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Abstract— We introduce a new methodology for the numer-
ical solution of semidefinite relaxations arising from the sum
of squares (SOS) decomposition of multivariate polynomials.
The method is based on a novel SOS representation, where
polynomials are represented by a finite set of values at discrete
sampling points. The techniques have very appealing theo-
retical and numerical properties; the associated semidefinite
programs are better conditioned, and have a rank one property
that enables a fast computation of the search directions
in interior point methods. The results are illustrated with
examples, and a preliminary implementation is compared with
previous techniques.

I. INTRODUCTION

Given a multivariate polynomial p(x) ∈ R[x] :=
R[x1, . . . , xn], we are interested in deciding whether there

exist polynomials fi(x) ∈ R[x] such that

p(x) =
∑

i

f2
i (x). (1)

For simplicity, we discuss in this paper mainly the case

of computing the sum of squares (SOS) representation

of a given polynomial. However, the methods also apply,

with the obvious modifications, to the case of sum of

squares programs, i.e., the optimization over affine families

of polynomials subject to sum of squares constraints. SOS

programs have been applied to solve numerous questions in

systems and control theory; see for instance [15], [13], [17],

[9], the upcoming volume [6] and the references therein.

Additionally, the techniques presented here can be applied

towards the efficient solution of the Positivstellensatz-based

relaxations of semialgebraic problems introduced in [15],

[16], as well as the related ones in [10].

The standard method for computing a SOS decomposi-

tion can be briefly described as follows: given p(x), we

attempt to express it as a quadratic form in a new set

of variables u. A judicious choice of these new variables

will depend on both the sparsity pattern and symmetry

properties of p [14]. For the simplest case of a generic dense

polynomial of total degree 2d, the variables u will be all the

monomials (in the variables x1, . . . , xn) of degree less than

or equal to d. Consequently, we attempt to express p(x) as:

p(x) = uT Qu, Q � 0. (2)

For the right- and left-hand sides to be equal, all the

coefficients of the corresponding polynomials should be

identical. Since Q is simultaneously constrained by linear

equations and a PSD condition, the problem is equivalent to

verifying whether a certain affine matrix subspace intersects

the cone of positive definite matrices, and is therefore a

semidefinite program (SDP).

The standard SOS formulation represents the input poly-

nomial p(x), as well as the fi(x), by using a standard mono-

mial basis. In this paper we introduce a new representation

and associated numerical method, obtained by combining a

sampling-based technique along with an orthogonalization

procedure. This will result in more efficient and numerically

stable algorithms.

Earlier work [1], [8] had exploited in different ways some

of the available structure in SOS programs, but only for

the univariate case. For instance, Alkire and Vandenberghe

[1] used the Toeplitz structure to obtain efficient methods

for problems with autocorrelation constraints. The work by

Genin et al. [8] uses displacement rank techniques for fast

evaluation of Hessian and gradients, as well as a Chebyshev

basis to improve the numerical conditioning.

A very appealing feature of our formulation, besides

its applicability to the multivariate case, is its simplicity

and transparency. It has been observed several times in

the literature that the main reason why structured matrix

computations via displacement rank can be done efficiently

is the existence of an underlying polynomial algebra (see

e.g. [12]). Our techniques bring this connection upfront, and

completely dispense of any monomial or polynomial repre-

sentation since they work directly with the corresponding

functional values. Another advantage is that our approach

converts convolution of coefficients to pointwise polynomial

multiplication.

The method we propose can be interpreted in several

ways. Besides the already mentioned, another approach is

to consider the “standard” SOS formulation, and perform

simultaneous nonsingular transformations on the primal and

dual spaces:

• On the constraint side (dual), rather than matching

coefficients we require the polynomials to agree on

a fixed set of sample points.
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• On the primal side, we parametrize the decision vari-

ables (i.e., the matrix Q) not by monomials in the

standard basis, but by a set of polynomials that are

orthogonal with respect to an atomic measure with

support on the chosen samples.

The structure of the paper is as follows: we describe

first the univariate trigonometric, to illustrate the ideas in

familiar setting. Next we outline the general methodology

in the multivariate case, and discuss its numerical and com-

putational implications, followed by preliminary numerical

results. We conclude by presenting our conclusions and

future research directions.

