
STEINBERG SYMBOLS: A BRIEF SURVEY OF ALGEBRAIC K-THEORY
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Abstract. In this paper, we explore the definition of the Steinberg symbol and its significance. To do this,
we first providing the motivation and background about projective modules for studying K-theory. Then, we
define K0 as a nicer object to work with, obtained from the category of projective modules over a ring. We then
further define K1 and K2, motivated by finding objects which fits an analog of the Mayer-Vietoris sequence.
After we introduce these definitions, we provide some tools with which we can calculate these rings, and we
demonstrate the nice structure on K2pRq encoded by the Steinberg symbol. We then venture out to find the next
right definitions for higher K-groups, introducing Milnor K-theory and topological constructions.
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1. Overview

The Steinberg symbol is a pairing function on fields that plays a role in the algebraic K-theory of fields,
which provides formalism for discussing and generalizing the Hilbert symbol. It was introduced following
Steinberg’s 1962 Brussels conference paper [6], where he worked out generators and relations of simple ad-
joint algebraic groups over arbitrary fields in order to study non-adjoint groups and how projective modular
representations of the adjoint groups lifted to universal groups. Matsumoto’s thesis [2] in 1969 and Moore’s
paper that appeared in the same year [4] fleshed out the connections of Steinberg symbols to classical sym-
bols and reciprocity laws [1]. In 1971, Milnor published Introduction to Algebraic K-theory [3], which serves a
summative exposition of the above developments.

Algebraic K-theory was developed at a concurrent time by topologists to study vector bundles and ob-
structions in homotopy theory. Matsumoto’s theorem, which prompted the definition of Steinberg symbols
in order to clarify the structure of K2, has the following immediate corollary:

Corollary 1.1. Suppose A is an abelian group and F is a field, and let F ˚ denote the multiplicative group F ´ t0u.

Given any bimultiplicative map
c : F ˚ ˆ F ˚ Ñ A

satisfying the identity
cpx, 1 ´ xq “ 1,

there exist a unique homomorphism from K2pF q to A which sends the symbol tx, yu to cpx, yq for all x and y.

In other words, K2pF q is the universal object for the identity cpx, 1 ´ xq “ 1. Any such c satisfying
the conditions of the corollary is defined to be a Steinberg symbol over the field F . In fact, there are several
classical pairing maps which turn out to be Steinberg symbols, including, most notably, the Hilbert symbol.
In this paper we intend to given a basic overview of algebraic K-theory, with the goal of demonstrating
the significance of the Steinberg symbol. In section 2, we introduce projective modules, which are the
motivating objects of K-theory. In section 3, we define K0, K1, and K2 groups, and describe some tools
with which we can study the structures of these K-groups. In section 4, we explore Steinberg symbols,
which essentially control the structure of the K2 group of fields. Finally, in section 5, we talk briefly about
a way in which we can extend the idea of K-groups into higher degrees.

For background, we assume that the reader knows about modules. The bulk of the content in this paper
is sourced from The K-Book [7], with nods to Milnor’s classic Introduction to Algebraic K-theory [3].

2. Projective Modules

In this section we aim to define projective modules over a ring R, which are the main objects of study
in algebraic K-theory, and we give some well-known results about the stability of projective modules.

2.1. Free and stably free modules. A moduleM over ringR is free if it has a basis, i.e. if there exists a subset
teiuiPI Ă M such that for all m P M , there is a unique way to write m “

ř

riei, with ri P R. In particular,
any module with torsion cannot be free, but a torsion-free module is not necessarily free: consider the ideal
p2, xq in the ring Zrxs as a Zrxs-module, which is not free since it is not a principal ideal.

