Dominant Eigenvalues and Directed Graphs

Yuyuan Luo

August 2020

1 Preliminaries

Definition 1

A block matrix is a matrix with non-trivial partitions on its rows and columns, and the resulting smaller matrices are called blocks. Then, a block upper-triangular matrix is a block matrix such that all blocks below the main diagonal are blocks with only 0 s as entries, and that all blocks on the main diagonal are square.

Example 2

If we define matrix
where

$$
A=\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right), B=\binom{5}{0}, C=\left(\begin{array}{ll}
0 & 0
\end{array}\right), D=(4)
$$

then M is a block upper-triangular matrix.

Definition 3

An irreducible matrix is a square matrix that is not similar, via permutation, to a block upper triangular matrix.

For an n by n matrix A, we consider a corresponding directed graph with n vertices such that for each entry $a_{i j} \in A$ there is an edge from vertex j to vertex i with weight $a_{i j}$, if $a_{i j} \neq 0$. Unique up to relabeling.

Definition 4

A directed graph is strongly connected if, for any two vertices v_{1}, v_{2}, there exists a path from v_{1} to v_{2}.

Proposition 5

A matrix is irreducible \Rightarrow the matrix's associated graph is strongly connected.

Proof. Take the contrapositive. If a graph is not strongly connected, there exists two vertices a and b where there is no path from a to b. Then we can partition the vertices into two partitions: the vertices reachable from a, and those that aren't. It follows that there are no edges from the first partition to the second, thus this graph can be represented with a reducible matrix.

Question. What is the multiplication of a matrix and a vector, in terms of directed graphs?
We can think of matrix multiplication as pushing weights along edges. Suppose we multiply matrix A with vector v, and assign v_{i} as a value to vertex i. Then $(A v)_{i}$ can be calculated by the sum of the values of its in-neighbors times the weight of those edges. This is because the i th row of the matrix consist of the edge weights in-neighbors of vertex i, and $(A v)_{i}$ is the dot product of the i th row of A and the vector v.

$$
\left[\begin{array}{lll}
0 & 2 & 3 \\
4 & 0 & 6 \\
7 & 8 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{lll}
2 & v_{2}+3 & v_{3} \\
4 & v_{1}+6 & v_{3} \\
7 & v_{1}+8 & v_{2}
\end{array}\right]
$$

Fact 6

If J is any matrix in the Jordan Normal form, then $\left\|J^{\ell} v\right\|$ is $O\left((\rho)^{\ell} \cdot \operatorname{poly}(\ell)\right)$. Since any square matrix A can be written in the Jordan Normal form (i.e. $\exists S$ s.t. $A=S J S^{-1}$) we know that $\left\|A^{\ell} v\right\|=\left\|S J^{\ell} S^{-1} v\right\|$ is $O\left((\rho)^{\ell} \cdot\right.$ poly $\left.(\ell)\right)$.
(ρ is the spectral radius, which is the magnitude of a dominant eigenvalue which are the eigenvalues with the greatest magnitude.)

2 Proof

Theorem 7 (Perron-Frobenius)

For any nonnegative irreducible matrix, A,

- There exists an eigenvalue λ_{1} with the largest magnitude is real and positive.
- There is corresponding eigenvector to λ_{1}, v with all positive entries.
- The eigenspace of λ_{1} is one-dimensional.

Lemma 8

Any nonnegative v such that $A v \geq \rho v$ (defined entry-wise) must satisfy $A v=\rho v$.

Proof. Let the graph associated with A be G. For the sake of contradiction, suppose there exist a v such that $A v \geq \rho v$, but $A v \neq \rho v$. In particular, there exists some i where $(A v)_{i}>\rho v_{i}$. Now, consider vector $w=v+m e_{i}$, where e_{i} is the i th standard basis vector and $m>0$. Then, since

$$
\begin{equation*}
A w=A\left(m e_{i}+v\right)=m A e_{i}+A v \tag{1}
\end{equation*}
$$

we can write that for all j,

$$
\begin{equation*}
(A w)_{j}=m a_{j i}+(A v)_{j}, \tag{2}
\end{equation*}
$$

and since

$$
\begin{equation*}
\rho w=\rho m e_{i}+\rho v, \tag{3}
\end{equation*}
$$

which means for $j \neq i$,

$$
(\rho w)_{j}= \begin{cases}\rho m+\rho v_{j} & j=i \tag{4}\\ \rho v_{j} & j \neq i\end{cases}
$$