II. THE UNIVARIATE, TRIGONOMETRIC CASE

In this section we describe first the methods in detail,

focusing on the univariate trigonometric case. The reasons

are mainly pedagogical, since it is a well-understood case

where the relevant objects have been thoroughly studied in

the past, and are very familiar to the engineering commu-

nity.

Definition 1: A trigonometric polynomial of degree m
has the form

p(t) = p0 +
m∑

k=1

(pk cos kt + p−k sin kt). (3)

In particular, a trigonometric polynomial of degree m has

2m + 1 coefficients, and is 2π-periodic.

We are interested in trigonometric polynomials which are

nonnegative on the unit circle, i.e., those that satisfy p(t) ≥
0,∀t ∈ [0, 2π].

As is well-known, we can represent univariate trigono-

metric polynomials either by their coefficients (“time do-

main”) or a finite set of values on the unit circle (“frequency

domain”). The relationship between the two representations

is given by the Discrete Fourier Transform (DFT), and the

corresponding transformation can be efficiently computed

using Fast Fourier Transform (FFT) techniques.

To explore in more detail this relationship, consider the

so-called Dirichlet kernel:

KN (t) :=
1
N

sin Nt
2

sin t
2

,

where for the odd case N = 2m + 1 we have:

KN (t) =
1
N

(
1 + 2

m∑
k=1

cos kt

)

and in the even case N = 2m + 2:

KN (t) =
2
N

m∑
k=0

cos(k + 1
2 )t.

This function has the property that KN (0) = 1, and

KN (2kπ/N) = 0, for 0 �= k ∈ Z (see Figure 1).

The Dirichlet kernel is a classical construction, used for

instance to prove results about the pointwise convergence of

Fourier series. It can be interpreted as the result of Lagrange

interpolation in N points, where all functional values are

zero, except for a single point where it takes the value one.

Every trigonometric polynomial of degree m can be

expressed in the Lagrange basis. Concretely, if p(t) has

degree m, we have:

p(t) =
m∑

k=−m

p (kτ)K2m+1(t − kτ) , (4)

where τ = 2π
2m+1 . This means that we can equivalently rep-

resent a polynomial of degree m by its 2m+1 coefficients,

or by the values it takes at 2m + 1 equidistant points.

A. SOS for trigonometric polynomials

The following lemma is essentially a restatement of the

fact that nonnegative univariate polynomials are sums of

squares.

Lemma 1: If p(t) is a nonnegative trigonometric poly-

nomial of degree N , then there exists a decomposition

p(t) = vT Qv, where Q ∈ SN+1
+ . If N = 2k + 1 is odd,

then

v = [cos( t
2 ), sin( t

2 ), . . . , cos(kt + t
2 ), sin(kt + t

2 )]T ,

otherwise N = 2k and

v = [1, cos(t), sin(t), . . . , cos(kt), sin(kt)]T .

Proof: (Sketch) Using the substitution:

t = 2arctan x, ⇒ cos t =
1 − x2

1 + x2
, sin t =

2x

1 + x2
,

we can convert a trigonometric polynomial into a rational

function, whose denominator is a power of (1 + x2).
Therefore, nonnegativity can be certified using the nonneg-

ativity of the numerator. Since univariate polynomials are

SOS, the desired result is obtained by rewriting the SOS

decomposition of p̃ in the original variable t.
We can also write a decomposition that uses the interpola-

tion kernels, as presented below.

Lemma 2: If p(t) is a nonnegative trigonometric polyno-

mial of degree N , then there exists a SOS decomposition

p(t) = vT Qv =
∑
jk

Qjkvjvk

=
∑
jk

QjkKN+1(t − jτ)KN+1(t − kτ)

where Q ∈ SN+1
+ , τ = 2π

N+1 , and

v = [KN+1(t) KN+1(t − τ) . . . KN+1(t − Nτ)]T (5)

This decomposition has the property that the diagonal

elements satisfy Qkk = p(kτ).
The theorem follows directly from Lemma 1, by expressing

the vectors v in the statement of the lemma in terms of the

Dirichlet kernel via (4).