Notice that if R “ F is a field, then any F -module is a vector space, so it always has a basis and is
therefore free. In this case, the vector spaces F s and F t for s ‰ t are necessarily not isomorphic. This is
not true of a general ring; we say that a ring R satisfies the invariant basis property if Rs – Rt if and only if
s “ t. For a ring R that satisfies this property, there is a definite notion of rank for finitely generated free
R-modules. Notice also that all commutative rings automatically satisfy this property, since any basis of M
lifts to a basis of M bR pR{mq, a R{m-vector space, via the map R Ñ R{m.
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We say that an R-module P is stably free of rank n´m if P ‘Rm – Rn for some m and n. Notice that if
R satisfies the invariant basis property, the rank is invariant under the choice of m and n. A way to produce
stably free modules is by looking at the kernels K of surjective maps Rn Ñ Rm, since the exact sequence

0 Ñ K Ñ Rn Ñ Rm Ñ 0

splits since Rm is free, and clearly we can engineer this short exact sequence given a stably free module,
so this is a correspondence. The natural next question is whether stably free R-modules M are always free;
unfortunately this is not true, even over commutative rings. Here is a classic example:

Example 2.1. Take the ring R “ Rrx, y, zs{px2 ` y2 ` z2 ´ 1q, and consider the map

σ : R3 Ñ R

pa, b, cq ÞÑ ax ` by ` cz.

We would like to write R3 “ R‘kerpσq. Notice that every element of R3 represents a continuous vector
field on S2 Ă R3, and under this interpretation, σ is taking the dot product of pa, b, cq with px, y, zq, the
radial vector field. Hence pa, b, cq P kerpσq are tangent vector fields on S2. If kerpσq were free, its basis
would represent two tangent vector fields which are linearly independent at every point on S2. But this is
impossible by the hairy ball theorem.

The following theorem provides a description of the "stable range" where stably free R-modules are in
fact free.

Theorem 2.2 (Bass Cancellation). Suppose R is a commutative Noetherian ring of Krull dimension d. Then every
stably free R-module of rank ą d is free.

Notice that Example 2.1 shows this bound is sharp.

2.2. Projective modules. We may be curious about the further generalization of stably free R-modules
where we consider those modules P for which there exists some (not necessarily free) module Q such that
their direct sum P ‘Q is free. These modules are said to be projective. As before, we’d like a similar charac-
terization of these as kernels of maps, but since we don’t know whether Q is free, the splitting is nontrivial.
To this end, we can rephrase our definition of projective as follows: P is projective if there is some free
module F and a surjective map ϕ : F Ñ P such that the exact sequence

0 Ñ Q “ kerpϕq Ñ F
ϕ
ÝÑ P Ñ 0

splits. By the splitting lemma, it suffices to have a right inverse of ϕ. In other words, it suffices to have a
morphism f such that

P

F P 0

f

„

ϕ

commutes. We make this correspondence precise in the following stronger statement.

Proposition 2.3 (projective lifting property). An R-module P is projective if and only if for all surjective R-
module maps ϕ : M Ñ N and for every map g : P Ñ N there exists a map f : P Ñ M such that

P

M N 0

f
g

ϕ
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commutes.

Proof. The discussion above gives the reverse direction: since there’s always a surjective morphism into
P from some free module, we could always construct the exact sequence. Hence it suffices to show that
any projective module P satisfies the projective lifting property. First notice that if P is free, constructing
f amounts to lifting the image of a basis, which we could always do. Then this is true for all projective
modules P by extending g to a map from Q‘P , a free module, from which we can construct f by restricting
the domain. □

Notice that all stably free modules are projective. As before, we have the following theorem which
provides a description of the "stable range" where projective R-modules can be described nicely. We say
that two R-modules M,N are stably isomorphic if M ‘ Rm „ N ‘ Rn for some m,n.

Theorem 2.4 (Bass-Serre Cancellation). Suppose R is a commutative Noetherian ring of Krull dimension d, and
P is a projective R-module of constant rank n ą d. Then:

(1) P » P0 ‘ Rn´d for a projective module P0 of constant rank d. (Serre)

(2) If P and P 1 are stably isomorphic, then P » P 1. (Bass)

(3) If P ‘ M is stably isomorphic to M 1, then P ‘ M » M 1 for any M,M 1. (Bass)

We will now focus our attention on the categoryPpRq of finitely-generated projectiveR-modules, whose
only nontrivial part consists of projective R-modules of rank ď d.

3. K0, K1 and K2

In this section, we will define the groups K0,K1, and K2. We first define K0 as the group completion
of PpRq, and then obtain K1 and K2 through an analog of the Mayer-Vietoris sequence.

