
Games and Economic Behavior 82 (2013) 66–90
Contents lists available at SciVerse ScienceDirect

Games and Economic Behavior

www.elsevier.com/locate/geb

Dynamics in near-potential games

Ozan Candogan ∗, Asuman Ozdaglar, Pablo A. Parrilo

Laboratory of Information and Decision Systems, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 32-D608, Cambridge,
MA 02139, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 July 2011
Available online 9 July 2013

JEL classification:
C61
C72
D83

Keywords:
Dynamics in games
Near-potential games
Best response dynamics
Logit response dynamics
Fictitious play

We consider discrete-time learning dynamics in finite strategic form games, and show that
games that are close to a potential game inherit many of the dynamical properties of
potential games. We first study the evolution of the sequence of pure strategy profiles
under better/best response dynamics. We show that this sequence converges to a (pure)
approximate equilibrium set whose size is a function of the “distance” to a given nearby
potential game. We then focus on logit response dynamics, and provide a characterization
of the limiting outcome in terms of the distance of the game to a given potential
game and the corresponding potential function. Finally, we turn attention to fictitious
play, and establish that in near-potential games the sequence of empirical frequencies of
player actions converges to a neighborhood of (mixed) equilibria, where the size of the
neighborhood increases according to the distance to the set of potential games.
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1. Introduction

The study of multi-agent strategic interactions both in economics and engineering mainly relies on the concept of Nash
equilibrium. This raises the question whether Nash equilibrium makes approximately accurate predictions of the user be-
havior. One possible justification for Nash equilibrium is that it arises as the long run outcome of dynamical processes, in
which less than fully rational players search for optimality over time. However, unless the game belongs to special (but
restrictive) classes of games, such dynamics do not converge to a Nash equilibrium, and there is no systematic analysis of
their limiting behavior (Fudenberg and Levine, 1998; Jordan, 1993; Shapley, 1964).

Potential games is a class of games for which many of the simple user dynamics, such as best response dynamics
and fictitious play, converge to a Nash equilibrium (Fudenberg and Levine, 1998; Monderer and Shapley, 1996a, 1996b;
Sandholm, 2010; Young, 2004). Intuitively, dynamics in potential games and dynamics in games that are “close” (in terms
of the payoffs of the players) to potential games should be related. Our goal in this paper is to make this intuition precise
and provide a systematic framework for studying discrete-time dynamics in finite strategic form games by exploiting their
relation to close potential games.

We start by illustrating via examples that general games which are close in terms of payoffs may have significantly
different limiting behavior under simple user dynamics.1 Our first example focuses on better response dynamics in which
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A B
A 0, 1 0, 0
B 1, 0 θ , 2

G1

A B
A 0, 1 0, 0
B 1, 0 −θ , 2

G2

Fig. 1. A small change in payoffs results in significantly different behavior for the pure strategy profiles generated by the better response dynamics.

A B C
A 1 + θ,1 + θ 1, 0 0, 1
B 0, 1 1 + θ,1 + θ 1, 0
C 1, 0 0, 1 1 + θ,1 + θ

G1

A B C
A 1 − θ,1 − θ 1, 0 0, 1
B 0, 1 1 − θ,1 − θ 1, 0
C 1, 0 0, 1 1 − θ,1 − θ

G2

Fig. 2. A small change in payoffs results in significantly different behavior for the empirical frequencies generated by the fictitious play dynamics.

at each step or strategy profile, a player (chosen consecutively or at random) updates its strategy unilaterally to one that
yields a better payoff.2

Example 1.1. Consider two games with two players and payoffs given in Fig. 1. The entries of these tables indexed by row X
and column Y show payoffs of the players when the first player uses strategy X and the second player uses strategy Y . Let
0 < θ � 1. Both games have a unique Nash equilibrium: (B, B) for G1, and the mixed strategy profile ( 2

3 A + 1
3 B, θ

1+θ
A +

1
1+θ

B) for G2.
We consider convergence of the sequence of pure strategy profiles generated by the better response dynamics. In G1, the

sequence converges to strategy profile (B, B). In G2, the sequence does not converge (it can be shown that the sequence
follows the better response cycle (A, A), (B, A), (B, B) and (A, B)). Thus, trajectories are not contained in any ε-equilibrium
set for ε < 2.

The second example considers fictitious play dynamics, where at each step, each player maintains an (independent)
empirical frequency distribution of other player’s strategies and plays a best response against it.

Example 1.2. Consider two games with two players and payoffs given in Fig. 2. Let θ be an irrational number such that
0 < θ � 1. It can be seen that G1 has multiple equilibria (including pure equilibria (A, A), (B, B) and (C, C)), whereas
G2 has a unique equilibrium given by the mixed strategy profile where both players assign 1/3 probability to each of its
strategies.

We focus on the convergence of the sequence of empirical frequencies generated by the fictitious play dynamics (under
the assumption that initial empirical frequency distribution assigns probability 1 to a pure strategy profile). In G1, this
sequence converges to a pure equilibrium starting from any pure strategy profile. In G2, the sequence displays oscillations
similar to those seen in the Shapley game (see Fudenberg and Levine, 1998; Shapley, 1964). To see this, assume that the
initial empirical frequency distribution assigns probability 1 to the strategy profile (A, A). Observe that since the underlying
game is a symmetric game, empirical frequency distribution of each player will be identical at all steps. Starting from
(A, A), both players update their strategy to C . After sufficiently many updates, the empirical frequency of A falls below
θ/(1 + θ), and that of C exceeds 1/(1 + θ). Thus, the payoff specifications suggest that both players start using strategy B .
Similarly, after empirical frequency of B exceeds 1/(1 + θ), and that of C falls below θ/(1 + θ), then both players start
playing A. Observe that update to a new strategy takes place only when one of the strategies is being used with very
high probability (recall that θ � 1) and this feature of empirical frequencies is preserved throughout. For this reason the
sequence of empirical frequencies does not converge to (1/3,1/3,1/3), the unique Nash equilibrium of G2.

These examples suggest that in general, it may not be possible to characterize the limiting dynamics in a given game, by
using knowledge of the limiting behavior in a nearby game. In this paper, in contrast with this observation, we will show
that games that are close (in terms of payoffs of players) to potential games have similar limiting dynamics to those in
potential games. Moreover, it is possible to provide a quantitative measure of the size of the limiting set of dynamics in terms
of the ‘distance’ of the game from potential games. Our approach relies on using the potential function of a close potential
game for the analysis of commonly studied update rules.3 We note that our results hold for arbitrary strategic form games,
however our characterization of limiting behavior of dynamics is more informative for games that are close to potential
games. We therefore focus our investigation to such games in this paper and refer to them as near-potential games.

We start our analysis by introducing maximum pairwise difference, a measure of “closeness” of games. Let p and q be
two strategy profiles, which differ in the strategy of a single player, say player m. We refer to the change in the payoff of

2 Consider a game where players are not indifferent between their strategies at any strategy profile. Arbitrarily small payoff perturbations of this game
lead to games which have the same better response structure as the original game. Hence, for a given game there may exist a close enough game such that
the outcome of the better response dynamics in two games are identical. However, for payoff differences of given size it is always possible to find games
with different better response properties as illustrated in Example 1.1.

3 Throughout the paper, we use the terms learning dynamics and update rules interchangeably.
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Table 1
Convergence properties of better/best response and logit response dynamics in near-potential games. Given a game G , we use Ĝ to denote a nearby
potential game with potential function φ such that the distance (in terms of the maximum pairwise difference, defined in Section 2) between the two
games is δ. We use the notation Xε to denote the ε-equilibrium set of the original game, h to denote the number of strategy profiles, μτ and μ̂τ to
denote the stationary distributions of logit response dynamics in G and Ĝ , respectively.

Update rule Convergence result

Better/best response dynamics (Theorem 3.1) Trajectories of dynamics converge to Xδh , i.e., the δh-equilibrium set of G.

Logit response dynamics (with parameter τ ) (Corollary 4.2) Stationary distribution μτ of logit response dynamics is such that∣∣μτ (p) − e
1
τ φ(p)

∑
q∈E e

1
τ φ(q)

∣∣� e
2δ(h−1)

τ −1

e
2δ(h−1)

τ +1
, for all p.

Logit response dynamics (Corollary 4.3) Stochastically stable strategy profiles of G are (i) contained in
S = {p|φ(p) � maxq φ(q) − 4δ(h − 1)}, (ii) 4δh-equilibria of G.

player m between these two strategy profiles, as the pairwise comparison of p and q. Intuitively, this quantity captures how
much player m can improve its utility by unilaterally deviating from strategy profile p to strategy profile q. For given games,
the maximum pairwise difference is defined as the maximum difference between the pairwise comparisons of these games.
Thus, the maximum pairwise difference captures how different two games are in terms of the utility improvements due to
unilateral deviations. Since equilibria of games, and strategy updates in various update rules (such as better/best response
dynamics) can be expressed in terms of unilateral deviations, maximum pairwise difference provides a measure of strategic
similarities of games. The closest potential game to a given game, in the sense of maximum pairwise difference, can be
obtained by solving a convex optimization problem. This provides a systematic way of approximating a given game with a
potential game that has a similar equilibrium set and dynamic properties.

We focus on three commonly studied user dynamics: discrete-time better/best response, logit response, and discrete-
time fictitious play dynamics, and establish different notions of convergence for each. We first study better/best response
dynamics. It is known that the sequence of pure strategy profiles, which we refer to as trajectories, generated by these
update rules converge to pure Nash equilibria in potential games (Monderer and Shapley, 1996b; Young, 2004). In near-
potential games, a pure Nash equilibrium need not even exist. For this reason we focus on the notion of pure approximate
equilibria or ε-equilibria, and show that in near-potential games trajectories of these update rules converge to a pure ap-
proximate equilibrium set. The size of this set only depends on the distance from the original game to a potential game,
and is independent of the payoffs in the original game. In particular, our result for better/best response dynamics establish
a ‘Lipschitz-type’ property, i.e., we can find a constant h (which is equal to the number of strategy profiles in the game as
shown in Theorem 3.1) such that in a game that is δ different (in terms of maximum pairwise difference) from a potential
game the trajectory converges to the δh-equilibrium set.

We then focus on logit response dynamics. With this update rule, agents, when updating their strategies, choose their
best responses with high probability, but also explore other strategies with a nonzero probability. Logit response induces
a Markov chain on the set of pure strategy profiles. The stationary distribution of this Markov chain is used to explain
the limiting behavior of this update rule (Alós-Ferrer and Netzer, 2010; Blume, 1993, 1997; Marden and Shamma, 2008;
Young, 1993). In potential games, the stationary distribution can be expressed in closed form in terms of the potential
function of the game. Additionally, the stochastically stable strategy profiles, i.e., the strategy profiles which have nonzero sta-
tionary distribution as the exploration probability goes to zero, are those that maximize the potential function (Alós-Ferrer
and Netzer, 2010; Blume, 1997; Marden and Shamma, 2008). Exploiting their relation to close potential games, we obtain
similar results for near-potential games: (i) we obtain an explicit characterization of the stationary distribution in terms
of the distance of the game from a close potential game and the corresponding potential function, and (ii) we show that
the stochastically stable strategy profiles are the strategy profiles that approximately maximize the potential of a close
potential game, implying that they are pure approximate equilibria of the game. Our analysis relies on a novel pertur-
bation result for Markov chains (see Theorem 4.1) which provides bounds on deviations from a stationary distribution
when transition probabilities of a Markov chain are multiplicatively perturbed, and therefore may be of independent inter-
est.

A summary of our convergence results on better/best response and logit response dynamics can be found in Table 1.
We finally analyze fictitious play dynamics in near-potential games. In potential games trajectories of fictitious play need

not converge to a Nash equilibrium, but the empirical frequencies of the played strategies converge to a (mixed) Nash equi-
librium (Monderer and Shapley, 1996a; Shamma and Arslan, 2004). In our analysis of fictitious play dynamics, we first show
that in near-potential games if the empirical frequencies are outside some ε-equilibrium set, then the potential of the close
potential game (evaluated at the empirical frequency distribution) increases with each strategy update. Using this result we
establish convergence of fictitious play dynamics to a set which can be characterized in terms of the ε-equilibrium set of the
game and the level sets of the potential function of a close potential game. This result suggests that in near-potential games,
the empirical frequencies of fictitious play converge to a set of mixed strategies that (in the close potential game) have po-
tential almost as large as the potential of Nash equilibria. Moreover, exploiting the property that for small ε , ε-equilibria are
contained in disjoint neighborhoods of equilibria, we strengthen our result and establish that if a game is sufficiently close
to a potential game, then empirical frequencies of fictitious play dynamics converge to a small neighborhood of equilibria,
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Table 2
Convergence properties of fictitious play dynamics in near-potential games. We denote the number of players in the game by M , set of mixed strategies of
player m by �Em , and the Lipschitz constant of the mixed extension of φ by L. Rest of the notation is the same as in Table 1.

Update rule Convergence result

Fictitious play (Corollary 5.1) Empirical frequencies of dynamics converge to the set of mixed strategies with large enough potential:
{x ∈ ∏

m �Em|φ(x) � miny∈XMδ
φ(y)}

Fictitious play (Theorem 5.2) Assume that G has finitely many equilibria. There exists some δ̄ > 0, and ε̄ > 0 (which are functions of utilities of G
but not δ) such that if δ < δ̄, then the empirical frequencies of fictitious play converge to

{
x
∣∣∣‖x − xk‖� 4 f (Mδ)ML

ε
+ f (Mδ + ε), for some equilibrium xk

}
,

for any ε such that ε̄ � ε > 0, where f :R+ →R+ is an upper semicontinuous function that quantifies the size of mixed
equilibrium sets (defined explicitly in Section 5) such that f (x) → 0 as x → 0.