Remark 1: Notice that in the odd N case, the polynomial

p(t), while being a sum of squares, is not a sum of squares
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Fig. 1. The Dirichlet interpolation kernels for N = 7 and N = 8.

of trigonometric polynomials, in the sense defined above,

but rather of polynomials in the half-angle t
2 .

Example 1: Consider the trigonometric polynomial of

degree N = 2

p(t) = 5 + 4 cos(t) − 2 sin(t) + 2 cos(2t).

After the transformation, we have

p̃(x) =
3x4 − 4x3 − 2x2 − 4x + 11

(1 + x2)2
,

and the representation:

p(t) =

⎡
⎣ 1

cos t
sin t

⎤
⎦

T ⎡
⎣ 2 2 −1

2 5 0
−1 0 1

⎤
⎦

⎡
⎣ 1

cos t
sin t

⎤
⎦ .

We can convert this representation to the Dirichlet basis.

Letting α =
√

3
2 , τ = 2π/3, we have the identities:⎡

⎣ 1
cos t
sin t

⎤
⎦ =

⎡
⎣ 1 1 1

1 − 1
2 − 1

2
0 α −α

⎤
⎦

⎡
⎣ K3(t)

K3(t − τ)
K3(t − 2τ)

⎤
⎦ ,

and therefore the alternative SOS representation:

p(t) =

2
4

K3(t)
K3(t − τ)

K3(t − 2τ)

3
5

T
2
664

11 1
2 − α 1

2 + α
1
2 − α 2 − 2α 1

2
1
2 + α 1

2 2 + 2α

3
775

2
4

K3(t)
K3(t − τ)

K3(t − 2τ)

3
5 .

In particular, notice that the diagonal elements are exactly

p(0), p(2π/3), p(4π/3).
Remark 2: Lemma 1 requires the solution of an (N +

1) × (N + 1) SDP with a real symmetric constraint, as

opposed to the complex Hermitian one required by Fejér’s

representation theorem for nonnegative trigonometric poly-

nomials. This has several numerical advantages. We can

also arrive at the same result by coupling Fejér’s theorem

and a simple symmetry reduction argument; the details are

omitted in this version of the paper.

III. PROPERTIES AND ADVANTAGES

The representation in Lemma 2 has many advantages,

both conceptual and numerical. Many of these are conse-

quences of the interesting properties of the Dirichlet kernel.

For instance, we have the following:

Theorem 1: Let w := 2π
N . Then, the Dirichlet kernel

KN (t) satisfies:

N−1∑
k=0

K2
N (t − kw) = 1. (6)

This implies that the vector v in (5) has norm equal to one

for all values of t. Therefore, we have the inequalities

λmin(Q) ≤ min
t

p(t) ≤ Qkk,

so we can obtain very simple upper and lower bounds of

the minimum from any quadratic representation of p(t).
Example 2: Consider again the polynomial from Exam-

ple 1. We have

0.1676 ≈ λmin(Q) ≤ min
t

p(t) ≈ 0.2067
It is also interesting to notice the connections with

Hermite interpolation. If the matrix Q is diagonal, then

p̃(t) :=
∑

k p(kτ)K2
N (t−kτ), thus providing a trigonomet-

ric polynomial interpolating the given samples, and having

zero derivative at the interpolation points. If all the p(kτ)
are nonnegative numbers, then p̃(t) ≥ 0 for all t.

Despite the fact that the number of samples needed for

a polynomial of degree N is always odd (2N + 1), there

are also convenient numerical advantages in choosing an

even number of equispaced points in connection with this

representation. Notice that one of the samples is redundant,

since we only need to determine 2N + 1 coefficients.

However, it is convenient to include this extra sample, since

it can be computed at no extra cost, and as discussed later,

additional data can enhance the numerical stability.

The functional values of p(t) at the equispaced points

t = kτ/2 can be obtained very easily from the matrix Q,

since

• The values at the even-numbered points are exactly the

diagonal elements of Q.