3.1. Grothendiek K0 Group. To figure out what kind of object PpRq is, first notice that it is closed under
direct sum: ifP, P 1 are both projectiveR-modules, we haveP‘Q andP 1‘Q1 free, so clearly pP‘P 1q‘pQ‘Q1q

is a free R-module. Hence direct sum gives us a natural notion of addition, with additive identity being the
zero module. A priori, it isn’t clear that there is a notion of inverse.

3.1.1. Group completion of an abelian monoid. In this section, we will describe K0pRq as the group completion
of PpRq by artificially including inverses.

We call categories like PpRq abelian monoids. More precisely, an abelian monoid pM,`q is a set M

equipped with a binary operation ` which is commutative, associative, and has an identity 0. Notably,
abelian groups are abelian monoids. If M,N are abelian monoids, then the map f : M Ñ N is a morphism
of monoids if f respects addition; in other words, if fp0q “ 0 and fpm1 ` m2q “ fpm1q ` fpm2q.

The group completion of an abelian monoid M is an abelian group M´1M with a monoid map rs : M Ñ

M´1M which is universal: for any map M Ñ A with A an abelian group, there is a unique morphism of
abelian groups M´1M Ñ A making

M A

M´1M
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commute. The group completion A´1A of any abelian group A is itself, and if M is a submonoid of A then
M´1M is the subgroup in A generated by M . For example, the group completion of N is Z.

Every abelian monoid M has a group completion M´1M : we can construct it by forming the free abelian
group F pMq whose symbols rms come from elements m P M , then quotienting out the relation rm ` ns ´

rms ´ rns. The structure map M Ñ M´1M is simply m ÞÑ rms. This construction is in fact universal,
since given a map f : M Ñ A there is exactly one way to determine where a symbol is mapped to under
M´1M Ñ A: rms is mapped to fpmq and ´rms is mapped to fpmq´1.

To write M´1M explicitly in terms of M without the artificial addition of inverses, notice that every
element of M´1M can be written as rms ´ rns for m,n P M . In addition, it is easy to verify that rms “ rns if
and only if m ` p “ n ` p for some p P M . This means that if we consider the surjective map

M ˆ M Ñ M´1M

pm,nq ÞÑ rms ´ rns

we see that M´1M can be written explicitly as the quotient of M ˆM by the relation pm,nq „ pm`p, n`pq.

Now, since each abelian monoid has a group completion, and since if we have a monoid map M Ñ N ,
the map M Ñ N Ñ N´1N extends uniquely to a map M´1M Ñ N´1N , group completion is actually a
functor from abelian monoids to abelian groups. In fact, it is the left adjoint to the forgetful functor since
we have

HompM,Aq » HompM´1M,Aq

by definition. Now we’re ready to state the definition of the K0 group.

Definition 3.1. The Grothendieck Group of a ring R, denoted K0pRq, is the group completion P´1P of the
category of finitely-generated projective R-modules, PpRq.

In other words, K0pRq is the group with generators rP s where P is a projective R-module, subject to
the relation rP s ` rQs “ rP ‘ Qs, Sand K0 is a functor from rings to abelian groups. In the case when
R is commutative, notice that K0pRq is also closed under the tensor product bR, since b distributes over
‘. Using rRs “ 1, we see that tensor product makes K0pRq a commutative ring. In fact, in this case K0

is actually a functor from commutative rings to commutative rings, since for some ring map R Ñ S, the
tensor product bRS induces a monoid map PpRq Ñ PpSq, which is made into a map of abelian groups
K0pRq Ñ K0pSq via group completion, which is in fact a ring map if R,S commutative since

pP bR Qq bR S » pP bR Sq bR pQ bR Sq.

From our previous discussion about group completions abelian monoids, we have the following simple
reduction, which is just a rephrasing of the definitions:

Lemma 3.2. Consider the monoid map N Ñ PpRq sending n to rRns. This induces a morphism of abelian groups,
Z Ñ K0pRq. Then,

‚ Z Ñ K0pRq is injective if and only if R satisfies the invariant basis property, and

‚ supposing that R satisfies the invariant basis property, K0pRq » Z if and only if every finitely generated
projective R-module is stably free.