W SO SH
W 90, 90 −12, −12 48, 48
SO −12, −12 1, −1 24, 24
SH 48, 48 24, 24 1, −1

G

W SO SH
W 90, 90 −12, −12 48, 48
SO −12, −12 0, 0 24, 24
SH 48, 48 24, 24 0, 0

Ĝ

W SO SH
W 90 −12 48
SO −12 0 24
SH 48 24 0

Potential φ of Ĝ

Fig. 3. A game (G) and a nearby potential game (Ĝ) with potential φ , share similar equilibrium set and dynamic properties.

whose size is explicitly characterized.4 Our result recovers as a special case convergence of empirical frequencies to Nash
equilibria in potential games.5

A summary of our results on convergence of fictitious play dynamics is given in Table 2.
The framework provided in this paper enables us to study the limiting behavior of adaptive user dynamics in finite

strategic form games that are not potential games. In particular, for a given game we can find a nearby potential game by
solving a convex optimization problem, and use the distance between these games to obtain a quantitative characterization
of the limiting approximate equilibrium set. The characterization this approach provides will be tighter if the original game
is closer to a potential game.

Example 1.3 illustrates our approach for characterization of the limiting behavior of discrete-time dynamics. For ease of
exposition, in this example we focus on a game for which it is straightforward to identify a nearby potential game. For more
general settings, a nearby potential game can be identified numerically.

Example 1.3. Consider a two-player game G , with payoffs given in Fig. 3. In this game, each player has three strategies
(W: Work, SO: Shirk at Office, SH: Shirk at Home). If both players work, then a project succeeds and they each receive a
payoff of 90. If only one of them works, then the project may succeed (and they each receive 48), or it may fail (with a
resulting payoff of −12). If none of the players work and they shirk at different places, then each receives a payoff of 24.
On the other hand, if both shirk at the same place, then the row player has unit payoff, whereas the column player incurs
a disutility of one units.

Game G is not a potential game, as it involves a utility improvement cycle (SO,SO)–(SO,SH)–(SH,SH)–(SH,SO)–(SO,SO)
(see Section 2 for details). A nearby potential game Ĝ , which has maximum pairwise difference (MPD) δ = 1 to the original
game, is provided in Fig. 3. It can be seen that in both games the pure strategy (W , W ) is the unique equilibrium. We next
show that by exploiting the relation between G and Ĝ , the outcome of dynamics in G can be characterized.

In particular, using the results of Table 1 related to better/best response dynamics, we conclude that in G these update
rules converge to an ε-equilibrium set, with ε = 9 (note that there are h = 9 strategy profiles, and the MPD between G
and Ĝ is δ = 1). On the other hand, it can be seen that the only pure strategy profile that belongs to this set is (W , W ).
Hence we conclude that better/best response dynamics converge to the unique equilibrium in G .

Similarly, the results of Table 1 related to logit response dynamics, suggest that stochastically stable strategy profiles
of G , belong to S = {p|φ(p)� maxq φ(q) − 4δ(h − 1) = 90 − 32 = 58} = {(W , W )}. That is, (W , W ) is the only stochastically
stable strategy profile of G .

Finally, the results of Table 2 imply that fictitious play converges to {x ∈ ∏
m �Em|φ(x) � miny∈X2 φ(y)}, where X2

denotes the 2-equilibrium set of G . It can be numerically checked that for x ∈ X2, we have φ(x) � 85. This implies

4 The bounds we obtain for the limiting behavior of fictitious play dynamics have a different flavor than those for better/best response dynamics, and
logit response. While the bounds we obtain for the latter update rules are independent of the payoffs (and a function of only δ and the number of strategy
profiles in the game), for fictitious play they are not. This is because, fictitious play results exploit the structure of mixed (approximate) equilibrium sets,
which rely on the actual payoff parameters, whereas other dynamics results do not involve mixed strategies.

5 This result also implies that in near-potential games fictitious play dynamics are upper semicontinuous with respect to payoff parameters. This upper
semicontinuity result could alternatively be proved by considering differential inclusions that represent the limiting behavior of fictitious play (see Benaïm
et al., 2005), together with upper semicontinuity results on differential inclusions (Li and Zhang, 2002). Our result, in addition to upper semicontinuity,
provides explicit bounds on the size of the limiting set.
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that the limiting set is a subset of {x ∈ ∏
m �Em|φ(x) � 85}. Additionally, it can checked that if xm(W ) < 0.88 for some

player m, then φ(x) < 85. Thus, we conclude that the empirical frequencies of fictitious play converge to a set, where
each player employs strategy W with probability at least 0.88, i.e., the limiting empirical frequencies are contained in
{x ∈ ∏

m �Em|xm(W ) � 0.88}.
Observe that in this example Ĝ can be used to characterize the outcome of dynamics in G , even if two games may

lead to different strategy update trajectories. More precisely, the strategy update probabilities for logit response, and best
responses in response to some empirical frequencies may be different for these games. Consequently, logit response and
fictitious play may have distinct trajectories in these games. Despite that Ĝ reveals useful information about the outcome of
strategy updates in G .

Related literature: There is no systematic framework for analyzing the limiting behavior of many of the adaptive update
rules in general games (Fudenberg and Levine, 1998; Jordan, 1993; Shapley, 1964). However, for special classes of games,
such as potential games, there is a long line of literature characterizing the outcome of adaptive dynamics including bet-
ter/best response dynamics (Monderer and Shapley, 1996b; Young, 2004), fictitious play (Hofbauer and Sandholm, 2002;
Marden et al., 2009; Monderer and Shapley, 1996a; Shamma and Arslan, 2004) and logit response dynamics (Alós-Ferrer
and Netzer, 2010; Blume, 1993, 1997; Marden and Shamma, 2008).

Recent work (Candogan et al., 2011a) exploits some topological properties of finite strategic form games and potential
games to obtain a decomposition of the space of games into orthogonal components. This paper also studies the structure
of equilibria in near-potential games defined through these orthogonal components. Another related work (Candogan et al.,
2010b) discusses structural properties of sets of exact, weighted and ordinal potential games and provides efficient algo-
rithms for approximating a given game with an exact or weighted potential game. Two other related works are Candogan
et al. (2010a) and (2011c). Candogan et al. (2010a) focus on a specific power control game in wireless networks and ap-
proximates it with a close potential game to design pricing rules that guarantee that limiting behavior of dynamics remain
within a neighborhood of a socially optimal point. Additionally, in Candogan et al. (2011c) we provide an informal discussion
of better/best response dynamics and logit response dynamics (but not fictitious play) in near-potential games and partial
results on their limiting behavior. The current paper provides a complete picture of applications of near-potential games to
the analysis of discrete-time update rules, including the results about discrete-time fictitious play dynamics, and a formal
discussion of better/best response dynamics and logit response.

A follow-up paper, Candogan et al. (2013), focuses on geometry of sets of games that are equivalent (with respect to
various equivalence relations) to potential games. This paper additionally extends the analysis of the current paper to con-
tinuous time dynamics (in particular to generalizations of fictitious play) in near-potential games. Continuous time dynamics
provide alternative simplified models of strategy updates. These models often allow for a more tractable characterization
of the limiting behavior (see e.g., Krishna and Sjöström, 1998), and hence are commonly studied in the literature. We em-
phasize that the study of better–best response dynamics and logit response, which we focus on in Sections 3 and 4, does
not share a similar methodology to Candogan et al. (2013). Additionally, the study of the limiting behavior of discrete-time
fictitious play, given in Section 5, requires a characterization of the change in the potential at each step of the update rule
(e.g., see proofs of Lemma 5.3, Theorems 5.1, and 5.2). This poses additional challenges in the study of discrete-time update
rules, which are not present in the analysis of continuous time dynamics.

Another strand of literature focuses on identifying classes of games with similar properties to potential games. Examples
include ordinal potential games (Monderer and Shapley, 1996b), best-response potential games (Voorneveld, 2000), pseudo-
potential games (Dubey et al., 2006), and nested potential games (Uno, 2007). Even though these classes of games share
similar ordinal properties with potential games, for update processes that involve mixed strategies (such as fictitious play),
or that rely on actual payoff values (such as logit response), they do not lead to simple analysis unless further structure is
imposed (unlike potential games). For this reason, in this paper we follow a different approach, and characterize dynamic
properties of games, by exploiting their closeness to potential games.

There are also papers in the literature, which identify classes of games that are strategically equivalent to potential games
(Morris and Ui, 2004). These equivalence notions can be used to extend the dynamical properties of potential games to their
equivalence classes. However, we want to emphasize that the framework presented in this paper can be applied for study
of dynamics in games that are not strategically equivalent to potential games, thereby providing tools for study of dynamics
in arbitrary strategic form games.

Paper organization: The rest of the paper is organized as follows: We present the game theoretic preliminaries for our
work in Section 2. We present an analysis of better and best response dynamics in near-potential games in Section 3. In
Section 4, we extend our analysis to logit response, and focus on the stationary distribution and stochastically stable states
of logit response. We present the results on fictitious play in Section 5. We close in Section 6 with concluding remarks and
future work.

2. Preliminaries

In this section, we present the game-theoretic background that is relevant to our work and introduce a closeness measure
for games. Our focus in this paper is on finite strategic form games. A (noncooperative) finite game in strategic form consists
of:
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• A finite set of players, denoted by M= {1, . . . , M}.
• Strategy spaces: A finite set of strategies (or actions) Em , for every m ∈M.
• Utility functions: um :

∏
k∈M Ek →R, for every m ∈M.

We denote a (strategic form) game instance by the tuple 〈M, {Em}m∈M, {um}m∈M〉, and the joint strategy space of this
game instance by E = ∏

m∈M Em . We refer to a collection of strategies of all players as a strategy profile and denote it by
p = (p1, . . . , pM) ∈ E . The collection of strategies of all players but the mth one is denoted by p−m .

A strategy profile p � (p1, . . . , pM) is an ε-equilibrium (ε � 0) if um(qm,p−m) − um(pm,p−m) � ε for every qm ∈ Em and
m ∈M. We denote the set of ε-equilibria in a game G by Xε . Nash equilibria of a given game are the ε-equilibria for ε = 0.

The class of potential games (Monderer and Shapley, 1996b), which we discuss next, is central in this paper.

Definition 2.1 (Potential game). A potential game is a noncooperative game for which there exists a function φ : E → R

satisfying

um(
pm,p−m) − um(

qm,p−m) = φ
(

pm,p−m) − φ
(
qm,p−m)

, (1)

for every m ∈M, pm,qm ∈ Em , p−m ∈ E−m . The function φ is referred to as a potential function of the game.

This definition ensures that the change in the utility of a player who unilaterally deviates to a new strategy, coincides
exactly with the corresponding change in the potential function. Extensions of this definition in which Eq. (1) holds when
each utility function is multiplied with a (possibly different) positive weight, or changes in utility and potential only agree
in sign, give rise to weighted and ordinal potential games that share similar properties to potential games. Our main focus
in this paper is on potential games in Definition 2.1, but we explain that our results generalize to the extensions of potential
games at the end of Section 5.

An important property of potential games, which will be used for characterizing the limiting behavior of dynamics in
near-potential games, is that the total unilateral utility improvement around a “closed path” is equal to zero. Before we
formally state this result, we first provide some necessary definitions, which are also used in Section 3 when we analyze
better/best response dynamics in near-potential games.

Definition 2.2 (Path – closed path – improvement path). A path is a collection of strategy profiles γ = (p0, . . . ,pN ) such that pi

and pi+1 differ in the strategy of exactly one player. A path is a closed path (or a cycle) if p0 = pN . A path is an improvement
path if umi (pi) � umi (pi−1) where mi is the player who modifies its strategy when the strategy profile is updated from pi−1
to pi .

The transition from strategy profile pi−1 to pi is referred to as step i of the path. The length of a path is equal to its
number of steps, i.e., the length of the path γ = (p0, . . . ,pN ) is N . We say that a closed path is simple if no strategy profile
other than the first and the last strategy profiles is repeated along the path. For any path γ = (p0, . . . ,pN) let I(γ ) represent
the total utility improvement along the path, i.e.,

I(γ ) =
N∑

i=1

umi (pi) − umi (pi−1),

where mi is the index of the player that modifies its strategy in the ith step of the path. The following proposition provides
a necessary and sufficient condition under which a given game is a potential game.

Proposition 2.1. (See Monderer and Shapley, 1996b.) A game is a potential game if and only if I(γ ) = 0 for all simple closed paths γ .

We next provide a formal definition of the measure of “closeness” of games, used in the subsequent sections.

Definition 2.3 (Maximum pairwise difference). Let G and Ĝ be two games with set of players M, set of strategy profiles E ,
and collections of utility functions {um}m∈M and {ûm}m∈M respectively. The maximum pairwise difference (MPD) between
these games is defined as

d(G, Ĝ) � max
p∈E, m∈M, qm∈Em

∣∣(um(
qm,p−m) − um(

pm,p−m)) − (
ûm(

qm,p−m) − ûm(
pm,p−m))∣∣.

Note that the pairwise difference um(qm,p−m) − um(pm,p−m) quantifies how much player m can improve its utility by
unilaterally deviating from strategy profile (pm,p−m) to strategy profile (qm,p−m). Thus, the MPD captures how different
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two games are in terms of the utility improvements due to unilateral deviations.6 We refer to pairs of games with small
MPD as close games, and games that have a small MPD to a potential game as near-potential games.

The MPD measures the closeness of games in terms of the difference of unilateral deviations, rather than the difference
of their utility functions, i.e., quantities of the form∣∣(um(

qm,p−m) − um(
pm,p−m)) − (

ûm(
qm,p−m) − ûm(

pm,p−m))∣∣
are used to identify close games, rather than quantities of the form |um(pm,p−m) − ûm(pm,p−m)|. This is because the
difference in unilateral deviations provides a better characterization of the strategic similarities (equilibrium and dynamic
properties) between two games than the difference in utility functions.7 This can be seen from the following example:
Consider two games with utility functions {um} and {um + 1}, i.e., in the second game players receive an additional payoff
of 1 at all strategy profiles. It can be seen from the definition of Nash equilibrium that despite the difference of their utility
functions, these two games share the same equilibrium set. Intuitively, since the additional payoff is obtained at all strategy
profiles, it does not affect any of the strategic considerations in the game. While the utility differences between these games
is nonzero, it can be seen that the MPD is equal to zero. Hence MPD identifies a strategic equivalence between these games.
For a discussion of different strategic equivalence notions in games, and their applications, see Morris and Ui (2004).

