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1 Preliminaries

Definition 1
A block matrix is a matrix with non-trivial partitions on its rows and columns, and the resulting smaller matrices
are called blocks. Then, a block upper-triangular matrix is a block matrix such that all blocks below the
main diagonal are blocks with only 0s as entries, and that all blocks on the main diagonal are square.

Example 2

If we define matrix
M =

(
A B
C D

)
,

where
A =

(
1 4
2 3

)
, B =

(
5
0

)
, C =

(
0 0

)
, D =

(
4
)
,

then M is a block upper-triangular matrix.

Definition 3
An irreducible matrix is a square matrix that is not similar, via permutation, to a block upper triangular matrix.

For an n by n matrix A, we consider a corresponding directed graph with n vertices such that for each entry aij ∈ A
there is an edge from vertex j to vertex i with weight aij , if aij 6= 0. Unique up to relabeling.

Definition 4
A directed graph is strongly connected if, for any two vertices v1, v2, there exists a path from v1 to v2.
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Proposition 5

A matrix is irreducible ⇒ the matrix’s associated graph is strongly connected.

Proof. Take the contrapositive. If a graph is not strongly connected, there exists two vertices a and b where there is no
path from a to b. Then we can partition the vertices into two partitions: the vertices reachable from a, and those that
aren’t. It follows that there are no edges from the first partition to the second, thus this graph can be represented with
a reducible matrix.

Question. What is the multiplication of a matrix and a vector, in terms of directed graphs?

We can think of matrix multiplication as pushing weights along edges. Suppose we multiply matrix A with vector v,
and assign vi as a value to vertex i. Then (Av)i can be calculated by the sum of the values of its in-neighbors times
the weight of those edges. This is because the ith row of the matrix consist of the edge weights in-neighbors of vertex i,
and (Av)i is the dot product of the ith row of A and the vector v.

Fact 6
If J is any matrix in the Jordan Normal form, then ||J`v|| is O((ρ)` · poly(`)). Since any square matrix A can be
written in the Jordan Normal form (i.e. ∃S s.t. A = SJS−1) we know that ||A`v|| = ||SJ`S−1v|| is O((ρ)` ·poly(`)).

(ρ is the spectral radius, which is the magnitude of a dominant eigenvalue which are the eigenvalues with the
greatest magnitude.)
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2 Proof

Theorem 7 (Perron-Frobenius)

For any nonnegative irreducible matrix, A,

• There exists an eigenvalue λ1 with the largest magnitude is real and positive.
• There is corresponding eigenvector to λ1, v with all positive entries.
• The eigenspace of λ1 is one-dimensional.

Lemma 8

Any nonnegative v such that Av ≥ ρv (defined entry-wise) must satisfy Av = ρv.

Proof. Let the graph associated with A be G. For the sake of contradiction, suppose there exist a v such that Av ≥ ρv,
but Av 6= ρv. In particular, there exists some i where (Av)i > ρvi. Now, consider vector w = v +mei, where ei is the
ith standard basis vector and m > 0. Then, since

Aw = A(mei + v) = mAei +Av, (1)

we can write that for all j,
(Aw)j = maji + (Av)j , (2)

and since
ρw = ρmei + ρv, (3)

which means for j 6= i,

(ρw)j =

ρm+ ρvj j = i

ρvj j 6= i.
(4)

If we consider matrix multiplication as “pushing weights along edges" on graph G, we can see that for all out-neighbors
of vertex i, maji > 0 since aji represents the weight on an edge from vertex i. This means that, with eq. (2) and (4),
noting that (Av)j ≥ (ρv)j , we have (Aw)j > (ρw)j when j is an out-neighbor of i. Further, since (Av)i − ρvi is a
positive constant due to our initial assumption, our m could have been chosen to be sufficiently small such that

m(ρ− aii) < (Av)i − ρvi, (5)

and after rearranging, we have
ρm+ ρvi < maii + (Av)i, (6)

and from eq. (2) and (4), we have (Aw)i > (ρw)i.
Now, since (Aw)j > (ρw)j where j is an out-neighbor of i, we can repeat the same process at vertex j, finding a new

vector at each vertex. Since G is strongly connected, we can continue to repeat this process until we find a vector w′

such that (Aw′)j > (ρw)j for all vertices j, or Aw′ > ρw′; we can choose c > 1 such that Aw′ ≥ cρw′.
For positive integer `, we have A`(Aw′) ≥ cρA`w′ ≥ ... ≥ c`+1ρ`+1w′. This implies ||A`w′|| ≥ ||c`ρ`w′||. However,

note that the left-hand side is O((ρ)` · poly(`)) whereas the right-hand side is O(c`ρ`), and noting that c > 1, we have
a contradiction.

Theorem (Pt. 1)

There exists a dominant eigenvalue λ1 of A that is real and positive.
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Proof. Suppose λ is the eigenvalue with corresponding v, and let ρ = |λ|. Since Av = λv, we have |(Av)j | = ρ|vj |.
Further, we have |(Av)j | = |

∑
i ajivi| ≤

∑
i aji|vi| by the triangular inequality. Let w be the vector such that wj = |vj |.

Thus we have ρw ≤ Aw, but by lemma 2, ρw = Aw.

Problem 1

Prove that there exists an eigenvector of λ1 with all nonnegative entries.

Theorem (Pt. 2)

There is corresponding eigenvector to λ1, v with all positive entries.

Proof. Now, we would like to show that v is strictly positive, assuming that it is nonnegative. Suppose for the sake
of contradiction that there is a 0 in the nth entry in v, and since v is an eigenvector, the nth position of Av must
also be zero. Returning to our graphical process of multiplying matrices, vertex n is assigned the value 0 after the
multiplication, or (Av)n = 0. This implies that all of vertex n’s in-neighbors s must have been assigned 0 before the
multiplication, or vs = 0, since all edge weights must be positive. But since Av = λ1v, we have 0 = λ1vs = (Av)s, or
all of vertex n’s in-neighbors must be 0 after the multiplication process. We can repeat this argument at each of n’s
in-neighbors, and since the graph is strongly connected, we can repeat the argument at each entry so that we must
have Av = 0 =⇒ v = 0. Contradiction, as v is an eigenvector. Thus, v must have all positive entries.

Problem 2

Prove that the eigenspace of λ1 is one-dimensional, or, in other words, for two eigenvectors v and v′, there is some
k such that v = kv′. (You can use similar reasoning as above.)

3 Applications

Problem 3 (Leontiev Input/Output Economic Model)

We have seen at the beginning of today’s class that the following model

reduces to a vector equation
Ax+ b = x,

so the question becomes: when does this vector equation have a nonnegative solution x ≥ 0 for b ≥ 0? Please give
the conditions on the spectral radius/dominant eigenvalue.

**HINT**: think about how you can write (I −A)−1.

(If you’re interested in the solution of this problem or want to see more applications of the theorem, see https:

//epubs.siam.org/doi/pdf/10.1137/S0036144599359449.)
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