Notably, if R is commutative, Z is a summand of K0pRq. This is because the surjective map R Ñ R{m

induces the ring map K0pRq Ñ K0pR{mq “ Z which sends rRs to 1.
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Now, for some ring R, we have the following inclusion GLnpRq Ă GLn`1pRq: for g P GLnpRq, we can

send it to
ˆ

g

1

˙

. Then we can define GLpRq “ lim
ÝÑ

GLnpRq. Now suppose we have a ring map f : R Ñ S

where the ideal I Ă R is mapped isomorphically to an ideal I Ă S. Then we have the following pullback
diagram

R S

R{I S{I

f

x

which we call a Milnor square. Given a Milnor square, we can construct an R-module M from an S-module
M1, an R{I-module M2, and an ismorphism g : M2 bR{I S{I » M1{IM1. This process is called Milnor
patching. Then we can define the following maps

Bn : GLnpS{Iq Ñ K0pRq

g ÞÑ rP s ´ rRns

where P is obtained by Milnor patching together copies of free modules. We can assemble them together
into a map B : GLpS{Iq Ñ K0pRq. Then we have the following theorem.

Theorem 3.3 (Mayer-Vietoris). The sequence

GLpS{Iq
B
ÝÑ K0pRq

∆
ÝÑ K0pSq ‘ K0pR{Iq Ñ K0pS{Iq

is exact.

See [7, II.2.9] for more details.

A natural question which arises is whether one could extend this exact sequence to the left. In particular,
the K0 part of this sequence looks rather similar to the topological cohomology long exact sequences. In
order to study this, we now introduce the notion of the K1 group.

3.2. Whitehead Group K1. We now define K1pRq as GLpRq{rGLpRq, GLpRqs, where rGLpRq, GLpRqs de-
notes the commutator subgroup of GLpRq, emulating the cohomology long exact sequence from topology.
(In fact, the analogous construction of K-groups on vector bundles gives a generalized cohomology theory.)
Later, in Section 5, we will see that K1pRq is actually π1pKpRqq where KpRq is some topological space built
out of PpRq whose fundamental group is K0pRq.

From the above definition of K1pRq, it is easy to see that K1pRq is universal with regards to the property
that every homomorphism from GLpRq to an abelian group A

GLpRq A

K1pRq

factors through the quotient map GLpRq Ñ K1pRq.

In order to compute K1, we must find the commutator subgroup of GLpRq. We will now show that the
commutator is the subgroup EpRq generated by elementary matrices.

Definition 3.4. An elementary matrix eijprq P GLpRq with i ‰ j and r P R is a square matrix whose diagonal
entries are 1 and whose pi, jq-th entry is r.
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We will denote the subgroup containing nˆn elementary matrices as EnpRq, so that EpRq “ lim
ÝÑ

EnpRq.
Notice that the matrix eijprq acts on matrices on the left by adding r copies of the j-th row to the i-th row.
Using this description, we see that EpRq consists of those matrices from which we can obtain the identity
matrix via this row operation.

Lemma 3.5 (Whitehead). The commutator subgroup of GLpRq is EpRq, and so K1pRq “ GLpRq{EpRq.

Proof. First we compute the commutators of elementary matrices. Noting that eijprqeijpsq “ eijpr ` sq and
in particular eijp´rq is the inverse to eijprq, the following cases are easy to describe:

reijprq, eklpsqs “

$

’

’

&

’

’

%

1 if j ‰ k and i ‰ l

eilprsq if j “ k and i ‰ l

ekjp´srq if j ‰ k and i “ l.

From this we see that the commutators ofEpRq is the entireEpRq by taking i, j, k distinct and noting eijprq “

reikprq, ekjp1qs. and so EpRq Ă rGLpRq, GLpRqs. In addition, for each commutator in GLnpRq, we can write
it as a product in GL2npRq in the following way:

rg, hs “

„

g 0

0 g´1

ȷ „

h 0

0 h´1

ȷ „

phgq´1 0

0 hg

ȷ

.

Each of the terms is clearly in EpRq since we can get to identity via elementary row operations. Hence
K1pRq “ GLpRq{EpRq. □

Notice that as an immediate consequence of this lemma, if F is a field, then the usual linear algebra
applies and it is well-known in this case that EpF q “ SLpF q, so K1pF q “ Fˆ.

As before, K1 for a Milnor square fits into an exact sequence.

