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Abstract

Competing standards often proliferate in the early stages of product markets and may lead

to socially inefficient investment. This paper studies the effect of unifying three incompatible

standards for charging electric vehicles in the U.S. from 2011 to 2015. I develop and estimate

a structural model of vehicle demand and charging network investment to quantify the impact

of a uniform charging standard. Variation in federal and state subsidies identify the demand

elasticities. Counterfactual simulations show moving to a uniform charging standard increases

consumer surplus by $400 million; car manufacturers build 5.8% more charging stations and sell

4.3% more electric vehicles.
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1 Introduction

When firms invest in incompatible complementary goods or technical standards, should the govern-

ment intervene and mandate compatibility? This question arises in a wide range of industries, from

digital markets to manufacturing. Mandating compatibility has ambiguous welfare implications. A

shift toward compatibility gives consumers access to the combined investments of all firms, which

may benefit consumers by increasing variety, convenience, or other measures of quality. However,

firms may reduce their investments, which would erode consumer benefits from compatibility. Com-

patibility turns firms’ investments from substitutes that steal business from rivals to complements

that have positive spillovers onto other firms. Therefore, firms may invest too much under incom-

patibility because private gains from business stealing do not contribute to social surplus, and they

may invest too little under compatibility because private incentives do not internalize the positive

spillovers. The theory literature shows that private incentives to provide compatibility can be either

too high or too low relative to social incentives. The welfare effect of a compatibility policy is open

to empirical analysis.

This paper empirically assesses the effect of compatibility on market outcomes and welfare in

the U.S. electric vehicle market, which grew ten-fold in the number of models and annual unit sales

from 2011 to 2015. Electric vehicles attract billions of dollars in government support for their po-

tential environmental benefits and innovation spillovers. As with any alternative fuel transportation

technology, such as hydrogen and natural gas, electric vehicles require refueling infrastructure for

wider consumer acceptance. Manufacturers of electric vehicles have invested heavily in building fast

charging stations to refuel electric vehicles. During the study period, car manufacturers coalesced

around three mutually incompatible standards for fast charging. Incompatibility across different

charging standards is an increasingly focal policy issue as governments continue to devote public

funds to electric vehicle charging station infrastructure. For example, initial guidance and rules for

the disbursement of funds under the bipartisan infrastructure law, the Infrastructure Investment

and Jobs Act (IIJA) of 2021 explicitly discusses the qualifying charging standard.1

I evaluate the effect of a counterfactual compatibility policy in three main steps. First, I

develop a structural model of consumer vehicle purchase behavior and car manufacturer build-out

of charging networks. Second, I estimate the model using data from the U.S. electric vehicle market

from 2011 to 2015. Third, I use the model and parameter estimates to simulate charging station

1https://www.fhwa.dot.gov/environment/alternative fuel corridors/nominations/90d nevi formula program guidance.pdf
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investment, electric vehicle sales, and consumer surplus when all car manufacturers adhere to a

single standard for recharging electric vehicles. I compare the status quo to the counterfactual

market equilibrium and the social planner solution.

The mobility of drivers poses a challenge to specifying the relevant charging stations for an

individual consumer. The most useful refueling stations to a consumer may be those that are near

their driving paths and destinations rather than their home addresses (Houde, 2012). I cast the

available charging network as a vehicle characteristic in the static, discrete-choice framework of

Berry et al. (1995). The model captures three measures of charging network quality: the number of

stations in a consumer’s local market, the number of destinations that consumers can reach using

a vehicle and stations that it can access, and the growth rate of the network with each standard.

I estimate the key parameters of my model using data on market-level vehicle sales and the

number and locations of charging stations. I estimate an empirical Bayes posterior mean for

market shares to reduce noise and eliminate zero market shares. To identify the endogenous demand

parameters on price and charging stations, I collect an original panel dataset of federal and state

government incentives for vehicle purchases and charging station investments. Government tax

credits and rebates incentivize consumers to purchase electric vehicles and businesses to install

charging stations. Conditional on market and time fixed effects, within-market changes over time

in government subsidies are plausibly exogenous cost shifters due to idiosyncrasies in policy-making

timing. Additionally, a portion of the charging stations in the dataset were built as part of a program

in the American Recovery and Reinvestment Act of 2009 (Recovery Act) that chose recipient cities

before electric vehicles became available for sale. Charging stations take time to complete due to

permitting and construction. Conditional on market and time fixed effects, exact station completion

times are plausibly exogenous to unobserved product characteristics and contemporaneous local

demand conditions.