• The values at the odd-numbered roots are obtained

as p(t) = vT
i Qvi, for some suitable vectors vi. The

vectors vi are cyclic permutations of a single vector,

whose components are obtained by evaluating the

Dirichlet kernel KN (t) at the points (2k + 1)τ/2. All
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products can be efficiently computed using FFT and

interleaving operations.

Notice that these two properties imply that in the SDP

formulation, the constraint matrices either have only one

diagonal element, or have rank one. As we will see, these

appealing features fully extend to the multivariate case.

IV. SDP FOR GENERAL MULTIVARIATE POLYNOMIALS

In the previous section we used the specific structure

of trigonometric polynomials and Lagrange interpolants.

While these translate to a certain extent to the multivari-

ate case, in that case the results would not be as clean

and convenient due to the potential ill-conditioning of the

transformation between samples and coefficients.

Nevertheless, by far the most important feature in the

approach has been to impose the equality constraint between

the left- and right-hand sides of (1) at specially chosen

sample points, and not between the coefficients of the

polynomial, as in the standard SOS approach. This readily

extends to multivariate polynomials, and forms the core of

our general method. We dispense altogether of any polyno-

mial representation by coefficients, and operate mostly with

the functional values.

We assume the polynomial p is defined by N coefficients;

for instance, for dense polynomials of degree 2d, then N =(
n+2d

2d

)
. The general sum of squares problem is then given

by:

Q � 0, s.t. p(xi) = v(xi)T Qv(xi), i = 1, . . . , N,

where v(xi) are polynomials v(x), evaluated at given points

xi ∈ R
n. We will delay the discussion on the specific

choice of the samples xi and the polynomial basis v(x)
for Section VI, and proceed here with the developments.

Similarly to the trigonometric case described in earlier

sections, we need a nonsingularity condition on the points

xi to guarantee that we are able to recover the polynomial

p(x) from its sample values. In the interpolation parlance,

we require the corresponding interpolation problem to be

poised (see for instance the survey [7], and the references

therein), meaning that the only polynomial with the required

monomial structure that vanishes in the chosen samples is

identically zero. This requires that the matrices v(xi)v(xi)T

must span an N -dimensional subspace. We define the

matrix V as:

V = [v1 . . . vN ]T = [v(x1) . . . v(xN )]T . (7)

Notice that V has a multivariate Vandermonde structure. We

proceed assuming the nonsingularity condition holds; more

details on this on the next section.

By defining the vector b = [p(x1) . . . p(xN )]T and the

matrices Ai = viv
T
i , we see that we have an SDP feasibility

problem in primal form

Q � 0, s.t. bi = Q • Ai, i = 1, . . . , N. (8)

A. Optimizing lower bounds

An important application of SOS techniques is con-

strained or unconstrained polynomial optimization prob-

lems. For the simplest unconstrained case we can obtain

a lower bound on the optimal solution by considering

the problem max t, p(x) − t is SOS. This has the SDP

formulation

max
Q�0,t

t, p(xi) − t = v(xi)T Qv(xi)

The dual of this problem can be shown to be

min
S�0,y

bT y

subject to S − V T diag(y)V = 0∑N
i=1 yi = 1

This dual form gives some further insight to our new

formulation. To find a lower bound on a polynomial, we

minimize a linear combination of given function values,

while constraining the corresponding linear combination of

the outer products of the kernels to be positive semidefinite.

We also note that y can be interpreted as the homogeneous

barycentric coordinates of the minimizer. More importantly

though, the dual form will enable us to perform a very

appealing transformation of the SDP.

V. NUMERICAL SOLUTIONS AND RANK ONE SDPS

In this section we propose a new method for the numeri-

cal solution of SOS-based SDPs, based on the developments

of the previous sections.

A. Orthogonalization

For numerical reasons, it is desirable to do a coordi-

nate transformation on the dual problem. Effectively, we

can perform a congruence transformation that will render

the columns of V orthogonal to each other. This can be

efficiently achieved by using “economy sized” SVD or QR

decompositions. In the latter case, we have V = QR, where

Q has the same dimensions as V and R is square upper

triangular and nonsingular. The problem therefore reduces

to:

min
S�0,y

bT y

subject to S − QT diag(y)Q = 0∑N
i=1 yi = 1

The primal problem will be transformed correspondingly.