Theorem 3.6 (Mayer-Vietoris). Given a Milnor square, the following sequence

K1pRq
∆
ÝÑ K1pSq ‘ K1pR{Iq Ñ K1pS{Iq

B
ÝÑ K0pRq

∆
ÝÑ K0pSq ‘ K0pR{Iq Ñ K0pS{Iq

is exact.

The proof amounts to chasing some definitions and can be found at [7, III.2.6].

3.3. K2 of a Ring and the Steinberg Group. In the spirit of further extending the Mayer-Vietoris sequence,
we are interested in the next group, K2, that would further resolve our exact sequence in the same manner.
Milnor found the right definition for this group following a 1962 paper by Steinberg on Universal Central
Extensions of Chevellay groups.

In order to define this group, we first present the definition of the Steinberg group, StpRq, and then we
will define K2 as the kernel of a map in a certain exact sequence, and then we will show that K2 is the center
of StpRq.

Definition 3.7. For n ě 3, the Steinberg group StnpRq of a ring R, is a group with generators xij with i, j

distinct integers, i, j P r1, ns, and r P R, and relations ("Steinberg relations"):

xijprqxijpsq “ xijpr ` sq,

rxijprq, xklpsqs “

$

’

’

&

’

’

%

1 if j ‰ k and i ‰ l

xilprsq if j “ k and i ‰ l

xkjp´srq if j ‰ k and i “ l.
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Notice that each elementary matrix in EnpRq satisfy the relations of StnpRq, we have the surjective
homomorphism

ϕn : StnpRq Ñ EnpRq

xijprq ÞÑ eijprq.

Also notice that each Stn includes naturally into Stn`1, we can similarly defining StpRq “ lim
ÝÑ

StnpRq. Then
the maps ϕn induce the surjective map ϕ : StpRq Ñ EpRq. Since the definitions for Stn and En look almost
identical, we may wonder whether they are the same group. To capture this information, we consider the
kernel of ϕ.

Definition 3.8. The group K2pRq of a ring R is defined to be the kernel of the map ϕ : StpRq Ñ EpRq as
above.

From the definition, we see that K2 actually fits into the following exact sequence of groups:

1 Ñ K2pRq Ñ StpRq Ñ GLpRq Ñ K1pRq Ñ 1.

In fact, K2 is an abelian group, which we know from the following theorem:

Theorem 3.9 (Steinberg). K2pRq is the center of StpRq.

Proof. First suppose x is in the center of StpRq. Then x commutes with every element of StpRq, and since ϕ is
a surjective homomorphism, it follows that ϕpxq commutes with every element of EpRq. But for elementary
matrices eijprq, taking matrix A to be the matrix where Akj ‰ 0, for any j. Then eijprqA ‰ Aeijprq for any
r ‰ 0. From this we see that the center of EpRq is trivial, and hence x is in the kernel of the map ϕ, so it
must be a member of K2pRq.

Now suppose x is a member of K2pRq, so ϕpxq “ 1. Then, for every p P StpRq, we must have

ϕppxp´1x´1q “ ϕppqϕpxqϕppq´1ϕpxq´1 “ ϕppqϕppq´1 “ 1.

Choose an integer n such that x can be written using generators xijprq where i, j ă n. Write Pn to denote
the subgroup of StpRq generated by the symbols xin with i ă n. Then clearly pxp´1x´1 is in Pn. But Pn also
injects into En by the map ϕ, so ϕppqϕpxqϕppq´1ϕpxq´1 “ 1 means pxp´1x´1 “ 1, so x commutes with all
generators xin with i ă n, and by the same argument x also commutes with all generators xnj with j ă n.
Hence x is in the center of StpRq. □

From this, we also see that since K2pRq is the kernel of the map from StpRq to EpRq, K2pRq collects
the data of which elements of EpRq commute with each other, i.e. the pairs of elements whose commutators
reij , ekls “ 1.