It can be seen from Proposition 2.1 that a game is a potential game if and only if it satisfies certain linear equalities. This
suggests that the set of potential games is convex, i.e., if G = 〈M, E, {um}m〉 and Ĝ = 〈M, E, {ûm}m〉 are potential games,
then Gα = 〈M, E, {αum + (1 − α)ûm}m〉, is also a potential game provided that α ∈ [0,1]. This suggests that the closest
potential game (in terms of MPD) to a given game, can be obtained by solving a convex optimization problem.8

In the rest of the paper, we do not discuss how a close potential game to a given game is obtained, but we just assume
that a close potential game with potential φ is known and the MPD between this game and the original game is δ. We
provide characterization results on limiting dynamics for a given game in terms of φ and δ.

3. Better response and best response dynamics

In this section, we consider better and best response dynamics, and study convergence properties of these update rules
in near-potential games. Best response dynamics is an update rule where at each time instant a player chooses its best
response to other players’ current strategy profile. In better response dynamics, on the other hand, players choose strategies
that improve their payoffs, but these strategies need not be their best responses. Formal descriptions of these update rules
are given below.

Definition 3.1 (Better and best response dynamics). At each time instant t ∈ {1,2, . . .}, a single player is chosen at random for
updating its strategy, using a probability distribution with full support over the set of players. Let m be the player chosen
at some time t , and let r ∈ E denote the strategy profile that is used at time t − 1.

1. Better response dynamics is the update process where player m does not modify its strategy if um(r) =
maxqm um(qm, r−m), and otherwise it updates its strategy to a strategy in {qm|um(qm, r−m) > um(r)}, chosen uniformly
at random.

2. Best response dynamics is the update process where player m does not modify its strategy if um(r) = maxqm um(qm, r−m),
and otherwise it updates its strategy to a strategy in arg maxqm um(qm, r−m), chosen uniformly at random.

We refer to strategies in arg maxqm um(qm, r−m) as best responses of player m to r−m . We denote the strategy profile used
at time t by pt , and we define the trajectory of the dynamics as the sequence of strategy profiles {pt}∞t=0. In our analysis, we
assume that the trajectory is initialized at a strategy profile p0 ∈ E at time 0 and it evolves according to one of the update
rules described above. For simplicity, we assume here that users are chosen randomly to update their strategy.

The following theorem establishes that in finite games, better and best response dynamics converge to a set of
ε-equilibria, where the size of this set is characterized by the MPD to a close potential game.

6 An alternative distance measure can be given by

d2(G, Ĝ)�
(∑

p∈E

∑
m∈M,qm∈Em

((
um(

qm,p−m) − um(
pm,p−m)) − (

ûm(
qm,p−m) − ûm(

pm,p−m)))2
) 1

2

,

and this quantity corresponds to the 2-norm of the difference of G and Ĝ in terms of the utility improvements due to unilateral deviations. Our analysis
of the limiting behavior of dynamics relies on the maximum of such utility improvement differences between a game and a near-potential game. Thus, the
measure in Definition 2.3 provides tighter bounds for our dynamics results, and hence is preferred in this paper.

7 Note that if a game is close to a potential game in terms of payoffs, it is also close in terms of maximum pairwise difference. Conversely, the definition
of potential games suggests that if a game is close to a potential game in maximum pairwise difference, then there exists another potential game that is
close to this game in terms of payoffs.

8 This argument relies on the convexity of MPD as a function of the utility functions (Candogan et al., 2011b). An alternative framework for finding
near-potential (and weighted potential) games (using a different norm) can be found in Candogan et al. (2011a and 2010b).
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Theorem 3.1. Consider a game G and let Ĝ be a nearby potential game such that d(G, Ĝ) � δ. Assume that best response or better
response dynamics are used in G , and denote the number of strategy profiles in these games by |E| = h.

For both update processes, the trajectories are contained in the δh-equilibrium set of G after finite time with probability 1, i.e., let
T be a random variable such that pt ∈Xδh, for all t > T , then P (T < ∞) = 1.

Proof. Using Definition 3.1, we can represent the strategy updates in best response dynamics as the state transitions in the
following Markov chain: (i) Each state corresponds to a strategy profile and, (ii) there is a nonzero transition probability
from state r to state q 
= r, if r and q differ in the strategy of a single player, say m, and qm is a (strict) best response of
player m to r−m . The probability of transition from state r to state q is equal to the probability that at strategy profile r,
player m is chosen for update and it chooses qm as its new strategy. In the case of better response dynamics we allow qm

to be any strategy strictly improving payoff of player m, and a similar Markov chain representation still holds. Since there
are finitely many states, one of the recurrent classes of the Markov chain is reached in finite time (with probability 1). Thus,
to prove the claim, it is sufficient to show that any state which belongs to some recurrent class of this Markov chain is
contained in the ε-equilibrium set of G .

It follows from Definition 3.1 that a recurrence class is a singleton, only if none of the players can strictly improve its
payoff by unilaterally deviating from the corresponding strategy profile. Thus, such a strategy profile is a Nash equilibrium
of G and is contained in the ε-equilibrium set. Consider a recurrence class that is not a singleton. Let r be a strategy profile
in this recurrence class. Since the recurrence class is not a singleton, there exists some player m, who can unilaterally
deviate from r by following its best response to another strategy profile q, and increase its payoff by some α > 0. Since
such a transition occurs with nonzero probability, r and q are in the same recurrence class, and the process when started
from r visits q and returns to r in finitely many updates. Since each transition corresponds to a unilateral deviation that
strictly improves the payoff of the deviating player, this constitutes a simple closed improvement path containing r and q.
Let γ = (p0, . . . ,pN) be such an improvement path and p0 = pN = r, p1 = q and N � |E| = h. Since um(q) − um(r) = α, and
umi (pi)−umi (pi−1) � 0 at every step i of the path, this closed improvement path satisfies

∑N
i=1(umi (pi)−umi (pi−1)) � α. On

the other hand it follows by Proposition 2.1 that the close potential game satisfies
∑N

i=1(ûmi (pi)− ûmi (pi−1)) = 0. Combining
these inequalities we obtain α �

∑N
i=1(umi (pi) − umi (pi−1)) − (ûmi (pi) − ûmi (pi−1)) � Nδ. Since N � |E| = h, it follows that

α � δh. The claim then immediately follows since r and the recurrence class were chosen arbitrarily, and our analysis shows
that the payoff improvement of player m (chosen for strategy update using a probability distribution with full support as
described in Definition 3.1), due to its best response is bounded by δh. �

As can be seen from the proof of this theorem, extending dynamical properties of potential games to nearby games
relies on special structural properties of potential games. As a corollary of the above theorem, we obtain that trajectories
generated by better and best response dynamics converge to a Nash equilibrium in potential games, since if G is a potential
game, the close potential game Ĝ can be chosen such that d(G, Ĝ) = 0. Also, it follows from our proof that our result is
applicable in cases where the underlying game has better response cycles. Thus, even when the game does not share similar
ordinal properties with potential games, our approach can be used to approximately characterize the limiting behavior of
dynamics.

4. Logit response dynamics

In this section we focus on logit response dynamics. Logit response dynamics can be viewed as a smoothened version
of the best response dynamics, in which a smoothing parameter determines the frequency with which the best response
strategy is picked. The evolution of the pure strategy profiles can be represented in terms of a Markov chain (with state
space given by the set of pure strategy profiles). We characterize the stationary distribution and stochastically stable states
of this Markov chain (or of the update rule) in near-potential games. Our approach involves identifying a close potential
game to a given game, and exploiting features of the corresponding potential function to characterize the limiting behavior
of logit response dynamics in the original game.

In Section 4.1, we provide a formal definition of logit response dynamics and review some of its properties. We also
present some of the mathematical tools used in the literature to study this update rule. In Section 4.2, we show that the
stationary distribution of logit response dynamics in a near-potential game can be approximately characterized using the
potential function of a nearby potential game. We also use this result to show that the stochastically stable strategy profiles
are contained in approximate equilibrium sets in near-potential games.

4.1. Properties of logit response

We start by providing a formal definition of logit response dynamics:

Definition 4.1. At each time instant t ∈ {1,2, . . .}, a single player is chosen at random for updating its strategy, using a
probability distribution with full support over the set of players. Let m be the player chosen at some time t , and let r ∈ E
denote the strategy profile that is used at time t − 1.
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Logit response dynamics with parameter τ is the update process, where player m chooses a strategy qm ∈ Em with proba-

bility Pm
τ (qm|r) = e

1
τ um(qm ,r−m)

∑
pm∈Em e

1
τ um(pm ,r−m)

.

In this definition, τ > 0 is a fixed parameter that determines how often players choose their best responses. The prob-
ability of not choosing a best response decreases as τ decreases, and as τ → 0, players choose their best responses with
probability 1. This feature suggests that logit response dynamics can be viewed as a generalization of best response dynam-
ics, where with small but nonzero probability players use a strategy that is not a best response.

For a given τ > 0, this update process can be represented by a finite aperiodic and irreducible Markov chain (Alós-Ferrer
and Netzer, 2010; Marden and Shamma, 2008). The states of the Markov chain correspond to the strategy profiles in the
game. Denoting the probability that player m is chosen for a strategy update by αm , transition probability from strategy
profile p to q can be given by (assuming p 
= q, and denoting the transition from p to q by p → q):

Pτ (p → q) =
{

αm Pm
τ (qm|p) if q−m = p−m for some m ∈ M,

0 otherwise.
(2)

The chain is aperiodic and irreducible since a player updating its strategy can choose any strategy (including the current
one) with positive probability. Consequently, it has a unique stationary distribution.

We denote the stationary distribution of this Markov chain by μτ and refer to it as the stationary distribution of the
logit response dynamics. A strategy profile q such that limτ→0 μτ (q) > 0 is referred to as a stochastically stable strategy profile
of the logit response dynamics. Intuitively, these strategy profiles are the ones that are used with nonzero probability, as
players adopt their best responses more and more frequently in their strategy updates.

In potential games, the stationary distribution of the logit response dynamics can be written as an explicit function of
the potential. If G is a potential game with potential function φ, the stationary distribution of the logit response dynamics
is given by the distribution (Alós-Ferrer and Netzer, 2010; Blume, 1997; Marden and Shamma, 2008)9:

μτ (q) = e
1
τ φ(q)

∑
p∈E e

1
τ φ(p)

. (3)

It can be seen from (3) that limτ→0 μτ (q) > 0 if and only if q ∈ arg maxp∈E φ(p). Thus, in potential games the stochasti-
cally stable strategy profiles are those that maximize the potential function.

We next describe a method for obtaining the stationary distribution of Markov chains. This method will be used in the
next subsection in characterizing the stationary distribution of logit response. Assume that an irreducible Markov chain over
a finite set of states S , with transition probability matrix P is given. Consider a directed tree, T , with nodes given by the
states of the Markov chain, and assume that an edge from node q to node p can exist only if there is a nonzero transition
probability from q to p in the Markov chain. We say that the tree is rooted at state p, if from every state q 
= p there exists
a unique directed path along the tree to p. For each state p ∈ S , denote by T (p) the set of all trees rooted at p, and define
a weight wp � 0 such that wp = ∑

T ∈T (p)

∏
(q→r)∈T P (q → r). The following proposition from the Markov Chain literature

(Anantharam and Tsoucas, 1989; Freidlin and Wentzell, 1998; Leighton and Rivest, 1983), known as the Markov chain tree
theorem, expresses the stationary distribution of Markov chains in terms of these weights.

Proposition 4.1. The stationary distribution of the Markov chain defined over set S is given by μ(p) = wp∑
q∈S wq

.

For any T ∈ T (p), intuitively, the quantity
∏

(q→r)∈T P (q → r) gives a measure of likelihood of the event that node p is
reached when the chain is initiated from the leaves (i.e., nodes with indegree equal to 0) of T . Thus, wp captures how likely
it is that node p is visited in this chain, and the normalization in Proposition 4.1 gives the stationary distribution. Since for
finite games logit response dynamics can be modeled as an irreducible Markov chain, this result can be used to characterize
its stationary distribution.

4.2. Stationary distribution of logit response dynamics

We start this section by showing that in games with small MPD logit response dynamics have similar transition proba-
bilities.

Lemma 4.1. Consider a game G and let Ĝ be a nearby potential game such that d(G, Ĝ) � δ. Denote the transition probability matrices
of logit response dynamics in G and Ĝ by Pτ and P̂τ respectively. For all strategy profiles p and q that differ in the strategy of at most
one player, we have

e− 2δ
τ � P̂τ (p → q)/Pτ (p → q) � e

2δ
τ .

9 Note that this expression is independent of {αm}, i.e., the probability distribution that is used to choose which player updates its strategy has no effect
on the stationary distribution of logit response.
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Proof. Assume that p−m = q−m . In G the transition probability Pτ (p → q) can be expressed by (see (2)):

Pτ (p → q) =
{

αm Pm
τ (qm|p) if qm 
= pm,∑

k∈M αk Pk
τ (pk|p) otherwise.

A similar expression holds for the transition probability P̂τ (p → q) in Ĝ , replacing Pm
τ by P̂m

τ . Thus, it is sufficient prove

e− 2δ
τ � P̂m

τ (qm|p)/Pm
τ (qm|p)� e

2δ
τ for all p, m, qm to prove the claim.

Observe that by the definition of MPD

um(
rm,p−m) − um(

pm,p−m) − δ � ûm(
rm,p−m) − ûm(

pm,p−m)
� um(

rm,p−m) − um(
pm,p−m) + δ. (4)

Definition 4.1 suggests that P̂m
τ (qm|p) can be written as (by dividing the numerator and the denominator by e

1
τ ûm(pm,p−m)):

P̂m
τ

(
qm|p) = e

1
τ (ûm(qm,p−m)−ûm(pm,p−m))

∑
rm∈Em e

1
τ (ûm(rm,p−m)−ûm(pm,p−m))

.