I model car manufacturers as competing in static oligopoly; they sell electric vehicles and build

charging stations to support electric vehicle sales. In the model, firms search over charging station

counts and geographic placement to maximize static profits. The specification of charging quality in

the demand system helps to simplify the firms’ charging station optimization problem. Equilibrium

in each period is found with iterated best response. Combining demand parameter estimates and

the first-order conditions of the profit function, I recover firms’ markups for vehicles and costs for

charging stations, which I find to be in line with engineer and industry estimates.

Using parameter estimates from the consumer and firm models, I assess the impact of a coun-
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terfactual policy that mandates compatibility in charging stations. I find that consumer surplus

improves by $400 million over the 2011 to 2015 period, and firms build 5.8% more charging stations.

The net effect of compatible charging stations and changes in charging station investment results in

4.3% more electric vehicles sold. Compatibility changes firms’ investment incentives in two ways.

First, firms have diminished business-stealing motives, which reduces their charging station invest-

ments. Second, charging stations become strategic complements, which could increase investments.

The net effect of these two forces depends on empirical demand and cost parameters, and I find that

firms’ investments increase. However, firms do not fully internalize or appropriate their benefits on

consumer surplus and other firms, and the social planner would build 2% more charging stations.

The gains from compatibility are not symmetric. Firms that produce longer-range electric vehicles

benefit more from compatibility than firms with lower-range vehicles.

This paper contributes to three strands in the literature. First, this paper contributes to the

empirical understanding of the impacts of compatibility. Theoretical predictions of gains from

compatibility are ambiguous, as firms’ private incentives to achieve compatibility may be either

higher or lower than social incentives (Katz and Shapiro, 1985, 1986). Previous empirical work

on the impact of compatibility has found considerable gains in consumer welfare (Ho, 2006) and

producer efficiency (Gross, 2020). However, firms’ strategic responses to compatibility may mod-

erate the gains in consumer welfare (Ishii (2007), Lee (2013), Knittel and Stango (2008, 2011)).

Ferrari et al. (2010) model ATM investment by banks and usage by consumers, and find that coor-

dinated investment by firms leads to substantially lower investment than socially optimal. In this

paper, firms make individual investment decisions even in the compatible stations counterfactual.

After computing the counterfactual equilibrium charging network built by firms, I find that com-

patibility in charging standards improves consumer surplus despite firms decreasing the number of

charging stations that they build. Compatibility does not fully erode firms’ incentives to invest in

complementary goods for their products when their products remain differentiated.

Second, this paper contributes to the growing literature on endogenous product positioning

by endogenizing charging station investment by car manufacturers. When product varieties are

discrete, firms’ product choices can be thought of as entry decisions. A line of literature recovers

fixed costs of new product entry to compute welfare or solve for new product introductions (Woll-

mann (2018), Eizenberg (2014), Nosko (2014), Sweeting (2013), and Draganska et al. (2009)). In

settings such as the charging network investment problem in this paper, firms face a continuous

choice space. Crawford et al. (2019) and Fan (2013) study the size of cable bundles and newspaper

3



content quality, respectively.

Third, a rapidly growing literature investigates different features of the electric vehicle market.

Holland et al. (2016, 2019), Graff Zivin et al. (2014), and Michalek et al. (2011) evaluate the

environmental benefits of electric vehicles in the short run. They find high geographic variation

in the environmental benefits of electrifying transportation within the U.S., depending on the fuel

mix of electricity production and population density. More recent work by Holland et al. (2022)

and Gillingham et al. (2021) has investigated emissions impacts in the longer run when consumer

charging behavior and grid investments can be optimized. A second strand of this literature focuses

on the design and impacts of subsidies for EVs and other green technologies (Clinton and Steinberg

(2019), Sheldon et al. (2017), Borenstein and Davis (2015), Holtsmark and Skonhoft (2014)). This

work finds that consumers respond to subsidies in their decisions to adopt electric vehicles and

other green technologies. Third, using a two-sided market framework, Li et al. (2017) and Springel

(2021) find that car purchases and charging station build-out respond positively to each other and

that subsidizing charging station entry is more cost-effective in increasing electric vehicle sales.2

Fourth, Remmy (2023) and Sinyashin (2021) study the policy implications of endogenizing firms’

choices in the electric range attribute. This paper differs from prior work on electric vehicles by

using existing subsidies as identifying variation in a structural model to evaluate a counterfactual

policy about charging standard compatibility. It is the first to model and empirically evaluate car

manufacturer investments in charging stations.