We have now seen that K2pRq is a measure of how much EpRq commutes. We can make this measure-
ment specific by taking two matrices A,B which commute in EpRq, lifting them to StpRq, and taking their
commutator. We call this operation ‹. In other words, we define, for A,B P EpRq such that AB “ BA,

A ‹ B “ sA´1
sB´1

sA sB,

for some choice of sA P ϕ´1pAq, sB P ϕ´1pBq. This definition doesn’t depend on the choice of sA, sB : for some
other choice, we can write those as sAC1, sBC2, for C1, C2 P K2pRq, so C1, C2 are in the center. Then clearly
r sAC1, sBC2s “ sA´1

sB´1
sA sB. Also, notice that we chose elements Ā, B̄ so that their commutator is sent to 1,

so in fact A ‹ B is an element of K2pRq.

There are several easy properties of the ‹ operation, as follows.

Proposition 3.10. Suppose A,B P EpRq such that AB “ BA. Then the following hold:
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‚ pP´1AP q ‹ pP´1BP q “ A ‹ B, (invariant under conjugation)

‚ pA ‹ BqpB ‹ Aq “ 1, (skew-symmetric)

‚ A1A2 ‹ B “ pA1 ‹ BqpA2 ‹ Bq (bilinear).

Proof. The invariance under conjugation follows from the definition of commutators and the fact that r sA, sBs

is in the center of StpRq, so sP´1r sA, sBs sP “ r sA, sBs. The fact that ‹ is skew-symmetric follow directly from
the definition of commutators. To see bilinearity, notice that by the following commutator identity and the
fact that rĎA1, sBs, rĎA2, sBs are in the center,

rĎA1
ĎA2, sBs “ rĎA1, rĎA2, sBssrĎA2, sBsrĎA1, sBs “ rĎA2, sBsrĎA1, sBs “ rĎA1, sBsrĎA2, sBs.

□

Using the ‹ operation, we can now define a map from a subset of R˚ ˆ R˚ to K2pRq which gives us
insight into the structure of K2pRq.

Definition 3.11. If r, s are units in R which commute, we define the symbol tr, su P K2pRq to be

tr, su “

»

–

r

r´1

1

fi

fl ‹

»

–

s

1

s´1

fi

fl .

Since that ‹ operation is skew-symmetric and bilinear, so is the t´,´u symbol. There is one more nice
property of t´,´u which is important in the characterization of Steinberg symbols, as we will see later.

Lemma 3.12. If r,“ 1 ´ r P R are both units, then tr, 1 ´ ru “ 1, and tr,´ru “ 1.

The proof amounts to chasing definitions cleverly; see [7, III.5.10.2].

To characterize K2pRq in terms of the t´,´u symbol, we have the following powerful result due to
Milnor [3].

Theorem 3.13 (Milnor). If R is a field, division ring, or local ring, K2pRq is generated by the symbols tr, su.

From this theorem we see that we could study the structure of K2 for certain rings by just looking at
R˚ ˆ R˚. In the situation of fields, the characterization is even simpler. We explore this more in the next
section.

4. The Steinberg Symbol

The definition of the symbol in Definition 3.11 seems quite artificial, and it involved a choice of a lift
in defining the ‹ operation. There is, in fact, a cleaner and more universal way to describe it. We are now
ready to recall Matsumoto’s theorem, which we stated in the beginning of this document.

Theorem 4.1 (Matsumoto 1969, [2]). IfF is a field thenK2pF q is the abelian group with the following presentation:
its generators being the set of symbols tx, yu where x, y P F ˚, subject to relations

(1) txx1, yu “ tx, yutx1, yu, tx, yy1u “ tx, yutx, y1u, (bilinearity) and

(2) tx, 1 ´ xu “ 1 for x ‰ 0, 1. (Steinberg relation)

For a self-contained proof, see [3, p.109]. We can restate this theorem in the following way.
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Corollary 4.2. Suppose A is an abelian group and F is a field, and let F ˚ denote the multiplicative group F ´ t0u.

Given any bilinear map
c : F ˚ ˆ F ˚ Ñ A

satisfying the identity
cpx, 1 ´ xq “ 1,

there exist a unique homomorphism from K2pF q to A which sends the symbol tx, yu to cpx, yq for all x and y.

In other words, K2pF q is the universal object for maps c satisfying the identity cpx, 1 ´ xq “ 1. We give
this class of maps a special name.

Definition 4.3 (Steinberg symbol). For some abelian group A, we call any bilinear map

c : F ˚ ˆ F ˚ Ñ A

satisfying the identity
cpx, 1 ´ xq “ 1

a Steinberg symbol.