Therefore, using the bounds in (4) it follows that P̂m
τ (qm|p) � κ(qm)e

δ
τ

κ(qm)e
δ
τ +∑

rm 
=qm κ(rm)e
−δ
τ

, where, κ(rm) =

e
1
τ (um(rm,p−m)−um(pm,p−m)) for all rm ∈ Em . Dividing both the numerator and the denominator of the right-hand side by∑

rm∈Em κ(rm) and observing that Pm
τ (qm|p) = κ(qm)∑

rm∈Em κ(rm)
, we obtain P̂m

τ (qm|p) � e
δ
τ Pm

τ (qm|p)

e
δ
τ Pm

τ (qm|p)+e− δ
τ (1−Pm

τ (qm|p))
, or equiva-

lently

P̂m
τ (qm|p)

Pm
τ (qm|p)

� e
δ
τ

e
δ
τ Pm

τ (qm|p) + e− δ
τ (1 − Pm

τ (qm|p))
.

It can be seen that the right-hand side is decreasing in Pm
τ (qm|p). Thus replacing Pm

τ (qm|p) by 0, the right-hand

side can be upper bounded by e
2δ
τ . Then we obtain P̂m

τ (qm|p)/Pm
τ (qm|p) � e

2δ
τ . By symmetry we also conclude that

Pm
τ (qm|p)/ P̂m

τ (qm|p)� e
2δ
τ , and combining these bounds the claim follows. �

Definition 4.1 suggests that perturbation of utility functions changes the transition probabilities multiplicatively in logit
response. The above lemma supports this intuition: if utility gains due to unilateral deviations are modified by δ, the ratio

of the transition probabilities can change at most by e
2δ
τ . Thus, if two games are close, then the transition probabilities of

logit response in these games should be closely related.
This suggests using results from perturbation theory of Markov chains to characterize the stationary distribution of logit

response in a near-potential game (Cho and Meyer, 2001; Haviv and Van der Heyden, 1984). However, standard perturbation
results characterize changes in the stationary distribution of a Markov chain when the transition probabilities are additively
perturbed. These results, when applied to multiplicative perturbations, yield bounds which are uninformative. We therefore
first present a result which characterizes deviations from the stationary distribution of a Markov chain when its transition
probabilities are multiplicatively perturbed, and therefore may be of independent interest.10

Theorem 4.1. Let P and P̂ denote the probability transition matrices of two finite irreducible Markov chains with the same state space.
Denote the stationary distributions of these Markov chains by μ and μ̂ respectively, and let the cardinality of the state space be h.
Assume that α � 1 is a given constant and for any two states p and q, the following inequalities hold: α−1 P (p → q) � P̂ (p → q) �
αP (p → q). Then, for any state p, we have

(i)
α−(h−1)μ(p)

α−(h−1)μ(p) + αh−1(1 − μ(p))
� μ̂(p) � αh−1μ(p)

αh−1μ(p) + α−(h−1)(1 − μ(p))
,

(ii)
∣∣μ(p) − μ̂(p)

∣∣ � αh−1 − 1

αh−1 + 1
.

Proof. As before, let T (p) denote the set of directed trees that are rooted at state p. Using the characterization of the
stationary distribution in Proposition 4.1, for the Markov chain with probability transition matrix P , we have μ(p) = wp∑

q wq
,

10 A multiplicative perturbation bound similar to ours, can be found in Freidlin and Wentzell (1998). However, this bound is looser than the one we obtain
and it does not provide a good characterization of the stationary distribution in our setting. We provide a tighter bound, and obtain stronger predictions
on the stationary distribution of logit response.
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where for each state p, wp = ∑
T ∈T (p)

∏
(x→y)∈T P (x → y). For the Markov chain with probability transition matrix P̂ , we

define ŵp , by replacing P in the above equation with P̂ and μ̂(p) similarly satisfies μ̂(p) = ŵp∑
q ŵq

. Since the Markov chain

has h states, |T | = h − 1 for all T ∈ T (p). Hence, it follows from the assumption of the theorem and the above definitions
of wp and ŵp that

α−(h−1)wp = α−(h−1)
∑

T ∈T (p)

∏
(x→y)∈T

P (x → y) � ŵp =
∑

T ∈T (p)

∏
(x→y)∈T

P̂ (x → y)

� αh−1
∑

T ∈T (p)

∏
(x→y)∈T

P (x → y) = αh−1 wp.

This inequality implies that for all q, ŵq is upper bounded by αh−1 wq and lower bounded by α−(h−1)wq . Using this

observation together with the identity μ̂(p) = ŵp∑
q ŵq

, we obtain

α−(h−1)wp

α−(h−1)wp + αh−1
∑

q 
=p wq
� μ̂(p) = ŵp∑

q ŵq
� αh−1 wp

αh−1 wp + α−(h−1)
∑

q 
=p wq
.

Dividing the numerators and denominators of the left- and right-hand sides of the inequality by
∑

q wq , using Proposi-
tion 4.1, and observing that

∑
q
=p μ(q) = 1 − μ(p) the first part of the theorem follows.

Consider functions f and g defined on [0,1] such that f (x) = αh−1x
αh−1x+α−(h−1)(1−x)

− x and g(x) = α−(h−1)x
α−(h−1)x+αh−1(1−x)

− x for

x ∈ [0,1]. Checking the first order optimality conditions, it can be seen that f (x) is maximized at x = α−(h−1)

1+α−(h−1) , and the

maximum equals to αh−1−1
αh−1+1

. Similarly, the minimum of g(x) is achieved at x = αh−1

1+αh−1 and is equal to 1−αh−1

1+αh−1 . Combining
these observations with part (i), we obtain

1 − αh−1

1 + αh−1
� g

(
μ(p)

) = α−(h−1)μ(p)

α−(h−1)μ(p) + αh−1(1 − μ(p))
− μ(p) � μ̂(p) − μ(p)

� αh−1μ(p)

αh−1μ(p) + α−(h−1)(1 − μ(p))
− μ(p) = f

(
μ(p)

)
� αh−1 − 1

αh−1 + 1
,

hence the second part of the claim follows. �
Next we use the above theorem to relate the stationary distributions of logit response dynamics in nearby games.

Corollary 4.1. Let G and Ĝ be finite games with number of strategy profiles |E| = h, such that d(G, Ĝ) � δ. Denote the stationary
distributions of logit response dynamics in these games by μτ , and μ̂τ respectively. Then, for any strategy profile p we have

(i)
e− 2δ(h−1)

τ μτ (p)

e− 2δ(h−1)
τ μτ (p) + e

2δ(h−1)
τ (1 − μτ (p))

� μ̂τ (p) � e
2δ(h−1)

τ μτ (p)

e
2δ(h−1)

τ μτ (p) + e− 2δ(h−1)
τ (1 − μτ (p))

,

(ii)
∣∣μτ (p) − μ̂τ (p)

∣∣ � e
2δ(h−1)

τ − 1

e
2δ(h−1)

τ + 1
.

Proof. Proof follows from Lemma 4.1 and Theorem 4.1 by setting α = e
2δ
τ . �

The above corollary can be adapted to near-potential games, by exploiting the relation of stationary distribution of logit
response and potential function in potential games (see (3)). We conclude this section by providing such a characterization
of the stationary distribution of logit response dynamics in near-potential games.

Corollary 4.2. Consider a game G and let Ĝ be a nearby potential game such that d(G, Ĝ) � δ. Denote the potential function of Ĝ by φ ,
and the number of strategy profiles in these games by |E| = h. Then, the stationary distribution μτ of logit response dynamics in G is
such that

(i)
e

1
τ (φ(p)−2δ(h−1))

e
1
τ (φ(p)−2δ(h−1)) + ∑

q 
=p∈E e
1
τ (φ(q)+2δ(h−1))

�μτ (p) � e
1
τ (φ(p)+2δ(h−1))

e
1
τ (φ(p)+2δ(h−1)) + ∑

q 
=p∈E e
1
τ (φ(q)−2δ(h−1))

,

(ii)

∣∣∣∣μτ (p) − e
1
τ φ(p)

∑
q∈E e

1
τ φ(q)

∣∣∣∣ � e
2δ(h−1)

τ − 1

e
2δ(h−1)

τ + 1
.
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Proof. Proof follows from Corollary 4.1 and (3). �
With simple manipulations, it can be shown that (ex −1)/(ex +1) � x/2 for x � 0. Thus, (ii) in the above corollary implies

that |μτ (p)− e
1
τ φ(p)

∑
q∈E e

1
τ φ(q)

| � δ(h−1)
τ . Therefore, the stationary distribution of logit response dynamics in a near-potential game

can be characterized in terms of the stationary distribution of this update rule in a close potential game. When τ is fixed
and δ → 0, i.e., when the original game is arbitrarily close to a potential game, the stationary distribution of logit response
is arbitrarily close to the stationary distribution in the potential game. On the other hand, for a fixed δ, as τ → 0, the
upper bound in (ii) becomes uninformative. This is the case since τ → 0 implies that players adopt their best responses
with probability 1, and thus the stationary distribution of the update rule becomes very sensitive to the difference of the
game from a potential game. In this case we can still characterize the stochastically stable states of logit response using the
results of Corollary 4.2, as we show in Corollary 4.3.

Corollary 4.3. Consider a game G and let Ĝ be a nearby potential game with potential function φ and d(G, Ĝ) � δ. Denote the potential
function of Ĝ by φ , and the number of strategy profiles in these games by |E| = h. The stochastically stable strategy profiles of G are
(i) contained in S = {p|φ(p)� maxq φ(q) − 4δ(h − 1)}, (ii) 4δh-equilibria of G .

Proof. (i) The upper bound in the first part of Corollary 4.2 implies that if p is a strategy profile such that φ(p) <

maxq∈E φ(q) − 4δ(h − 1), then the stationary distribution of logit response in G is such that μτ (p) → 0 as τ → 0. Thus, it
immediately follows that the stochastically stable states in G are contained in {p ∈ E|φ(p)� maxq∈E φ(q) − 4δ(h − 1)}.

(ii) From the definition of S it follows that in Ĝ , none of the players can deviate from a strategy profile in S and
improve its utility by more than 4δ(h − 1). Since d(G, Ĝ) � δ it follows from part (i) that in G , none of the players can
unilaterally deviate from a stochastically stable strategy profile and improve its utility by more than 4δ(h − 1) + δ � 4δh.
Hence stochastically stable strategy profiles of G are 4δh-equilibria. �

We conclude that in near-potential games, the stochastically stable states of logit response are the strategy profiles
that approximately maximize the potential function of a close potential game. This result enables us to characterize the
stochastically stable states of logit response dynamics in near-potential games, without explicitly computing the stationary
distribution. Since it is possible to identify a potential game that is close to a given game (as explained in Section 2),
Corollaries 4.2 and 4.3 provide a systematic approach for characterizing the stationary distribution and stochastically stable
states of logit response, for general games. The characterization is tighter for near-potential games, but it is still informative
for general games. Moreover, our results enable robust predictions about stochastically stable strategy profiles in potential
games. In particular, we can quantify payoff perturbations that maintain stochastically stable states of a game. For instance,
consider potential games where the potential φ has a unique maximizer q∗ . Corollary 4.3 implies that in such games if
the payoffs are perturbed by at most 1

8h (φ(q∗) − maxq
=q∗ φ(q)) (so that the MPD between the original game and the

game obtained after perturbations satisfies δ � 1
4h (φ(q∗) − maxq
=q∗ φ(q))) the stochastically stable strategy profiles do not

change. Thus, the corollary allows us to obtain a bound on the payoff perturbations that leave the stochastically stable
strategy profiles intact.

5. Fictitious play

In this section, we investigate the convergence behavior of fictitious play in near-potential games. Unlike better/best
response dynamics and logit response, in fictitious play agents maintain an empirical frequency distribution of other players’
strategies and play a best response against it. Thus, analyzing fictitious play dynamics requires the notion of mixed strategies
and some additional definitions that are provided in Section 5.1. In Section 5.2 we show that in finite games the empirical
frequencies of fictitious play converge to a set which can be characterized in terms of the approximate equilibrium set of
the game and the level sets of the potential function of a close potential game. When the original game is sufficiently close
to a potential game, we strengthen this result and establish that the empirical frequencies converge to a small neighborhood
of mixed equilibria of the game, and the size of this neighborhood is a function of the distance of the original game from a
potential game. As a special case, our result allows us to recover the result of Monderer and Shapley (1996a), which states
that in potential games the empirical frequencies of fictitious play converge to the set of mixed Nash equilibria.

5.1. Mixed strategies and equilibria

In this section, we introduce some additional notation and definitions, which will be used in Section 5.2 when studying
convergence properties of fictitious play in near-potential games.

We start by introducing the concept of mixed strategies in games. For each player m ∈ M, we denote by �Em the set
of probability distributions on Em . For xm ∈ �Em , xm(pm) denotes the probability player m assigns to strategy pm ∈ Em . We
refer to the distribution xm ∈ �Em as a mixed strategy of player m ∈ M and to the collection x = {xm}m∈M ∈ ∏

m �Em as a



78 O. Candogan et al. / Games and Economic Behavior 82 (2013) 66–90
mixed strategy profile. The mixed strategy profile of all players but the mth one is denoted by x−m . We use ‖ · ‖ to denote
the standard 2-norm on

∏
m �Em , i.e., for x ∈ ∏

m �Em , we have ‖x‖2 = ∑
m∈M

∑
pm∈Em (xm(pm))2.

By slight (but standard) abuse of notation, we use the same notation for the mixed extension of utility function um of
player m ∈M, i.e.,

um(x) =
∑
p∈E

um(p)
∏

k∈M
xk(pk), (5)

for all x ∈ ∏
m �Em . In addition, if player m uses some pure strategy qm and other players use the mixed strategy pro-

file x−m , the payoff of player m is denoted by

um(
qm,x−m) =

∑
p−m∈E−m

um(
qm,p−m) ∏

k∈M,k 
=m

xk(pk).

