are imposed on the optimization variables. 

The paper is organized as follows: in Section 2 the no- 
tation is presented and some basic facts are reviewed. 
In Section 3 the algorithm is presented and analyzed, 
and its convergence properties are considered. In the 
following section, the use of the dual problem is dis- 
cussed, and in Section 5 some examples are presented. 
Finally, in the last section we present conclusions and 
outlines for future research. 

2 Preliminaries 

In this section we review some basic linear algebra 
facts, and also present a version of the KYP lemma. 
The notation is standard. 

A 2n x 2n real matrix is said to be Hamiltonian (or 
infinitesimally symplectic) if it satisfies H*J+ J H  = 0, 
where 

A 0  
J = [  -1, 21. 

Hamiltonian matrices have a spectrum that is symmet- 
ric with respect to the origin. That is, A is an eigenvalue 
iff -A* is. A partitioned matrix 

H11 H12 

H =  [ HZl H 2 2  1 
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is Hamiltonian if and only if H22 = -H& and HIZ, Hz1 
are both symmetric. 
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A basic fact about determinants of matrices, easy to 
prove using an Schur-like matrix decomposition, is the 
following: 

Lemma 1 Let Q be a partitioned matrix 

A fairly general version of the KYP lemma, as pre- 
sented in [9] is the following: 

Theorem 1 Let A E RnXn, B E EtnXm, M = MT E 
R(n+m)x(n+m), with A having no purely imaginary 
eigenvalues. Let 

F ( j w )  = ( j w I  - A)-lB ] * [ ( j w l  -]A)-’” ] 
Then, the two following statements are equivalent: 

1. 
F ( j w )  < 0 ,  v w  E R U  (00) (1) 

2. There exists a symmetric n x n matrix P that 
satisfies 

(2)  
A T P + P A  PB + M < O  [ BTP 0 1 

In the application of this result to the stability and per- 
formance analysis of uncertain systems, the matrix M 
depends affinely on some parameter vector U. These are 
the variables of the LMI optimization problem, where 
we try to minimize some linear function of v over the 
feasible set (for example, a bound on the &-induced 
norm). In what follows, the dependence on U is usually 
omitted, for notational reasons. 

In this paper, we will deal only with the strict version of 
the KYP lemma, i.e. with a strict inequality in (l), (2). 
The reason is twofold: in the first place, no controllabil- 
ity/stabilizability assumptions are necessary, simplify- 
ing the proofs. Secondly, since the resulting LMIs will 
in general be solved using interior-point methods, the 
existence of a strictly feasible solution is usually guar- 
anteed. Note also that the strict inequality implies (in 
both (1) and (2)) that M22 < 0. 

3 The Algorithm 

The basic idea is to  replace the semi-infinite optimiza- 
tion problem (1) by a finite dimensional relaxation. We 
choose to impose the constraint only at a finite number 
of frequencies W k  E (see [5] for a related approach). 
For a given w,  equation (1) is an LMI in M.  

A high-level description of the algorithm follows: 

Algorithm 1 

A Initialize the set of frequencies fl = (0). 

Solve (1) with the current fl set. 

Find a frequency wk where the constraint (1) is 
violated (up to an E tolerance). If no such fre- 
quency exists, exit. 

Add that frequency to the set 0, and go to step 2. 

As we can see, the underlying idea of an outer approx- 
imation algorithm is a generalization of a cutting plane 
method [SI. We replace the description of the feasible 
set by a convenient relaxation. If the resulting solution 
does not satisfy the original constraints, a cutting plane 
(in this case, a possibly curved hypersurface) that sep- 
arates that solution from the true feasible set is added. 
The process is repeated until the desired tolerance is 
reached. 

As in the case of 3c, norm computation [2, 41 the ef- 
fectiveness of the algorithm hinges on the possibility 
of detecting in an efficient manner the frequencies at 
which the inequality is violated. To this end, define 
the 2n x 2n Hamiltonian matrix: 

1 A - BMG’Mzl -BM;~B~ 
-Mil + M12MG1M21 -AT + M12MG’BT H =  [ 

It can be shown (see for example [lo, 111) that the 
conditions (l), (2) are satisfied if and only if M22 < 0 
and H has no imaginary eigenvalues. In this case, it 
is possible to  obtain a solution P of the LMI (1) by 
computing a solution of the Riccati equation associated 
with the Hamiltonian (or a suitable perturbation, if the 
subspace complementarity condition is not satisfied). 
If the eigenvalue condition is violated, then there is 
a relationship between the critical frequencies, as the 
following theorem shows. 