The columns of Q can now be interpreted as the values

that a set of polynomials takes on the sample points. These

are in fact a set of orthogonal polynomials, under the

inner product given by a discrete measure with support on

the chosen samples. In particular, notice that the class of

orthogonal polynomials is not chosen a priori, but rather

is obtained as a subproduct of the QR procedure. This

has obvious advantages in the case of minimization over

arbitrary compact semialgebraic sets, where in general no

“good” polynomial bases are available.
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B. Rank one SDPs in interior point methods

In the primal SDP (8), we immediately notice a very

particular feature: the constraint matrices Ai = viv
T
i all

have rank one. This kind of structure can be fruitfully

exploited when computing gradients and Hessians of a

logarithmic barrier function, or the Newton system in a

primal-dual interior point method. For instance, the dual

SDP solver DSDP by Benson et al. [2] is one among the

few that currently exploit this, in combination with sparsity.

Important to note though is that the idea exploited in [2]

can be extended to primal and primal-dual solvers also.

A major bottleneck in interior-point implementations of

SDP solvers is often the Hessian assembly, i.e. the mere

construction of the Hessian. The N × N Hessian is given

by Hij = (WAi) • (UAj), where the matrices W and U
depend on the interior-point algorithm used. In a primal

solver W = U = Q, a dual solver uses W = U = S−1

while a primal-dual solver based on, e.g., the XZ direction

uses W = S−1, U = Q [3]. Regardless of algorithm, we

note that Hij = (Wviv
T
i ) • (Uvjv

T
j ) = (vT

j Wvi)(vT
i Uvj)

Hence, the Hessian is given by (V WV T )◦(V UV T ). Com-

pilation of the Hessian and gradient can thus be performed

in O(N3) operations, and neatly written as simple dense

matrix-vector manipulations.

For unstructured Ai the Hessian assembly is an O(N 4)
operation since N matrix multiplications of N×N matrices

are performed. Note though that if we solve the original

SOS problem using a standard coefficient based approach,

the matrices Ai are sparse. By exploiting this sparsity, the

practical complexity could be better than O(N 4). The ben-

efit of the proposed formulation is that the whole problem

is defined by one dense matrix V , and all computations can

be done using highly optimized level 3 BLAS matrix-matrix

operations.

VI. SAMPLE LOCATION AND CONDITIONING

In principle, as long as the matrix V in (7) satisfies the

poisedness condition, the presented formulation is exactly

equivalent to the standard one. Nevertheless, the location

of the sampling points can clearly have a big effect on the

numerical conditioning of the resulting SDP.

Remark 3: As opposed to most classical interpolation

problems, the condition number of the transformation is not

directly relevant in this problem. We do not care so much

about the possible ill-conditioning of the transformation

between coefficients and sample values, as we do about our

ability to extrapolate from the given samples the behavior

of the polynomial in the rest of the feasible set.

For the multivariate case, it is not clear what the “best”

location for the samples is, and it seems likely that an exact

answer to such a question is a difficult problem. It should

be noted that several questions of this kind are open: for

instance, the location of optimal interpolation points in the

unit sphere, or the “best” estimate for the minimum of

polynomial on a compact domain using only N samples.

This relates to the classical open problem of computing

Lebesgue constants in Lagrange interpolation. Nevertheless,

many special cases have been analyzed, and some relatively

good heuristics are known for the general case.

We mention the following well-known results:

• Trigonometric polynomials: as mentioned in a previous

section, in this case a set of optimal samples are

equidistant points in [−π, π].
• Univariate polynomials on an interval [a, b]: the Cheby-

shev points a + (b − a) cos(kπ), k = 0, . . . , N are

known to be near-optimal.

• Dense polynomials in n variables and degree 2d. It

is well-known [7] that for the set of rational points in

the unit simplex with denominator 2d the interpolation

problem is poised.

In general, it is easy to randomly generate sets for

which the interpolation problem is poised; their numerical

properties can however be poor. A more complete analysis

is certainly necessary.