Similarly, we denote the mixed extension of the potential function by φ(x), and we use the notation φ(qm,x−m) to denote
the potential when player m uses some pure strategy qm and other players use the mixed strategy profile x−m .

A mixed strategy profile x = {xm}m∈M ∈ ∏
m �Em is a mixed ε-equilibrium if for all m ∈M and pm ∈ Em ,

um(
pm,x−m) − um(

xm,x−m)
� ε. (6)

Note that if the inequality holds for ε = 0, then x is referred to as a mixed Nash equilibrium of the game. In the rest of the
paper, we use the notation Xε to denote the set of mixed ε-equilibria.

Our characterization of the limiting mixed strategy set of fictitious play depends on the number of players in the game.
We use M = |M| as a short-hand notation for this number.

We conclude this section with two technical lemmas which summarize some properties of mixed equilibria and mixed
extensions of potential and utility functions. Proofs of these lemmas can be found in Candogan et al. (2011b).

The first lemma establishes the Lipschitz continuity of the mixed extensions of the payoff functions and the potential
function. It also shows a natural implication of continuity: for any ε ′ > ε , a small enough neighborhood of the ε-equilibrium
set is contained in the ε′-equilibrium set.

Lemma 5.1.

(i) Let ν :
∏

m∈M Em → R be a mapping from pure strategy profiles to real numbers. Its mixed extension is Lipschitz continuous with
a Lipschitz constant of M

∑
p∈E |ν(p)| over the domain

∏
m∈M �Em.

(ii) Let α � 0 and γ > 0 be given. There exists a small enough θ > 0 such that for any ‖x − y‖ < θ if x ∈Xα , then y ∈Xα+γ .

Lipschitz continuity follows from the fact that mixed extensions are multilinear functions (5), with bounded domains.
The proof of the second part immediately follows from the Lipschitz continuity of mixed extensions of payoff functions
and the definition of approximate equilibria (6). Note that the second part implies that for any ε′ > 0, there exists a small
enough neighborhood of equilibria that is contained in the ε ′-equilibrium set of the game.

We next study the continuity properties of the approximate equilibrium mapping. We first provide the relevant defini-
tions (see Berge, 1963; Fudenberg and Tirole, 1991).

Definition 5.1 (Upper semicontinuous function). A function g : X → Y ⊂ R is upper semicontinuous at x∗ , if, for each ε > 0
there exists a neighborhood U of x∗ , such that g(x) < g(x∗) + ε for all x ∈ U . We say g is upper semicontinuous, if it is
upper semicontinuous at every point in its domain.

Alternatively, g is upper semicontinuous if lim supxn→x∗ g(xn) � g(x∗) for every x∗ in its domain.

Definition 5.2 (Upper semicontinuous correspondence). A correspondence g : X ⇒ Y is upper semicontinuous at x∗ , if for any
open neighborhood V of g(x∗) there exists a neighborhood U of x∗ such that g(x) ⊂ V for all x ∈ U . We say g is upper
semicontinuous, if it is upper semicontinuous at every point in its domain and g(x) is a compact set for each x ∈ X .

Alternatively, when Y is compact, g is upper semicontinuous if its graph is closed, i.e., the set {(x, y)|x ∈ X, y ∈ g(x)} is
closed.

We next establish upper semicontinuity of the approximate equilibrium mapping.11

11 Here we fix the game, and discuss upper semicontinuity with respect to the ε parameter characterizing the ε-equilibrium set. We note that this
is different than the common results in the literature which discuss upper semicontinuity of the equilibrium set with respect to changes in the utility
functions of the underlying game (see Fudenberg and Tirole, 1991).
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Lemma 5.2.

(i) Let ν :
∏

m∈M �Em → R be an upper semicontinuous function. The correspondence g :R ⇒
∏

m∈M �Em such that g(v) =
{x|ν(x) � −v} is upper semicontinuous.

(ii) Let g :R⇒
∏

m∈M �Em be the correspondence such that g(α) =Xα . This correspondence is upper semicontinuous.

Upper semicontinuity of the approximate equilibrium mapping implies that for any given neighborhood of the
ε-equilibrium set, there exists an ε′ > ε such that ε′-equilibrium set is contained in this neighborhood. In particular, this
implies that every neighborhood of equilibria of the game contains an ε ′-equilibrium set for some ε′ > 0. Hence, if disjoint
neighborhoods of equilibria are chosen (assuming there are finitely many equilibria), this implies that there exists some
ε′ > 0, such that the ε′-equilibrium set is contained in disjoint neighborhoods of equilibria. In the next section, we use this
observation to establish convergence of fictitious play to small neighborhoods of equilibria of near-potential games.

5.2. Discrete-time fictitious play

Fictitious play is a classical update rule studied in the learning in games literature. In this section, we consider the
fictitious play dynamics, proposed in Brown (1951), and explain how the limiting behavior of this dynamical process can be
characterized in near-potential games. In particular, we show that the empirical frequencies of fictitious play converge to a
set which can be characterized in terms of the ε-equilibrium set of the game, and the level sets of the potential function of
a close potential game. We also establish that for games sufficiently close to a potential game, the empirical frequencies of
fictitious play converge to a neighborhood of the (mixed) equilibrium set. Moreover, the size of this neighborhood depends
on the distance of the original game from a nearby potential game. This generalizes the result of Monderer and Shapley
(1996a), on convergence of empirical frequencies to mixed Nash equilibria in potential games.

In this paper, we only consider the discrete-time version of fictitious play, i.e., the update process starts at a given
strategy profile at time t = 0, and players can update their strategies at discrete-time instants t ∈ {1,2, . . .}. Throughout this
subsection we denote the strategy used by player m at time instant t by pm

t , and we denote by 1(pm
t = pm) the indicator

function which equals to 1 if pm
t = pm , and 0 otherwise. A formal definition of discrete-time fictitious play dynamics is

given next.

Definition 5.3 (Discrete-time fictitious play). Let μm
T (qm) = 1

T

∑T −1
t=0 1(pm

t = qm) denote the empirical frequency that player m
uses strategy qm from time instant 0 to time instant T − 1, and μ−m

T denote the collection of empirical frequencies of all
players but m. A game play, where at each time instant t , every player m, chooses a strategy pm

t ∈ arg maxqm∈Em um(qm,μ−m
t )

is referred to as discrete-time fictitious play. That is, fictitious play dynamics is the update process, where each player
chooses its best response to the empirical frequencies of the actions of other players.

We refer to μm
t as the distribution of empirical frequencies of player m’s strategies at time t . Note that μm

t can be thought
of as vector with length |Em|, whose entries are indexed by strategies of player m, i.e., μm

t (pm) denotes the entry of the
vector corresponding to the empirical frequency player m uses strategy pm with. Similarly, we define the joint empirical
frequency distribution of all players as μt = {μm

t }m∈M . Note that μm
t ∈ �Em , i.e., empirical frequency distributions are

mixed strategies, and similarly μt ∈ ∏
m∈M �Em .

Observe that the evolution of this empirical frequency distribution can be captured by the following equation:

μt+1 = t

t + 1
μt + 1

t + 1
It, (7)

where It = {Im
t }m∈M , and Im

t is a vector which has the same size as μm
t and its entry corresponding to strategy pm is given

by Im
t (pm) = 1(pm

t = pm). Rearranging the terms in (7), and observing that It ,μt ∈ ∏
m∈M �Em are vectors with entries in

[0,1] we conclude

‖μt+1 − μt‖ = 1

t + 1
‖It − μt‖ = O

(
1

t

)
, (8)

where O (·) stands for the big-O notation, i.e., f (x) = O (g(x)), implies that there exists some x0 and a constant c such that
| f (x)| � c|g(x)| for all x � x0.

We start analyzing discrete-time fictitious play in near-potential games, by first focusing on the change in the value of the
potential function along the fictitious play updates in the original game. In particular, we show that in near-potential games
if the empirical frequencies are outside some ε-equilibrium set, then the potential of the close potential game (evaluated at
the empirical frequency distribution) increases by discrete-time fictitious play updates.12

12 Our approach here is similar to the one used in Monderer and Shapley (1996a) to analyze discrete-time fictitious play in potential games.
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Lemma 5.3. Consider a game G and let Ĝ be a close potential game such that d(G, Ĝ) � δ. Denote the potential function of Ĝ by φ .
Assume that in G players update their strategies according to discrete-time fictitious play dynamics, and at some time instant T > 0,
the empirical frequency distribution μT is outside an ε-equilibrium set of G . Then,

φ(μT +1) − φ(μT ) � ε − Mδ

T + 1
+ O

(
1

T 2

)
.

Proof. Consider the mixed extension of the potential function φ(x) = ∑
p∈E φ(p)

∏
m∈M xm(pm), where x = {xm}m and

xm(pm) denotes the probability player m plays strategy pm . The expression for φ(x) implies that Taylor expansion of φ

around μT satisfies

φ(μT +1) = φ(μT ) +
∑

m∈M

∑
pm∈Em

(
μm

T +1

(
pm) − μm

T

(
pm))

φ
(

pm,μ−m
T

) + O
(‖μT +1 − μT ‖2).

Observing from (7) that μt+1 − μt = 1
t+1 (It − μt), and noting from (8) that ‖μt+1 − μt‖ = O ( 1

t ) the above equality can be
rewritten as

φ(μT +1) = φ(μT ) +
∑

m∈M

∑
pm∈Em

1

T + 1

(
1
(

pm
T = pm) − μm

T

(
pm))

φ
(

pm,μ−m
T

) + O

(
1

T 2

)
.

Rearranging the terms, and noting that
∑

pm∈Em μm
T (pm)φ(pm,μ−m

T ) = φ(μm
T ,μ−m

T ), it follows that

φ(μT +1) = φ(μT ) +
∑

m∈M

1

T + 1
φ
(

pm
T ,μ−m

T

) −
∑

m∈M

1

T + 1
φ
(
μm

T ,μ−m
T

) + O

(
1

T 2

)

= φ(μT ) + 1

T + 1

∑
m∈M

(
φ
(

pm
T ,μ−m

T

) − φ
(
μm

T ,μ−m
T

)) + O

(
1

T 2

)
.

Since d(G, Ĝ)� δ, the above equality and the definition of MPD imply

φ(μT +1) � φ(μT ) + 1

T + 1

∑
m∈M

(
um(

pm
T ,μ−m

T

) − um(
μm

T ,μ−m
T

) − δ
) + O

(
1

T 2

)
. (9)

By definition of the fictitious play dynamics, every player m plays its best response to μ−m
T , therefore um(pm

T ,μ−m
T ) −

um(μm
T ,μ−m

T ) � 0 for all m. Additionally, if μT is outside the ε-equilibrium set, as in the statement of the lemma, then it
follows that um(pm

T ,μ−m
T ) − um(μm

T ,μ−m
T ) � ε for at least one player. Therefore, (9) implies φ(μT +1) � φ(μT ) + ε−Mδ

T +1 +
O ( 1

T 2 ), hence, the claim follows. �
The above theorem implies that if μT is not in the ε-equilibrium set for some ε > Mδ, and T sufficiently large, then

the potential evaluated at empirical frequencies increases when players update their strategies. Since the mixed extension
of the potential is a bounded function, the potential cannot increase unboundedly, and this observation suggests that the
ε-equilibrium set is eventually reached by the empirical frequency distribution. On the other hand, at a later time instant
μT can still leave this equilibrium set, and before it does so the potential cannot be lower than the lowest potential in
this set (since μT itself belongs to this set). Moreover, after μT leaves the ε-equilibrium set the potential keeps increasing.
Thus, the empirical frequencies are contained in the set of mixed strategy profiles, which have potential at least as large as
the minimum potential in this approximate equilibrium set. We next make this intuition precise, and characterize the set
of limiting mixed strategies for fictitious play in near-potential games. We adopt the following convergence notion: we say
that empirical frequencies of fictitious play converge to a set S ⊂ ∏

m∈M �Em , if infx∈S ‖μt − x‖ → 0 as t → ∞.

Theorem 5.1. Consider a game G and let Ĝ be a close potential game such that d(G, Ĝ) � δ. Denote the potential function of Ĝ
by φ . Assume that in G players update their strategies according to discrete-time fictitious play dynamics, and let Xα denote the
α-equilibrium set of G . For any ε > 0, there exists a time instant Tε > 0 such that for all t > Tε

μt ∈ Cε �
{

x ∈
∏

m∈M
�Em

∣∣∣∣φ(x) � min
y∈XMδ+ε

φ(y)

}
.

Proof. Let ε′ be such that ε > ε′ > 0. It can be seen from the definition of Cε that XMδ+ε′ ⊂ XMδ+ε ⊂ Cε . We prove the
claim in two steps: (i) We first show that in this update process XMδ+ε′ is visited infinitely often by μt , i.e., for all T ′ ,
there exists t > T ′ such that μt ∈ XMδ+ε′ , (ii) We prove that there exists a T ′′ such that if μt ∈ Cε for some t > T ′′ , then
for all t′ > t we have μt′ ∈ Cε . Thus, the second step guarantees that if Cε is visited at a sufficiently later time instant, then
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μt remains in Cε . Since XMδ+ε′ ⊂ Cε the first step ensures that such a time instant exists, and the claim in the theorem
immediately follows from (ii). Moreover, this time instant corresponds to Tε in the theorem statement.

Proof of both steps rely on the following simple observation: Lemma 5.3 implies that there exists a large enough T , such
that if the empirical frequencies do not belong to XMδ+ε′ at a time instant t > T , then φ increases:

φ(μt+1) − φ(μt) �
Mδ + ε′ − Mδ

(t + 1)
+ O

(
1

t2

)
>

ε′

2(t + 1)
> 0. (10)

We prove (i) by contradiction. Assume that there exists a T ′ such that μt /∈ XMδ+ε′ for t > T ′ , and let Tm =
max{T , T ′}. Then, (10) holds for all t = {Tm + 1, . . .}, and summing both sides of this inequality over this set we obtain
lim supt→∞ φ(μt+1) − φ(μTm+1) �

∑∞
t=Tm+1

ε′
2(t+1)

. Since the mixed extension of the potential is a bounded function, it
follows that the left-hand side of the above inequality is bounded, but the right-hand side grows unboundedly. Hence, we
reach a contradiction, and (i) follows.