The rest of this paper is organized as follows. Section 2 discusses the growth of the electric

vehicle market and relevant technical details about charging stations and standards. Section 3

describes the data and government subsidy policies for vehicles and charging stations. Section 4

specifies a model of consumer vehicle choice and car manufacturer investment in charging stations.

Section 5 discusses the empirical Bayes estimator for market shares, identification, and estimation

results. Section 6 uses the model and estimates to simulate market outcomes under a compatibility

policy. Section 7 concludes.

2Greaker and Heggedal (2010) and Pavan (2015) study positive feedback loops between vehicle demand and
refueling infrastructure for hydrogen fuel cell and natural gas cars, respectively.
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2 The U.S. Electric Vehicle Industry

2.1 Growth of the U.S. electric vehicle market

Electric vehicles (EVs) are an increasingly important segment of the U.S. automotive industry,

which as a whole accounts for more than 3% of U.S. GDP (U.S. Bureau of Economic Analysis).

EVs can be classified into two types: (i) battery electric vehicles (BEVs), which only run on

electricity, and (ii) plug-in hybrid electric vehicles (PHEVs), which can take gasoline as a backup

fuel source. The unifying feature across BEVs and PHEVs is that they can be plugged in for

recharging, in contrast with conventional hybrids which cannot be plugged in for recharging. For

example, Toyota first launched the Prius as a conventional hybrid in 2000, and in 2012 added a

plug-in hybrid version.

Tesla Motors unveiled the first modern-day EV at a press event in 2006, a luxury sports car

called the Roadster and priced at more than $100,000. Since late 2010, automakers have introduced

more affordable and mass-market options that span a wide range of prices and features.3 The three

available models in 2011 collectively sold about 14,000 units in U.S. metropolitan statistical areas

(MSAs). From 2011 to 2015, the number of models available and annual units sold both grew

about ten-fold, to 27 available models and about 140,000 units (Table 1). Although the number

of EV models has increased over time, Table 1 shows that the means, minimums, and maximums

of product characteristics such as manufacturer suggested retail price (MSRP) and electric range

have not changed much during this period. Appendix Figure A1 plots the distribution of MSRP,

manufacturer discounts, and electric range by year. The number of publicly-accessible charging

stations for electric vehicles also grew ten-fold, from 2,000 by the end of 2011 to 20,000 by the end

of 2015.

Electric range and charging infrastructure are as important for EVs as fuel tanks and gas

stations are for gasoline cars. Electric range, the distance that an EV can travel starting with a

fully charged battery, generally increases with the size of the battery. Electric range also depends on

other factors, such as weight, aerodynamics, and any other factors that contribute to fuel efficiency.

Charging infrastructure relies on the electric grid’s generation, transmission, and distribution assets.

This paper focuses on the equipment that allows EVs to connect to the grid. An EV can recharge

from any ordinary electrical outlet, which is the slowest option. However, drivers may occasionally

3Technology for EVs has existed since the 1800s, but gasoline became the dominant fuel by the 1920s. A confluence
of advances in battery technology and tightening environmental regulation has led to a revival of the EV market in
recent years. See U.S. Department of Energy (2014) for a detailed historical account.
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need faster charging options away from home, such as on a busy day of running errands or during

a long-distance trip. This paper focuses on charging infrastructure away from drivers’ homes.

EV charging speeds fall into three tiers. Faster charging equipment delivers electricity at higher

rates but costs more upfront to install. Level 1 is the ordinary wall outlet used by most other

consumer electronic devices. Level 1 charging may also be referred to as “trickle-charging” and

adds 2 to 5 miles per hour. Level 2 charging stations can fully charge an electric vehicle in four to

six hours, so they are suitable for destinations where drivers may park for a while. In residential

homes, they can be attached to the same type of outlet used by laundry dryers and electric ovens.

