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1 Preliminaries

Definition 1
A block matrix is a matrix with non-trivial partitions on its rows and columns, and the resulting smaller matrices
are called blocks. Then, a block upper-triangular matrix is a block matrix such that all blocks below the

main diagonal are blocks with only Os as entries, and that all blocks on the main diagonal are square.

Example 2

If we define matrix
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then M is a block upper-triangular matrix.

Definition 3

An irreducible matrix is a square matrix that is not similar, via permutation, to a block upper triangular matrix.

For an n by n matrix A, we consider a corresponding directed graph with n vertices such that for each entry a;; € A

there is an edge from vertex j to vertex ¢ with weight a;;, if a;; # 0. Unique up to relabeling.
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Definition 4

A directed graph is strongly connected if, for any two vertices vy, vo, there exists a path from v; to vs.



Proposition 5

A matrix is irreducible = the matrix’s associated graph is strongly connected.

Proof. Take the contrapositive. If a graph is not strongly connected, there exists two vertices a and b where there is no
path from a to b. Then we can partition the vertices into two partitions: the vertices reachable from a, and those that

aren’t. It follows that there are no edges from the first partition to the second, thus this graph can be represented with

a reducible matrix.
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Question. What is the multiplication of a matrix and a vector, in terms of directed graphs?

We can think of matrix multiplication as pushing weights along edges. Suppose we multiply matrix A with vector v,
and assign v; as a value to vertex i. Then (Av); can be calculated by the sum of the values of its in-neighbors times
the weight of those edges. This is because the ith row of the matrix consist of the edge weights in-neighbors of vertex i,

and (Av); is the dot product of the ith row of A and the vector v.
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Fact 6
If J is any matrix in the Jordan Normal form, then ||Jv|| is O((p)? - poly(¥)). Since any square matrix A can be
written in the Jordan Normal form (i.e. 39 s.t. A = SJS™!) we know that ||A%v|| = ||ST*S~ 0| is O((p)* - poly(¥)).

(p is the spectral radius, which is the magnitude of a dominant eigenvalue which are the eigenvalues with the

greatest magnitude.)



2 Proof

Theorem 7 (Perron-Frobenius)
For any nonnegative irreducible matrix, A,

» There exists an eigenvalue \; with the largest magnitude is real and positive.
» There is corresponding eigenvector to A1, v with all positive entries.

» The eigenspace of \; is one-dimensional.

Lemma 8

Any nonnegative v such that Av > pv (defined entry-wise) must satisfy Av = pv.

Proof. Let the graph associated with A be G. For the sake of contradiction, suppose there exist a v such that Av > pv,
but Av # pv. In particular, there exists some ¢ where (Av); > pv;. Now, consider vector w = v + me;, where e; is the

1th standard basis vector and m > 0. Then, since

Aw = A(me; +v) = mAe; + Av, (1)
we can write that for all 7,
(Aw)] = maj; + (A’U)j, (2)
and since
pw = pme; + pv, (3)
which means for j # i,
pm+pvj j=i
(pw); = ’ (4)

pU; J#i

If we consider matrix multiplication as “pushing weights along edges" on graph G, we can see that for all out-neighbors
of vertex 4, maj; > 0 since aj; represents the weight on an edge from vertex ¢. This means that, with eq. (2) and (4),
noting that (Av); > (pv);, we have (Aw); > (pw); when j is an out-neighbor of i. Further, since (Av); — pv; is a
positive constant due to our initial assumption, our m could have been chosen to be sufficiently small such that

m(p — aii) < (Av); — pui, (5)
and after rearranging, we have

pm ~+ pv; < mag; + (Av);, (6)
and from eq. (2) and (4), we have (Aw); > (pw);.

Now, since (Aw); > (pw); where j is an out-neighbor of i, we can repeat the same process at vertex j, finding a new
vector at each vertex. Since G is strongly connected, we can continue to repeat this process until we find a vector w’
such that (Aw’); > (pw); for all vertices j, or Aw’ > pw’; we can choose ¢ > 1 such that Aw’ > cpw’.

For positive integer ¢, we have A*(Aw’) > cpAlw’ > ... > !T1pfHlw/. This implies ||Afw'|| > ||c!ptw’||. However,
note that the left-hand side is O((p)* - poly(¥)) whereas the right-hand side is O(cfp?), and noting that ¢ > 1, we have

a contradiction. O

Theorem (Pt. 1)

There exists a dominant eigenvalue A; of A that is real and positive.



Proof. Suppose A is the eigenvalue with corresponding v, and let p = |A|. Since Av = v, we have |(Av);| = plv;|.
Further, we have |(Av);| = | >, ajivi| < >, aji|vs| by the triangular inequality. Let w be the vector such that w; = |v;].
Thus we have pw < Aw, but by lemma 2, pw = Aw. O

Problem 1

Prove that there exists an eigenvector of A1 with all nonnegative entries.

Theorem (Pt. 2)

There is corresponding eigenvector to A1, v with all positive entries.

Proof. Now, we would like to show that v is strictly positive, assuming that it is nonnegative. Suppose for the sake
of contradiction that there is a 0 in the nth entry in v, and since v is an eigenvector, the nth position of Av must
also be zero. Returning to our graphical process of multiplying matrices, vertex n is assigned the value 0 after the
multiplication, or (Av), = 0. This implies that all of vertex n’s in-neighbors s must have been assigned 0 before the
multiplication, or vs; = 0, since all edge weights must be positive. But since Av = Ajv, we have 0 = A\jvs = (Av)s, or
all of vertex n’s in-neighbors must be 0 after the multiplication process. We can repeat this argument at each of n’s
in-neighbors, and since the graph is strongly connected, we can repeat the argument at each entry so that we must

have Av =0 = v = 0. Contradiction, as v is an eigenvector. Thus, v must have all positive entries. O

Problem 2

Prove that the eigenspace of \; is one-dimensional, or, in other words, for two eigenvectors v and v’, there is some

k such that v = kv’. (You can use similar reasoning as above.)

3 Applications

Problem 3 (Leontiev Input/Output Economic Model)

We have seen at the beginning of today’s class that the following model
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reduces to a vector equation
Ax+b==x,
so the question becomes: when does this vector equation have a nonnegative solution x > 0 for b > 07 Please give

the conditions on the spectral radius/dominant eigenvalue.

HINT**: think about how you can write (I — A)~1.

(If you're interested in the solution of this problem or want to see more applications of the theorem, see https:
//epubs.siam.org/doi/pdf/10. 1137/50036144599359449.)


https://epubs.siam.org/doi/pdf/10.1137/S0036144599359449
https://epubs.siam.org/doi/pdf/10.1137/S0036144599359449
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