Lemma 5.1(ii) implies that there exists some θ > 0 such that if a strategy profile x is an (Mδ + ε ′)-equilibrium, then any
strategy profile y that satisfies ‖x − y‖ < θ is an (Mδ + ε)-equilibrium (recall that ε > ε ′ > 0). Since ‖μt+1 − μt‖ = O (1/t)
by (8), this implies that there exists some T ′′ > T , such that for all t > T ′′ if μt ∈XMδ+ε′ , then we have

μt+1 ∈ XMδ+ε . (11)

Let μt ∈ Cε for some time instant t > T ′′ . If μt ∈ XMδ+ε′ , then by (11) μt+1 ∈ XMδ+ε ⊂ Cε . If, on the other hand,
μt ∈ Cε −XMδ+ε′ , then by (10) and the definition of Cε we have

φ(μt+1) > φ(μt) � min
y∈XMδ+ε

φ(y), (12)

and hence μt+1 ∈ Cε . Thus, we have established that there exists some T ′′ such that if μt ∈ Cε for some t > T ′′ , then
μt+1 ∈ Cε , and hence (ii) follows. �

The above theorem establishes that after finite time μt is contained in the set Cε for any ε > 0. Corollary 5.1, establishes
that in the limit this result can be strengthened: as t → ∞, μt converges to a set, which is a subset of Cε for every ε > 0.
The proof can be found in Appendix A.

Corollary 5.1. The empirical frequencies of discrete-time fictitious play converge to

C �
{

x ∈
∏

m∈M
�Em

∣∣∣∣φ(x)� min
y∈XMδ

φ(y)

}
.

This result suggests that in near-potential games, the empirical frequencies of fictitious play converge to a set where the
potential is at least as large as the minimum potential in an approximate equilibrium set. For exact potential games, it is
known that the empirical frequencies converge to a Nash equilibrium (Monderer and Shapley, 1996a). It can be seen from
Definition 2.1 that in potential games, maximizers of the potential function are equilibria of the game. Thus, in potential
games with a unique equilibrium the equilibrium is the unique maximizer of the potential function. Hence, for such games,
we have δ = 0, miny∈XMδ

φ(y) = maxx∈∏
m∈M �Em φ(x), and Corollary 5.1 implies that empirical frequencies of fictitious

play converge to the unique equilibrium of the game, recovering the convergence result of Monderer and Shapley (1996a).
However, when there are multiple equilibria Corollary 5.1 suggests that empirical frequencies converge to the set of mixed
strategy profiles that have potential weakly larger than the minimum potential attained by the equilibria. While this set
contains equilibria, it may contain a continuum of other mixed strategy profiles. This suggests that in games with multiple
equilibria our result may provide a loose characterization of the limiting behavior of fictitious play dynamics.

We next show that by exploiting the properties of mixed approximate equilibrium sets, it is possible to obtain a stronger
result. In particular, we make use of the fact that for small ε , the ε-equilibrium set is contained in a small neighborhood of
equilibria (see Candogan et al., 2011b for a detailed discussion).

It was established in Lemma 5.3 that the potential function of a nearby potential game (with MPD δ to the original
game), evaluated at the empirical frequency distribution, increases when this distribution is outside the Mδ-equilibrium
set of the original game (where M is the number of players). If δ is sufficiently small, then the Mδ-equilibria of the
game will be contained in a small neighborhood of the equilibria, as illustrated above and shown in Lemma 5.2(ii). Thus,
for sufficiently small δ, it is possible to establish that the potential of a close potential game increases outside a small
neighborhood of the equilibria of the game. In Theorem 5.2, we use this observation to show that for sufficiently small δ

the empirical frequencies of fictitious play dynamics converge to a neighborhood of an equilibrium. We state the theorem
under the assumption that the original game has finitely many equilibria. This assumption generically holds, i.e., for any
game a (nondegenerate) random perturbation of payoffs will lead to such a game with probability one (see Fudenberg and
Tirole, 1991).
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Fig. 4. For small δ and ε , Mδ + ε-equilibrium set (enclosed by solid lines around equilibria xk′ and xk) is contained in disjoint neighborhoods of equilibria.
If the empirical frequency distribution, μt , is outside this approximate equilibrium set, then the potential increases with each strategy update. Assume that
empirical frequency distribution leaves an approximate equilibrium set (at time t) and returns back to it at a later time instant (t′ > t). We first quantify
the resulting increase in the potential (left). If μt travels from the component of the approximate equilibrium set in the neighborhood of equilibrium xk to
that in the neighborhood of equilibrium xk′ , then the increase in the potential is significant, and consequently μt cannot visit the approximate equilibrium
set in the neighborhood of equilibrium xk at a later time instant (right).

When stating our result, we make use of the Lipschitz continuity of the mixed extension of the potential function, as
established in Lemma 5.1. We also make use of a function f :R+ → R+ , which quantifies the size of the neighborhood of
equilibria which contains the approximate equilibrium sets of games. For a game G with l equilibria, denoted by x1, . . . ,xl ,
this function can be formally defined as follows:

f (α) = max
x∈Xα

min
k∈{1,...,l}

‖x − xk‖, (13)

for all α ∈ R+ . Note that mink∈{1,...,l} ‖x − xk‖ is continuous in x, since it is minimum of finitely many continuous func-
tions. Moreover, Xα is a compact set, since ε-equilibria are defined by finitely many inequality constraints of the form (6).
Therefore, in (13) maximum is achieved and f is well-defined for all α � 0.

Additionally, we define two variables, (a,d), which characterize the approximate equilibrium sets of the underlying
game G: (i) the minimum pairwise distance between the equilibria is denoted by d � mini 
= j ‖xi −x j‖, (ii) a � sup{α| f (α) <

d/4} > 0, i.e., for every α < a, the α-equilibrium is at most d/4 distant from an equilibrium of G . Next, using these defini-
tions, we state an improved convergence result for fictitious play in near-potential games.

Theorem 5.2. Consider a game G and let Ĝ be a close potential game such that d(G, Ĝ) � δ. Denote the potential function of Ĝ by φ ,
and the Lipschitz constant of the mixed extension of φ by L. Assume that G has finitely many equilibria, and in G players update their
strategies according to discrete-time fictitious play dynamics.

(i) There exists some δ̄ > 0, and ε̄ > 0 satisfying

M δ̄ + ε̄ < a, and f (M δ̄ + ε̄) <
(a − M δ̄)d

24LM
.

(ii) Consider any δ̄ > 0, and ε̄ > 0 satisfying (i). Provided that δ̄ � δ � 0, it can be established that the empirical frequencies of
fictitious play converge to{

x

∣∣∣∣‖x − xk‖� 4 f (Mδ)ML

ε
+ f (Mδ + ε), for some equilibrium xk

}
, (14)

for any ε , such that ε̄ � ε > 0.

The proof of this theorem can be found in Appendix A. It has three main steps illustrated in Figs. 4 and 5. As explained
earlier, for small δ and ε , the Mδ + ε-equilibrium set of the game is contained in disjoint neighborhoods of the equilibria of
the game. Lemma 5.3 implies that potential evaluated at μt increases outside this approximate equilibrium set with strategy
updates. In the proof, we first quantify the increase in the potential, when μt leaves this approximate equilibrium set and
returns back to it at a later time instant (see Fig. 4a). Then, using this increase condition we show that for sufficiently
large t , μt can visit the approximate equilibrium set infinitely often only around one equilibrium, say xk′ (see Fig. 4b). This
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Fig. 5. If after time T , μt only visits the approximate equilibrium set in the neighborhood of a single equilibrium xk′ , then we can establish that μt never
leaves a neighborhood of this equilibrium for t > T . The size of this neighborhood is denoted by r in the figure and can be expressed as in Theorem 5.2.

holds since, the increase condition guarantees that the potential increases significantly when μt leaves the neighborhood
of an equilibrium xk , and reaches to that of xk′ . Finally, using the increase condition one more time, we establish that if
after time T , μt visits the approximate equilibrium set only in the neighborhood of xk′ , we can construct a neighborhood
of xk′ , which contains μt for all t > T (see Fig. 5). In Eq. (14) of Theorem 5.2, we provide bounds on this neighborhood, as
a function of δ (that characterizes the “closeness” of the original game to a potential game), and f (that captures how the
size of the ε-equilibrium sets increase, as a function of ε).

Observe that if δ = 0, i.e., the original game is a potential game, then f (Mδ) = 0, and Theorem 5.2 implies that empirical
frequencies of fictitious play converge to the f (ε)-neighborhood of equilibria for any ε such that ε̄ � ε > 0. Thus, choosing ε
arbitrarily small, and observing that limx→0 f (x) = 0, our result implies that in potential games, empirical frequencies con-
verge to the set of Nash equilibria. Hence, as a special case of Theorem 5.2, we obtain the convergence result of Monderer
and Shapley (1996a).

Assume that δ 
= 0 and a small ε < ε̄ is given. If δ is sufficiently small then f (Mδ)/ε ≈ 0, since limx→0 f (x) = 0. Con-
sequently, 4 f (Mδ)ML

ε + f (Mδ + ε) is small, and Theorem 5.2 establishes convergence of empirical frequencies to a small
neighborhood of equilibria. Thus, we conclude that for games that are close to potential games, i.e., for δ � 1, Theorem 5.2
establishes convergence of empirical frequencies to a small neighborhood of equilibria.

A strand of the literature characterizes the limiting behavior of discrete-time fictitious play by exploiting its relation to
a continuous time update rule (see for instance Benaïm et al., 2005). This framework, can be used to establish convergence
of fictitious play to an equilibrium in potential games. Additionally, using this framework, it is also possible to establish
upper semicontinuity of the limiting behavior of certain update rules to payoff perturbations. Theorem 5.2 can be seen as
a stronger version of these upper semicontinuity results in the special setting of near-potential games. It implies upper
semicontinuity of the limiting set (with respect to payoff perturbations), and also provides bounds on the size of this set,
as a function of the equilibrium set of the underlying game.

Corollary 5.1 and Theorem 5.2 give a systematic framework for approximately characterizing the limiting behavior of
fictitious play in arbitrary games. Moreover, such a characterization can be obtained even in settings where the underlying
game does not share similar ordinal properties to potential games. Following a similar argument as in the case of logit
response dynamics, our result also allows for characterizing robustness of convergence results for potential games to payoff
perturbations.

Remark. So far we have explained how dynamical properties of potential games can be extended to near-potential games.
In the cases of better/best response dynamics and fictitious play, it is possible to obtain similar results for games that are
close to weighted potential games. To see this, assume that a game with utilities {um} is given, and this game is close to a
weighted potential game with weights {wm � 1}, utilities {ûm} and potential φ. It follows from the definitions of better/best
response and fictitious play dynamics that these update rules are invariant under positive scalings of the payoff functions
of players. Hence, for these update rules, games with payoffs {um} and {um/wm} have identical limiting sets of (mixed)
strategy profiles. On the other hand, from the definition of weighted potential games, it follows that {ûm/wm} is a potential
game with potential function φ. Moreover, since {um} and {ûm} are close in terms of their MPD, and wm � 1, it follows
that {um/wm} is close to the game with utilities {ûm/wm}. Thus, the limiting behavior of dynamics in the game with
payoffs {um/wm} can be characterized using the distance to the nearby potential game {ûm/wm}, and the results present
in Sections 3 and 5. Since for better/best response dynamics and fictitious play, the dynamical properties of {um/wm} and
{um} are identical, we conclude that our results immediately provide bounds on the limiting sets of the game with utilities
{um} through a weighted potential game approximation.

We next show that this approximation may give tighter bounds. Assume that the MPD between the game with utilities
{um} and {ûm} is δw . It follows that the MPD between {um/wm} and {ûm/wm} is bounded by maxk δw/wk = δw (without
loss of generality, in weighted potential games the smallest weight corresponding to a player can be set to 1). Thus, using
the results of Section 3, we conclude that better response dynamics converge to δw |E|-equilibrium set of {um/wm}. Note
that this implies that in {um} better response dynamics converge to maxk wkδw |E|-equilibrium set. Hence, when all weights
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are chosen equal to wm = 1 (i.e., when approximation with an exact potential game is considered), this result is identical to
Theorem 3.1. Minimizing, maxk wkδw |E| over best possible weights, and weighted potential game approximations, a tighter
characterization of the limiting set can be obtained. For instance when the original game is a weighted potential game,
it follows that for some weights {wm} and weighed potential game {ûm} we have δw = 0, and weighted potential game
approximation establishes convergence of dynamics to a Nash equilibrium. Similar bounds can be obtained for the limiting
set of fictitious play dynamics.

On the other hand, in the analysis of logit response dynamics, we use approximations with exact potential games rather
than weighted potential games since weighted potential games do not have similar appealing convergence properties under
this dynamics (e.g., a maximizer of the potential function need not be a stochastically stable strategy profile of logit response
dynamics for weighted potential games, Alós-Ferrer and Netzer, 2010).

6. Conclusions

In this paper, we study convergence behavior of discrete-time update processes in near-potential games. introduced
by Candogan et al. (2010b, 2011a).13 We restrict our attention to better/best response, logit response and fictitious play
dynamics. We show that for near-potential games trajectories of better/best response dynamics converge to ε-equilibrium
sets, where ε depends on closeness to a potential game. We study the stochastically stable strategy profiles of logit response
dynamics and prove that they are contained in the set of strategy profiles that approximately maximize the potential
function of a nearby potential game. In the case of fictitious play we focus on the empirical frequencies of players’ actions,
and establish that they converge to a small neighborhood of equilibria in near-potential games. Our results suggest that
games that are close to a potential game inherit the dynamical properties (such as convergence to approximate equilibrium
sets) of potential games. Additionally, since a close potential game to a given game can be found by solving a convex
optimization problem, as discussed in Section 2, this enables us to study dynamical properties of strategic form games by
first identifying a nearby potential game to this game, and then studying the dynamical properties of the nearby potential
game.