If we consider matrix multiplication as "pushing weights along edges" on graph G, we can see that for all out-neighbors of vertex $i, m a_{j i}>0$ since $a_{j i}$ represents the weight on an edge from vertex i. This means that, with eq. (2) and (4), noting that $(A v)_{j} \geq(\rho v)_{j}$, we have $(A w)_{j}>(\rho w)_{j}$ when j is an out-neighbor of i. Further, since $(A v)_{i}-\rho v_{i}$ is a positive constant due to our initial assumption, our m could have been chosen to be sufficiently small such that

$$
\begin{equation*}
m\left(\rho-a_{i i}\right)<(A v)_{i}-\rho v_{i}, \tag{5}
\end{equation*}
$$

and after rearranging, we have

$$
\begin{equation*}
\rho m+\rho v_{i}<m a_{i i}+(A v)_{i}, \tag{6}
\end{equation*}
$$

and from eq. (2) and (4), we have $(A w)_{i}>(\rho w)_{i}$.
Now, since $(A w)_{j}>(\rho w)_{j}$ where j is an out-neighbor of i, we can repeat the same process at vertex j, finding a new vector at each vertex. Since G is strongly connected, we can continue to repeat this process until we find a vector w^{\prime} such that $\left(A w^{\prime}\right)_{j}>(\rho w)_{j}$ for all vertices j, or $A w^{\prime}>\rho w^{\prime}$; we can choose $c>1$ such that $A w^{\prime} \geq c \rho w^{\prime}$.

For positive integer ℓ, we have $A^{\ell}\left(A w^{\prime}\right) \geq c \rho A^{\ell} w^{\prime} \geq \ldots \geq c^{\ell+1} \rho^{\ell+1} w^{\prime}$. This implies $\left\|A^{\ell} w^{\prime}\right\| \geq\left\|c^{\ell} \rho^{\ell} w^{\prime}\right\|$. However, note that the left-hand side is $O\left((\rho)^{\ell} \cdot \operatorname{poly}(\ell)\right)$ whereas the right-hand side is $O\left(c^{\ell} \rho^{\ell}\right)$, and noting that $c>1$, we have a contradiction.

Theorem (Pt. 1)
There exists a dominant eigenvalue λ_{1} of A that is real and positive.

Proof. Suppose λ is the eigenvalue with corresponding v, and let $\rho=|\lambda|$. Since $A v=\lambda v$, we have $\left|(A v)_{j}\right|=\rho\left|v_{j}\right|$. Further, we have $\left|(A v)_{j}\right|=\left|\sum_{i} a_{j i} v_{i}\right| \leq \sum_{i} a_{j i}\left|v_{i}\right|$ by the triangular inequality. Let w be the vector such that $w_{j}=\left|v_{j}\right|$. Thus we have $\rho w \leq A w$, but by lemma $2, \rho w=A w$.

Problem 1

Prove that there exists an eigenvector of λ_{1} with all nonnegative entries.

Theorem (Pt. 2)

There is corresponding eigenvector to λ_{1}, v with all positive entries.

Proof. Now, we would like to show that v is strictly positive, assuming that it is nonnegative. Suppose for the sake of contradiction that there is a 0 in the nth entry in v, and since v is an eigenvector, the nth position of $A v$ must also be zero. Returning to our graphical process of multiplying matrices, vertex n is assigned the value 0 after the multiplication, or $(A v)_{n}=0$. This implies that all of vertex n 's in-neighbors s must have been assigned 0 before the multiplication, or $v_{s}=0$, since all edge weights must be positive. But since $A v=\lambda_{1} v$, we have $0=\lambda_{1} v_{s}=(A v)_{s}$, or all of vertex n 's in-neighbors must be 0 after the multiplication process. We can repeat this argument at each of n 's in-neighbors, and since the graph is strongly connected, we can repeat the argument at each entry so that we must have $A v=0 \Longrightarrow v=0$. Contradiction, as v is an eigenvector. Thus, v must have all positive entries.

Problem 2

Prove that the eigenspace of λ_{1} is one-dimensional, or, in other words, for two eigenvectors v and v^{\prime}, there is some k such that $v=k v^{\prime}$. (You can use similar reasoning as above.)

3 Applications

Problem 3 (Leontiev Input/Output Economic Model)

We have seen at the beginning of today's class that the following model

	Ag.	Indust.	Serv.	Consumer	Total prod.
Ag.	$0.3 x_{1}$	$0.2 x_{2}$	$0.3 x_{3}$	4	x_{1}
Indust.	$0.2 x_{1}$	$0.4 x_{2}$	$0.3 x_{3}$	5	x_{2}
Serv.	$0.2 x_{1}$	$0.5 x_{2}$	$0.1 x_{3}$	12	x_{3}

reduces to a vector equation

$$
A x+b=x
$$

so the question becomes: when does this vector equation have a nonnegative solution $x \geq 0$ for $b \geq 0$? Please give the conditions on the spectral radius/dominant eigenvalue.
${ }^{* *}$ HINT $^{* *}$: think about how you can write $(I-A)^{-1}$.
(If you're interested in the solution of this problem or want to see more applications of the theorem, see https: //epubs.siam.org/doi/pdf/10.1137/S0036144599359449.)