(3) 

Theorem 2 Assume M22 < 0. Then, F(jw0) is sin- 
gular, if and only i f  jw, is an imaginary eigenvalue of 
H .  
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Proof: Consider the partitioned matrix 

The diagonal submatrices are invertible, since A 
has no imaginary eigenvalues and M22 < 0 .  Ap- 
plying Lemma 1,  we immediately have the iden- 
tity 

det Q = det(jwI - H )  det MZ2 
= det(jw1 + AT) det F(jw) det(juI - A). 

from where the result follows. 0 

Special cases of this theorem are the ones used in [2] to 
compute the 31, norm or the minimum dissipation of 
a transfer function. 

Several options are available for the choice of the fre- 
quency to add to the set 0. A particularly good one 
is to choose Wk as the frequency at which F(jw) is 
maximally positive (i.e., where its first singular value 
achieves its maximum over frequency). This can be ob- 
tained at a computational cost similar to that of an 31, 
norm. In the following section we present a convergence 
argument for the procedure resulting from this choice. 
A cheaper alternative is to pick a criterion similar to 
the one used in [4]. Given the imaginary eigenvalues 
of H ,  consider the midpoint frequencies, and choose 
the one where the constraint is most violated. The 
computational requirements of this step are minimal, 
compared to the one required to solve the LMIs. 

An important difference of the LMI case discussed here 
with the simpler ‘X, norm case (where the only LMI 
variable is the KYP one) is that at optimality more 
than one constraint can be active. In fact, the results 
in [5] show that at most n + 1 frequencies are active, 
where n is the number of IQCs. 

In the algorithm as described, no constraint dropping 
occurs. That is, we keep adding constraints, until con- 
vergence. $ince we know a priori a bound on the 
number of active constraints, dropping old, nonbind- 
ing constraints seems a natural idea. This issue will be 
explored in more detail in future versions of this paper. 

The distinctive feature of the algorithm is that the 
KYP variable P, never appears explicitly in the proce- 
dure. Nevertheless, as mentioned before, it is possible 
to compute its value after the problem is solved, at a 
computational cost similar to solving a Riccati equa- 
tion. 

A somewhat related approach is used in [6], where the 
eigenvectors of the Hamiltonian are used to construct 

linear constraints for the elements of M .  In our ap- 
proach, the constraints are matrix valued (not linear) 
and we do not impose the restrictions directly at the 
critical frequencies, but at other points where they are 
more violated. This way, convergence should be im- 
proved (in the 31, case, it is even quadratic). Further 
numerical experiments are needed to formulate accu- 
rate comparisons. 

3.1 Convergence 
It is possible to prove convergence of the first version 
of the algorithm. This corresponds to the choice of wk 
as the point at which the frequency domain inequality 
is maximally violated. In fact, for this variation we can 
apply the results on the convergence of more abstract 
version of the outer approximation method (Concep- 
tual Algorithm 3.5:19 in [8]). 

It is possible to show (see [8]) that if the algorithm 
produces a infinite sequence of solutions, then any ac- 
cumulation point of this sequence is a global solution 
of the original problem. The infinite set of frequency 
constraints can be “compactified” either by considering 
the extended real line or by a standard bilinear trans- 
formation. 

Currently we do not have explicit, nonconservative ex- 
pressions for the convergence rate. This seems to be 
a general feature of the outer approximation class of 
algorithms, since even for cutting plane methods the 
known theoretical bounds are usually extremely con- 
servative, when compared to the actual performance. 

4 Using the dual 

A not so convenient feature of the presented approach is 
that a new constraint is added at each iteration. This 
implies that the previous solution will not be primal 
feasible, forcing a restart of the optimization, unless an 
infeasible start method is used. 

This can be solved by focusing instead on the dual op- 
timization problem, as is well known from the linear 
programming literature, for instance. In this case, new 
variables are added to the problem at each iteration. 
Note that this can also be interpreted as having a dual 
feasible starting point, which is useful in case we are 
using a primal-dual LMI solver (such as SDPSOL [3]). 