The framework presented in this paper opens up a number of interesting research directions. The first direction that
we are exploring involves characterizing the limiting behavior of dynamic processes, where players adhere to different
(heterogeneous) update rules (e.g., logit response with different τ parameters), using techniques similar to the ones in this
paper. Another promising research direction is to use our understanding of simple update rules, such as better/best response
and logit response dynamics to design mechanisms that guarantee desirable limiting behavior, such as low efficiency loss
and “fair” outcomes. We established in Candogan et al. (2010a) that in some cases simple pricing mechanisms can ensure
convergence to desirable equilibria in near-potential games. It is an interesting research direction to extend such mechanisms
to more general game-theoretic settings. Finally, other classes of games (such as zero-sum games and supermodular games)
admit appealing convergence properties under adaptive dynamics (Milgrom and Roberts, 1990; Shamma and Arslan, 2004).
This motivates the question whether a game that is close to a zero-sum game or a supermodular game, still inherits
some of the dynamical properties of the original game. Recent related work has considered games with local/monotone
potential functions (Morris and Ui, 2005), and additional supermodularity properties, and established that the limiting
behavior of dynamics can be characterized in terms of the maximizers of the potential function (Okada and Tercieux, 2008;
Oyama et al., 2008). Our goal in future work is to study dynamics in games that are close to supermodular games in the
sense defined in this paper.
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Appendix A. Proofs of Section 5

Proof of Corollary 5.1. Let εn = Mδ + 1
n for n ∈ Z+ . Observe that since the mixed extension of the potential function is con-

tinuous, C and Cεn are closed sets for any n ∈ Z+ . Since C is closed miny∈C ‖x − y‖ is well-defined for any x ∈ ∏
m∈M �Em .

We claim that for any θ > 0 the set

Sθ =
{

x ∈
∏

m∈M
�Em

∣∣∣∣min
y∈C

‖x − y‖ < θ

}
, (A.1)

is such that Cεn ⊂ Sθ for some n. Note that if this claim holds, then it follows from Theorem 5.1 that there exists some Tθ

such that for all t > Tθ we have μt ∈ Sθ . Using the definition of Sθ given in (A.1), this implies

lim sup
t→∞

min
x∈C

‖x − μt‖ < θ. (A.2)

13 See Candogan et al. (2013) for a characterization of the convergence behavior of continuous time update rules in near-potential games.
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Fig. A.6. Consider a game with a unique equilibrium xk . The α-equilibrium set of the game (enclosed by a solid line around xk) is contained in the f (α)

neighborhood of this equilibrium.

Moreover, since θ > 0 is arbitrary, and ‖x − μt‖ � 0, using (A.2) we obtain limt→∞ minx∈C ‖x − μt‖ = 0. Thus, if we prove
Cεn ⊂ Sθ for some n, it follows that μt converges to C .

In order to prove Cεn ⊂ Sθ we first obtain a certificate which can be used to guarantee that a mixed strategy profile
belongs to Sθ . Then, we show that for large enough n any z ∈ Cεn satisfies this certificate, and hence belongs to Sθ .

It follows from Lemma 5.2(i) (by setting ν = φ and v = −miny∈XMδ
φ(y)) and definition of upper semicontinu-

ity (Definition 5.2) that there exists γ > 0 such that θ neighborhood of {x|φ(x) � miny∈XMδ
φ(y)} contains {x|φ(x) �

miny∈XMδ
φ(y) − γ }. Hence, for any z satisfying φ(z) � miny∈XMδ

φ(y) − γ there exists some x satisfying φ(x) �
miny∈XMδ

φ(y) and ‖x − z‖ < θ . Note that the definition of Sθ implies that z for which there exists such x belongs to Sθ .
Thus, if φ(z) � miny∈XMδ

φ(y) − γ it follows that z ∈ Sθ .
We next show that for large enough n, any z which belongs to Cεn , satisfies the above certificate and hence belongs

to Sθ . Let L denote the Lipschitz constant for the mixed extension of φ, as given in Lemma 5.1(i), and define θ ′ = γ /L > 0.
Lemma 5.2(ii) and Definition 5.2 imply that for large enough n, XMδ+ 1

n
is contained in θ ′ neighborhood of XMδ , i.e., if

y ∈XMδ+ 1
n

then there exists x ∈XMδ such that ‖x − y‖ < θ ′ . Moreover, by Lemma 5.1(i), it follows that φ(y) � φ(x) − Lθ ′ =
φ(x) − γ . Thus, we conclude that there exists large enough n such that

min
y∈XMδ+1/n

φ(y) � min
y∈XMδ

φ(y) − γ . (A.3)

Let z ∈ Cεn for some n for which (A.3) holds. By definition of Cε it follows that φ(z)� miny∈XMδ+1/n φ(y). Thus, (A.3) im-
plies that φ(z) � miny∈XMδ

φ(y) − γ . However, as argued before such z belong to Sθ . Hence, we have established that for
large enough n, if z ∈ Cεn then z ∈ Sθ . Therefore, the claim follows. �
Proof of Theorem 5.2. From the definition of f , it follows that the union of closed balls of radius f (α), centered at equilib-
ria, contain α-equilibrium set of the game. Thus, intuitively, f (α) captures the size of a closed neighborhood of equilibria,
which contains α-equilibria of the underlying game. This is illustrated in Fig. A.6.

As stated in the theorem statement, we define the minimum pairwise distance between the equilibria as d �
mini 
= j ‖xi − x j‖, and a = sup{α| f (α) < d/4}. Lemma 5.2(ii) implies (using upper semicontinuity at 0) that α > 0 such
that f (α) < d/4 exists and hence a > 0. Since d is defined as the minimum pairwise distance between the equilibria, it
follows that α-equilibria of the game are contained in disjoint f (α) < d/4 neighborhoods around equilibria of the game (for
α < a), i.e., if x ∈Xα , then ‖x − xk‖� f (α) for exactly one equilibrium xk . Moreover, for α1 � α, since Xα1 ⊂Xα , it follows
that α1-equilibria of the game are contained in disjoint neighborhoods of equilibria.

We prove the theorem in 5 steps summarized below. First two steps explore the properties of function f , and establish
existence of δ̄ and ε̄ presented in the theorem statement. Last three steps are the main steps of the proof, where we
establish convergence of fictitious play to a neighborhood of equilibria.

• Step 1: We first show that f is (i) weakly increasing, (ii) upper semicontinuous, and it satisfies (iii) f (0) = 0,
(iv) f (x) → 0 as x → 0.

• Step 2: We show that there exists some δ̄ > 0 and ε̄ > 0 such that the following inequalities hold:

M δ̄ + ε̄ < a, (A.4)

and

f (M δ̄ + ε̄) <
(a − M δ̄)d

. (A.5)

24LM
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Fig. A.7. Trajectory of μt (initialized at the left end of the dashed line) is illustrated. T1 and T2 correspond to the time instants μt leaves XMδ+ε1 and
XMδ+ε2 respectively. T ′

1 and T ′
2 correspond to the time instants μt enters XMδ+ε1 and XMδ+ε2 respectively.

We will prove the statement of the theorem assuming that 0 � δ < δ̄, and establish convergence to the set in (14), for
any ε such that 0 < ε � ε̄ . As can be seen from the definition of a and f (see (13)), the first inequality guarantees
that M δ̄ + ε̄-equilibrium set is contained in disjoint neighborhoods of equilibria, and the second one guarantees that
these neighborhoods are small. In Step 4, we will exploit this observation, and use the inequalities in (A.4) and (A.5) to
establish that the empirical frequency distribution μt can visit the component of XMδ+ε̄ contained in the neighborhood
of only a single equilibrium infinitely often.

• Step 3: Let ε1, ε2 be such that ε2 > ε1 > 0. Assume that (i) at some time instant T , μt is contained in XMδ+ε1 , (ii) at
time instants T1 and T2 (such that T2 > T1 > T ) μt leaves XMδ+ε1 and XMδ+ε2 respectively and (iii) at time instants
T ′

2 and T ′
1 (such that T ′

1 > T ′
2 > T2) μt returns back to XMδ+ε2 and XMδ+ε1 respectively. In Fig. A.7, the path μt follows

between T1 and T ′
1 is illustrated.

In this step, we provide a lower bound on φ(μT ′
1
) − φ(μT1 ), i.e., the increase in the potential when μt follows such

a path. This lower bound holds for any ε1 and ε2 provided that ε2 > ε1 > 0. We use this result by choosing different
values for ε1 and ε2 in Steps 4 and 5.
Our lower bound in Step 3 is a function of ε2. In addition to this lower bound, in Steps 4 and 5, we use the Mδ + ε1
equilibrium set and Lipschitz continuity of the potential to provide an upper bound on φ(μT ′

1
) − φ(μT1 ) as a function

of ε1. Thus, properties of Mδ + ε1 and Mδ + ε2 equilibrium sets are exploited for obtaining upper and lower bounds on
φ(μT ′

1
) − φ(μT1 ) respectively. We establish convergence of fictitious play updates to a neighborhood of an equilibrium

by using these bounds together in Steps 4 and 5. We emphasize that allowing for two different approximate equilibrium
sets leads to better bounds on φ(μT ′

1
) − φ(μT1 ), and a more informative characterization of the limiting behavior of

fictitious play, as opposed to using a single approximate equilibrium set, i.e., setting ε1 = ε2.
• Step 4: Our objective in this step is to establish that fictitious play can visit the component of an approximate equilib-

rium set contained in the neighborhood of only one equilibrium infinitely often.
Let ε1 = ε̄ and ε2 = a − M δ̄. By (A.4) we have ε1 < ε2, and using the definition of a we establish that XMδ+ε1 and
XMδ+ε2 are contained in disjoint neighborhoods of equilibria. Assume that μt leaves the components of XMδ+ε1 and
XMδ+ε2 in the neighborhood of equilibrium xk , and reaches to a similar neighborhood around equilibrium xk′ . Using
Step 3 we establish a lower bound on the increase in the potential when μt follows such a trajectory. We also provide
an upper bound, using the Lipschitz continuity of the potential and inequalities (A.4) and (A.5). Comparing these bounds,
we establish that the maximum potential in the neighborhood of equilibrium xk is lower than the minimum potential
in the neighborhood of xk′ . Since, xk and xk′ are arbitrary, this observation implies that μt cannot visit the component
of XMδ+ε1 contained in the neighborhood of xk at a later time instant. Hence, it follows that μt visits only one such
component infinitely often.

• Step 5: In this step we show that μt converges to the approximate equilibrium set given in the theorem state-
ment.
Let ε1, ε2 be such that 0 < ε1 < ε2 � ε̄ . We consider the equilibrium, whose neighborhood is visited infinitely
often (as obtained in Step 4), and a trajectory of μt which leaves the components of XMδ+ε1 and XMδ+ε2 con-
tained in the neighborhood of this equilibrium and returns back to these sets at a later time instant (as il-
lustrated in Fig. A.7). As in Step 4, Lipschitz continuity of φ is used to obtain an upper bound on the in-
crease in the potential between the end points of this trajectory. Together with the lower bound obtained in
Step 3, this provides a bound on how far μt can get from the component of XMδ+ε2 contained in this neigh-
borhood. Choosing ε1 arbitrarily small (for a fixed ε2) we obtain the tightest such bound. Using this result,
we quantify how far μt can get from the equilibria of the game (after sufficient time) and the theorem fol-
lows.
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Next we prove each of these steps.

Step 1. By definition Xα1 ⊂ Xα for any α1 � α. Since the feasible set of the maximization problem in (13) is given by Xα ,
this implies that f (α1) � f (α), i.e., f is a weakly increasing function of its argument. Note that the feasible set of the
maximization problem in (13) can be given by the correspondence g(α) = Xα , which is upper semicontinuous in α as
shown in Lemma 5.2(ii). Since as a function of x, mink∈{1,...,l} ‖x − xk‖ is continuous it follows from Berge’s maximum
theorem (see Berge, 1963) that for α � 0, f (α) is an upper semicontinuous function.

The set X0 corresponds to the set of equilibria of the game, hence X0 = {x1, . . . ,xl}. Thus, the definition of f implies
that f (0) = 0. Moreover, upper semicontinuity of f implies that for any ε > 0, there exists some neighborhood V of 0, such
that f (x) � ε for all x ∈ V . Since, f (x) � 0 by definition, this implies that limx→0 f (x) exists and equals to 0.

Step 2. Let δ̄ > 0 be small enough such that M δ̄ < a/2. Since limx→0 f (x) = 0, it follows that for sufficiently small δ̄ and ε̄ ,

we obtain f (M δ̄ + ε̄) < ad
48LM <

(a−Mδ̄)d
24LM and M δ̄ + ε̄ < a.

Step 3. Let ε1, ε2 be such that 0 < ε1 < ε2. Assume T > 0 is large enough so that for t > T ,

φ(μt+1) − φ(μt) �
2ε1

3(t + 1)
if μt /∈ XMδ+ε1 , and similarly

φ(μt+1) − φ(μt) �
2ε2

3(t + 1)
if μt /∈ XMδ+ε2 . (A.6)

Existence of T satisfying these inequalities follows from Lemma 5.3, since for large T and t > T , this lemma implies
φ(μt+1) − φ(μt) � ε1

(t+1)
+ O ( 1

t2 )� 2ε1
3(t+1)

if μt /∈XMδ+ε1 , and similarly if μt /∈XMδ+ε2 .
Since φ(μt) increases outside Mδ + ε1-equilibrium set for t > T , as (A.6) suggests, it follows that μt visits XMδ+ε1 (and

XMδ+ε2 since XMδ+ε1 ⊂ XMδ+ε2 ) infinitely often. Otherwise φ(μt) increases unboundedly, and we reach a contradiction
since mixed extension of the potential is a bounded function.