Another important point to be mentioned is that our

methodology extends in a very natural way to the case of

redundant samples, i.e., more than the minimum number

required to define the subspace. This allows the use of

known good point sets, although of cardinality that is not

minimal, like tensor products of univariate Chebyshev grids.

In the SDP, these extra points will translate into redundant

constraints, that nevertheless carry important information.

VII. IMPLEMENTATION

The rank one structure can be exploited in almost any

SDP algorithm, so it is not clear if one should use a primal,

dual or a primal-dual solver.

1) Primal solver: The main motivations for using a pri-

mal solver is that the Hessian and gradient are defined using

essentially only the primal variable Q and the algorithm

involves no inverses that might lead to numerical instability

when the optima is approached [3] . A problem is that we

do not have a feasible initial solution Q, hence a big-M or

more advanced infeasible algorithm is needed [19].

2) Dual solver: A dual solver benefits from simple con-

struction of an initial feasible solution, namely yi = N−1.

Additionally, the complexity in each iteration of the interior-

point algorithm is very low as we will see below. A possible

complication of a dual solver is that the Hessian involves

the inverse of the dual slack S. For our SOS problems, this

matrix will not only be singular in the optima, but typically

we have only a small number of non-zero eigenvalues.

Hence, numerical problems as the optima is approached can

be an issue.

3) Primal-dual solver: The standard choice to solve

SDPs is a primal-dual algorithm. The reason is that the

number of interior-point iterations typically is lower than

what is necessary in a strictly primal or dual solver. How-

ever, although the iteration count might be decreased, the

complexity in each iteration is higher since more dense

matrix manipulations are performed, and many of these

cannot exploit our rank one structure.
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A. Implementation of a dual solver

As a proof of concept, we outline a basic implementation

of a dual solver, and report some initial computational

results. A dual approach was chosen due to its simplicity.

To keep things clear, we implement a classical logarithmic

barrier approach [5], [4]. More advanced dual algorithms

differ essentially in how they update the barrier parameter

µ, in order to decrease the number of iterations.

Given : Model V and b, feasible initial y, initial barrier

parameter µ and parameters 0 < τ, θ < 1
repeat

Update barrier parameter µ := θµ

repeat
Calculate Hessian H and gradient g
Calculate search direction p
Calculate suitable step length r
Update y := y + rp

until pT Hp ≤ τ

until µ ≤ ε
4n

The Hessian was derived above and requires two dense

matrix multiplications. The gradient of a logarithmic barrier

function for our SDP is g = µ−1b − diag(V S−1V T ),
hence it requires no major additional computations since

all data is available once the Hessian is calculated. The

main additional computational effort lies in the solution of

Hp = g, and step-length selection using a Cholesky based

back-tracking on the dual slack S = V T diag(y + rp)V .

B. Computational results

The simple dual solver described above was imple-

mented1 and applied to trigonometric polynomials of the

type (3) for polynomial degrees m ranging from 10 to 200.

The SDP problems were solved to an absolute accuracy

ε = 10−6 using θ = 0.2 and τ = 0.9. Averaged CPU time

is reported in the figure below.

0 20 40 60 80 100 120 140 160 180 200
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−2
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−1

10
0

10
1

m

t [
se

co
nd

s]

Fig. 2. Computational results for SOS decomposition of trigonometric
polynomials using a structure exploiting dual solver.

Considering the fact that the solver is based on a very

simple dual algorithm with fixed update of µ, and is

1MATLAB 6.5.1, 2.2GHz Intel processor with 512 Mb memory

implemented entirely in MATLAB code using less than 100
lines of code, the results are encouraging.

VIII. CONCLUSIONS

We have shown the conceptual and algorithmic advan-

tages of an alternative formulation for the numerical solu-

tion of SDPs arising from the sum of squares decomposition

for multivariate polynomials. The results notably increase

the applicability of the techniques, and promise very good

practical performance based on our preliminary imple-

mentation. The integration with sum-of-squares software

SOSTOOLS [18] and YALMIP [11] will be completed in

the near future.
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