For the frequency domain inequalities arising from IQC 
optimization, the dual problem has been extensively 
analyzed in [5].. It has been shown there that upper 
bounds, or even the optimal value, of the quantities 
of interest (for example, &-induced norms) can be ob- 
tained from a finite number of frequencies. However, no 
procedure to compute or approximate these frequencies 
was available, other than a standard gridding. 
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Figure 1: Standard block diagram. 

Frequencies 
0 

0 2.9 

Table 1: Numerical values for Example 1. 

Obj. Value Time (sec.) 
64.33 14.8 

77.3456 30.29 

The algorithm presented here provides an explicit 
methodology for the update of the frequencies. This 
way, better bounds can be obtained in an iterative €ash- 
ion, with an arbitrarily small error. 

5 Example 

In this section an example of the application of the pro- 
posed algorithm is presented. The first one is very sim- 
ple, and mainly for illustration purposes. In the second 
one, the performance is compared with a standard LMI 
solver for a medium scale problem. Both examples are 
solved using MATLAB's LMI toolbox, with the default 
options. 

5.1 First example 
Consider the standard block diagram in Fig. 1. We will 
use the proposed algorithm to compute the worst case 
Lz induced norm between U and y, for the plant given 
bv 

The A block is an uncertain contractive LTV operator, 
and therefore satisfies the IQC given by 

The results of the sequence of subproblems are shown 
in Table 1 and Fig. 2. 

As we can see, on the third and last iteration we obtain 
a value of the parameters that makes the frequency 
domain inequality to be satisfied. That makes possible, 
if desired, to  recover the value of the optimal KYP 
variable P ,  by solving a Riccati equation. In this case, 
we obtain [ 3.4849 0.6674 ] 

0.6674 0.6644 ' 
P =  

I 

I I 

0 2.9 2.7353 I 77.5511 I 54.87 

Table 2: Numerical values for Example 2. 

This is within numerical error of the solution obtained 
by directly solving the LMI (1). 

5.2 Second example 
In this example, we show the numerical advantages of 
using the outlined procedure for solving the LMIs ap- 
pearing in analysis problems with systems of large state 
dimension. 

The system is again in the standard form of Fig. 1. 
The plant G, chosen randomly, has 50 states, and the 
signals U, y, U, w are vector-valued, with each having 
10 components. The uncertainty A corresponds to a 
diagonal gain bounded LTV operator, and therefore 
there are 10 IQCs associated with it. 

For this example, we have chosen as the new frequency 
to be added to the set R the one at which the con- 
straints are maximally violated, as explained before. 
Though more expensive, it seems to have faster con- 
vergence properties. A straightforward solution of the 
LMIs with the KYP variable takes 996 sec., on a Sun 
Ultra 10/300Mhz. On the same computer, the total 
time required by the presented procedure is less than 
120 sec. Note that here we are solving the primal prob- 
lem, and the MATLAB LMI toolbox uses a projective 
algorithm, and does not use any dual information. This 
implies that each subproblem is solved from scratch. 
The time spent in computing the maximum over fre- 
quencies (analog to  an Xm norm) is negligible. 

Note that in this example, as opposed to the previous 
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Figure 3: Frequency domain plots corresponding to Ex- 
ample 2. 

one, more than one constraint is active at optimality. 
A result from [5] is that at most n + 1 frequencies are 
active, so this is consistent with the expected behavior. 

Finally, we remark that even though we are currently 
using a relatively inefficient implementation (since we 
are not using the information obtained in earlier stages 
in the solution of the subproblems), the algorithm still 
outperforms the standard approach. A future version 
of the paper will include numerical results for the dual 
approach. 

The paper pr 

6 Conclusions 

sents a new and efficient alg rithm for 
the solution of KYP-derived LMIs, based on ideas from 
7-Lm norm computation methods. 

The results are particularly interesting in the case 
where the dimension of the KYP variable is large when 
compared to the number of available IQCs. This corre- 
sponds to systems with large state dimension, where 
the standard KYP approach can be practically use- 
less. Any advance in methods for LMI solving can be 
applied immediately, providing improved performance, 
since the subproblems are themselves standard LMIs. 

Future work will address a robust numerical implemen- 
tation of the outlined algorithm, where the partial solu- 
tions of previous stages are used in the solution of the 
subsequent problems. The important practical issues 
of constraints dropping and the necessity of a strictly 
feasible initial starting point should be addressed. It 
would also be interesting to have further insight on the 
exact conditions under which this approach is superior 
to solving directly for the KYP variable. 
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