Assume that at some time after T , μt leaves XMδ+ε1 and XMδ+ε2 and returns back to XMδ+ε1 at a later time instant. In
this step, we quantify how much the potential increases when μt follows such a path. We first define time instants T1, T2,
T ′

1, and T ′
2 satisfying T < T1 � T2 < T ′

2 � T ′
1, as follows:

• T1 is a time instant when μt leaves XMδ+ε1 , i.e., μT1−1 ∈XMδ+ε1 and μt /∈XMδ+ε1 for T1 � t < T ′
1.

• T2 is a time instant when μt leaves XMδ+ε2 , i.e., μT2−1 ∈XMδ+ε2 and μt /∈XMδ+ε2 for T2 � t < T ′
2.

• T ′
2 is the first time instant after T2 when μt returns back to XMδ+ε2 , i.e., μT ′

2−1 /∈XMδ+ε2 and μT ′
2
∈XMδ+ε2 .

• T ′
1 is the first time instant after T1 when μt returns back to XMδ+ε1 , i.e., μT ′

1−1 /∈XMδ+ε1 and μT ′
1
∈XMδ+ε1 .

The definitions are illustrated in Fig. A.7. We next provide a lower bound on the quantity φ(μT ′
1
) − φ(μT1 ). Note that if

there are multiple time instants between T1 and T ′
1 for which μt leaves XMδ+ε2 (as in the figure), any of these time instants

can be chosen as T2 to obtain a lower bound.
By definition, for t such that T2 � t < T ′

2, we have μt /∈XMδ+ε2 , and for t such that T1 � t < T2 or T ′
2 � t < T ′

1, we have
μt /∈XMδ+ε1 . Thus, it follows from (A.6) that

φ(μt+1) − φ(μt) �
2ε2

3(t + 1)
for T2 � t < T ′

2, (A.7)

and consequently,

φ(μT ′
2
) − φ(μT2) =

T ′
2−1∑

t=T2

φ(μt+1) − φ(μt) �
T ′

2−1∑
t=T2

2ε2

3(t + 1)
. (A.8)

Similarly, since μt /∈XMδ+ε1 for t such that T1 � t < T2 or T ′
2 � t < T ′

1, using (A.6) we establish

φ(μT ′
1
) − φ(μT ′

2
) =

T ′
1−1∑

t=T ′
2

φ(μt+1) − φ(μt) �
T ′

1−1∑
t=T ′

2

2ε1

3(t + 1)
, (A.9)

φ(μT2) − φ(μT1) =
T2−1∑

φ(μt+1) − φ(μt) �
T2−1∑ 2ε1

3(t + 1)
. (A.10)
t=T1 t=T1
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Since φ(μT ′
1
)−φ(μT1 ) = (φ(μT ′

1
)−φ(μT ′

2
))+ (φ(μT ′

2
)−φ(μT2 ))+ (φ(μT2 )−φ(μT1 )), it follows from (A.8), (A.9) and (A.10)

that

φ(μT ′
1
) − φ(μT1) �

T ′
2−1∑

t=T2

2ε2

3(t + 1)
. (A.11)

Step 4. Let ε2 = a − M δ̄, and ε1 = ε̄ . By definition of ε̄ and δ̄ (see Step 2), it follows that ε2 > ε1 > 0. Assume that δ < δ̄.
Since a = M δ̄ + ε2 > Mδ + ε2 > Mδ + ε1 we obtain XMδ+ε1 ⊂ XMδ+ε2 ⊂ Xa . By definition of a, it follows that components
of XMδ+ε1 and XMδ+ε2 are also contained in disjoint neighborhoods of equilibria. Hence, the definition of f suggests that if
x ∈XMδ+ε1 then ‖xk −x‖ � f (Mδ + ε1) (similarly if x ∈XMδ+ε2 , then ‖xk −x‖ � f (Mδ + ε2)) for exactly one equilibrium xk .

Let T1, T2, T ′
1 and T ′

2 be defined as in Step 3. In this step, by obtaining an upper bound on φ(μT ′
1
) − φ(μT1) and

refining the lower bound obtained in Step 3 for given values of ε1 and ε2, we prove that after sufficient time μt can visit
the component of XMδ+ε1 in the neighborhood of a single equilibrium.

Assume that μt leaves the component of the Mδ + ε1-equilibrium set in the neighborhood of equilibrium xk , and
it reaches to another component in the neighborhood of equilibrium xk′ . Since, by definition μT1−1,μT ′

1
∈ XMδ+ε1 , and

μT2−1,μT ′
2
∈ XMδ+ε2 , it follows that μT1−1 and μT2−1 belong to neighborhoods of equilibrium xk , whereas, μT ′

1
and μT ′

2
belong to neighborhoods of xk′ , i.e.,

‖xk − μT1−1‖� f (Mδ + ε1) and ‖xk − μT2−1‖� f (Mδ + ε2), whereas (A.12)

‖xk′ − μT ′
1
‖� f (Mδ + ε1) and ‖xk′ − μT ′

2
‖� f (Mδ + ε2). (A.13)

By definition of d we have ‖xk − xk′ ‖ � d. Since a > Mδ + ε2, it follows that f (Mδ + ε2) < d/4, and hence the second
inequalities in (A.12) and (A.13) imply

‖μT ′
2
− μT2−1‖ >

d

2
. (A.14)

Using this inequality, we next refine the lower bound on φ(μT ′
1
) − φ(μT1 ) obtained in Step 3. By (7), with an update at

time t , the empirical frequency distribution can change by at most

‖μt+1 − μt‖ = 1

t + 1
‖μt − It‖� 1

t + 1

(‖μt‖ + ‖It‖
)
� 2M

t + 1
, (A.15)

where the last inequality follows from the fact that μt = {μm
t }m∈M , and It = {Im

t }m∈M , and ‖μm
t ‖,‖Im

t ‖� 1, since Im
t ,μm

t ∈
�Em . Hence, if T2 is sufficiently large, then ‖μT2 − μT2−1‖ is small enough so that (A.14) implies ‖μT ′

2
− μT2‖ > d

2 . Using
this together with (A.15), we conclude

T ′
2−1∑

t=T2

2M

t + 1
�

T ′
2−1∑

t=T2

‖μt+1 − μt‖� ‖
T ′

2−1∑
t=T2

μt+1 − μt‖ = ‖μT ′
2
− μT2‖ >

d

2
. (A.16)

Thus, the lower bound on φ(μT ′
1
) − φ(μT1 ) provided in (A.11) takes the following form:

φ(μT ′
1
) − φ(μT1) �

T ′
2−1∑

t=T2

2ε2

3(t + 1)
� ε2d

6M
. (A.17)

Next we provide an upper bound on φ(μT ′
1
) − φ(μT1 ), using Lipschitz continuity of the potential and the properties of

the Mδ + ε1 equilibrium set. Let φk = max{x|‖x−xk‖� f (Mδ+ε1)} φ(x), and define yk as a strategy profile which achieves this
maximum. Similarly, let φ

k′ = min{x|‖x−xk′ ‖� f (Mδ+ε1)} φ(x) and define yk′ as a strategy profile which achieves this minimum.
Observe that

φ
k′ − φk = φ(yk′) − φ(yk) = (

φ(yk′) − φ(μT ′
1
)
) + (

φ(μT ′
1
) − φ(μT1)

) + (
φ(μT1) − φ(yk)

)
. (A.18)

Note that by (A.12) and (A.13), and the definitions of yk and yk′ , we have μT ′
1
,yk′ ∈ {x | ‖x − xk′ ‖ � f (Mδ + ε1)}, and

μT1−1,yk ∈ {x | ‖x − xk‖ � f (Mδ + ε1)}. Hence, using Lipschitz continuity of φ (and denoting the Lipschitz constant by L)
it follows that φ(yk′ ) − φ(μT ′

1
) � −2L f (Mδ + ε1), and φ(μT1−1) − φ(yk) � −2L f (Mδ + ε1). Moreover, (A.15) and Lipschitz

continuity of φ imply that φ(μT1)−φ(μT1−1) = O ( 1
T1

). Thus, using (A.18) we obtain the following upper bound on φ(μT ′
1
)−

φ(μT1):

φ
k′ − φk + 4L f (Mδ + ε1) + O

(
1

)
� φ(μT ′

1
) − φ(μT1). (A.19)
T1
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Using the lower and upper bounds we obtained in (A.17) and (A.19), it follows that

φ
k′ − φk + 4L f (Mδ + ε1) + O

(
1

T1

)
� ε2d

6M
. (A.20)

Since ε2 = a − M δ̄, and ε1 = ε̄ , using the fact that f is an increasing function and δ < δ̄, it follows from (A.20) that

φ
k′ − φk �

(a − M δ̄)d

6M
− 4L f (Mδ + ε̄) + O

(
1

T1

)
� (a − M δ̄)d

6M
− 4L f (M δ̄ + ε̄) + O

(
1

T1

)
.

Note that (A.5) implies (a−Mδ̄)d
6M − 4L f (M δ̄ + ε̄) > 0. Thus, for sufficiently large T1 we obtain φ

k′ − φk > 0. Therefore, we
conclude when μt leaves the component of XMδ+ε1 contained in the neighborhood of some equilibrium xk , and enters
that of another equilibrium xk′ , then the minimum potential in the new neighborhood is strictly larger than the maximum
potential in the older one (for sufficiently large T1). Since this is true for arbitrary equilibria xk and xk′ , it follows that after
entering the component of XMδ+ε1 in the neighborhood of xk′ , μt cannot return to the component in the neighborhood
of xk , as doing so contradicts with the relation between the minimum and maximum potentials in these neighborhoods.
Thus, after sufficient time, μt can visit the component of XMδ+ε1 (or equivalently XMδ+ε̄ ) in the neighborhood of a single
equilibrium.

Step 5. Let ε1, and ε2 be such that 0 < ε1 < ε2 � ε̄ . As established in Step 4, there exists some T , such that for t > T , μt

visits the component of XMδ+ε̄ , in the neighborhood of a single equilibrium, say xk .
Assume that T1, T2, T ′

1 and T ′
2 are defined as in Step 3, and let T1 > T + 1. Since ε1 < ε2 � ε̄ , we have XMδ+ε1 ⊂

XMδ+ε2 ⊂ XMδ+ε̄ , and T1 > T + 1 implies that μt can only visit the components of XMδ+ε1 and XMδ+ε2 contained in the
neighborhood of xk . Following a similar approach to Step 4, we next obtain upper and lower bounds on φ(μT ′

1
) − φ(μT1 ),

and use these bounds to establish convergence to the mixed equilibrium set given in the theorem statement.
Define d∗ as the maximum distance of μt from XMδ+ε2 for t such that T + 1 < T2 � t � T ′

2 − 1, i.e.,

d∗ = max
{t|T2�t�T ′

2−1}
min

x∈XMδ+ε2

‖μt − x‖.

Since μT2−1,μT ′
2
∈XMδ+ε2 by definition, the total length of the trajectory between T2 − 1 and T ′

2 is an upper bound on 2d∗ ,

i.e., 2d∗ �
∑T ′

2−1
t=T2−1 ‖μt+1 − μt‖. As explained in (A.15), ‖μt+1 − μt‖� 2M

t+1 , thus the above inequality implies

2d∗ �
T ′

2−1∑
t=T2−1

2M

t + 1
=

T ′
2−1∑

t=T2

2M

t + 1
+ 2M

T2
. (A.21)

Using this inequality, the lower bound in (A.11) implies

φ(μT ′
1
) − φ(μT1) �

T ′
2−1∑

t=T2

2ε2

3(t + 1)
�

(
d∗ − M

T2

)
2ε2

3M
. (A.22)

We next obtain an upper bound on φ(μT ′
1
) − φ(μT1 ). By definition of f , XMδ+ε1 is contained in f (Mδ + ε1) neigh-

borhoods of equilibria. For T1 > T + 1, μt can only visit the component of XMδ+ε1 in the neighborhood of xk , as can be
seen from the definition of T . Thus, since μT1−1,μT ′

1
∈ XMδ+ε1 , it follows that μT1−1,μT ′

1
∈ {x | ‖x − xk‖ � f (Mδ + ε1)}.

By Lipschitz continuity of the potential function it follows that φ(μT ′
1
) − φ(μT1−1) � 2 f (Mδ + ε1)L. Additionally, by (A.15)

Lipschitz continuity also implies that φ(μT1 ) − φ(μT1−1) � 2ML
T1

. Combining these we obtain the following upper bound on
φ(μT ′

1
) − φ(μT1 ):

φ(μT ′
1
) − φ(μT1) � 2 f (Mδ + ε1)L + 2ML

T1
. (A.23)

It follows from the upper and lower bounds on φ(μT ′
1
) − φ(μT1 ) given in (A.22) and (A.23) that (d∗ − M

T2
)

2ε2
3M �

2 f (Mδ + ε1)L + 2ML
T1

. Thus, for sufficiently large T1 (and hence T2), we obtain

d∗ � 3 f (Mδ + ε1)ML

ε2
+ 3M2L

ε2T1
+ M

T2
� 4 f (Mδ + ε1)ML

ε2
. (A.24)

Note that in the above derivation ε1 is an arbitrary number that satisfies 0 < ε1 < ε2. Thus, (A.24) implies that

d∗ � lim sup
4 f (Mδ + ε1)ML

ε
� 4 f (Mδ)ML

ε
, (A.25)
ε1→0 2 2
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where the last inequality follows by upper semicontinuity of f . Thus, by definition of d∗ , we conclude that μt converges d∗
neighborhood of XMδ+ε2 . Hence, using (A.25), we can establish convergence of μt to {x|‖x − y‖ � 4 f (Mδ)ML

ε2
, for some y ∈

XMδ+ε2 }. Observe that definition of f implies if y ∈ XMδ+ε2 , then for some equilibrium xk we have ‖xk − y‖ � f (Mδ + ε2).
Thus, using triangle inequality, we conclude that μt converges to{

x

∣∣∣∣‖x − xk‖� 4 f (Mδ)ML

ε2
+ f (Mδ + ε2), for some equilibrium xk

}
. (A.26)

Noting that ε2 is an arbitrary number satisfying 0 < ε2 � ε̄ , the theorem follows. �
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