Interestingly but perhaps unsurprisingly, there is a number of maps satisfying the Steinberg identity
which appeared previously elsewhere in mathematics. One notable example is the Hilbert symbol.

Example 4.4 (Hilbert symbol). Take the field Qp of p-adic numbers. The Hilbert symbol is defined by setting
cpx, yq P t1,´1u depending on whether ax21 ` bx22 “ 1 has a solution. The bilinearity is classical; see [5,
3.14.5] for a proof, and it clearly satisfies the identity: setting x1 “ x2 “ 1 gives the desired result.

From this, we see that Steinberg symbols are useful in terms of encoding the information about K2 in
the case of fields, and we can probe at the K2 group by instead studying the Steinberg symbols.

4.1. Milnor K-Theory. Now that we have several tools to study the K2 group, we wonder if there is a way
to directly describe all the K-groups including those of higher degree, without appealing to the long exact
sequence. In 1970 Milnor introduced a way to do so for fields, which has applications in Galois cohomology
and in the theory of the Grothendieck-Witt ring of quadratic forms.

Let T pF ˚q denote the tensor algebra of the group F ˚, i.e.

T pF ˚q “ Z ‘ F ˚ ‘ pF ˚qb2 ‘ ¨ ¨ ¨ .

Let lpxq denote, for x P F ˚, the x in the degree 1 piece of T pF ˚q. Then, motivated by Matsumoto’s theorem,
Milnor defined the Milnor K-group KM

n pF q as the degree n-piece of the quotient of T pF ˚q by the ideal
generated by lpxq b lp1 ´ xq where x ‰ 0, 1. This is clearly rigged to agree with the lower-degree K-groups
we have defined previously: K0pF q “ Z, K1pF q “ F ˚, and K2pF q satisfies Matsumoto’s theorem.

Unfortunately, it isn’t clear how to generalize this notion to rings, as we don’t have an analogous re-
sult to Matsumoto’s theorem. It also isn’t immediately clear if these groups still extend the Mayer-Vietoris
sequence. In the next section, we present a different, topological construction which agree on lower degrees.

5. The BGL` Construction ofK-theory

This section is a brief sketch of Quillen’s topological notion of K-groups as the homotopy groups of
some space, constructed to agree with our previous ad hoc definitions. We assume familiarity with basic
algebraic topology.
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Recall that for a group G, the topological space BG is the geometric realization of the nerve of the
category with one object whose morphisms are elements of the group, and that its fundamental group is G.
Then, taking G to be GLpRq of a ring R, we can define the following CW complex.

Definition 5.1. We denote a CW complex X as BGL`pRq if there is a distinguished map BGLpRq Ñ

BGL`pRq such that

(1) π1pBGL`pRqq » K1pRq,

(2) the induced map GLpRq » BGLpRq Ñ π1pBGL`pRqq » K1pRq is surjective with kernel EpRq, and

(3) the induced map on homology H˚pBGLpRq,Mq Ñ H˚pBGL`pRq,Mq is an isomorphism for every
K1pRq-module M .

We claim that this CW complex is well-defined up to homotopy and that πnpBGL`pRqq “ KnpRq for
n small; πnpBGL`pRqq “ KnpRq essentially follows from the fact that small K-group agree with the Z-
homology of R. See precise proofs and various ways of concretely constructing BGL` in [7, IV.1]. Then we
can define higher K-groups as KnpRq “ πnpBGL`pRqq, and we can get Mayer-Vietoris from the homotopy
long exact sequence.

We can also describe a higher-degree analog for the t´,´u symbol which appeared in our discussion of
Steinberg symbols. To do this, note that we have a product map

KppRq ˆ KqpRq Ñ Kp`qpRq

analogous to the cohomology cup product. In K2pRq this definition agrees with t´,´u, and we can general-
ize the notion to n-fold symbols by taking the product of n elements in K1pRq. Then, when F is a field, from
the universality of Milnor K-theory, there is a map KM

n pRq Ñ KnpRq. However, this map isn’t an injection,
since the symbol t´1,´1,´1,´1u vanishes in K4pQq but not KM

4 pQq. For more details, see [7, IV.1].
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