Many employers and retail establishments, such as shopping malls, restaurants, and hotels, have

installed Level 2 charging stations as an amenity for their employees and customers.

The fastest charging option is called Level 3 or fast charging. Most Level 3 charging stations,

especially in the U.S., use direct current. These charging stations work in conjunction with a

transformer (from alternating current to direct current) to deliver high-powered electricity. A 30-

minute session can recharge an EV by 80% on average. Level 3 charging stations tend to be installed

where drivers need a nearly-full recharge in a short time, such as at highway rest stops. They require

the highest fixed costs because of the transformer and higher permitting, legal, and electrician labor

costs. Not all EV models are capable of Level 3 charging, because the battery packs and other

onboard systems must be designed to accommodate the high-powered direct-current electricity.

2.2 Charging standards and compatibility policy

In the U.S. market during the 2011 to 2015 period studied in this paper, car manufacturers de-

signed their EVs around three different standards for Level 3 charging, each not compatible, or

interoperable, with the others. In contrast, Level 1 and 2 charging use uniform standards across all

vehicle brands. A charging standard has two parts: (i) a set of electronic communication protocols

between the vehicle and the charging station, and (ii) a physical connector. Figure 1(a) depicts the

connector shape of each Level 3 charging standard and lists corresponding car manufacturers with

their fast-charge-capable EV models offered from 2011 to 2015. The charging standard for each firm

is the same within the U.S. across all local markets. Car manufacturers without vehicle models next

to them in Figure 1(a) had not yet produced fast-charge-capable EVs by the end of 2015 but had

announced that future models would follow a certain standard. Charging standard coalitions seem

to reflect global regional groupings. There may be idiosyncratic factors and hysteresis in which

firms join which coalition. This paper focuses on firms’ charging station investments, taking their

6



charging standard choice as given. Over time, some car manufacturers have changed standards

alliances. For example, Kia moved from Chademo to the Combo standard in 2018. A growing

number of major automakers including GM, Ford, Rivian, Volvo, and Mercedes-Benz announced

in 2023 that they would join the Tesla standard in the coming few years. I discuss how the paper

relates to the recent shift toward the Tesla standard and the economics questions raised by these

firms’ decisions in the conclusion.

Figure 1(b) shows where EV models lie in “characteristics space” of MSRP and electric range.

Symbols denote EVs by Level 3 charging standard. Tesla offers relatively higher electric range at

higher prices. The point furthest to the right, with the highest electric range during this period,

is the Tesla Roadster, but it is marked as “Other BEV” because the first-generation Roadster was

not compatible with the Tesla Supercharger network. PHEVs as a group have lower electric range,

which may be acceptable to consumers because of their backup gasoline engines. PHEVs and BEVs

span a similar price range.

Automakers have been involved in building Level 3 charging infrastructure throughout the U.S.4

Figure 2 plots the number of charging stations with each standard over time, with the y-axis on a

log scale. Figure 2 shows that charging stations for each standard are first built around the launch of

their first fast-charge-capable EV. Nissan, in partnership with the Tokyo Electric Power Company

and other Japanese automakers, developed the Chademo charging standard in 2010, at the same

time as the development and release of the Nissan Leaf. Tesla Motors announced in September

2012 that it would build a Supercharger network to blanket the U.S., three months after the first

delivery of the Tesla Model S. Meanwhile, other car manufacturers, working through the Society

of Automotive Engineers (SAE), released the specifications of the SAE J1772 Combo5 standard in

October 2012. However, no cars were marketed under the Combo standard until BMW released

the i3 in May 2014. Two months later, BMW announced that it would support the build-out of

charging stations under the Combo standard.6 Figure 2 also shows from the slope of each curve

that the growth of each network is quite fast initially and slows over time. Electric range of vehicles

offered by Nissan and BMW are similar during this period, so Nissan’s much larger network may

4The reason for low third-party entry in Level 3 charging remains an important question for future research. One
plausible explanation is that the size of the electric vehicle fleet does not provide enough revenue relative to the fixed
costs of building a charging station.

5The common standard for Level 2 uses a J1772 connector. The SAE Combo standard for Level 3 adds two DC
pins under the J1772 port, hence the name “Combo.” See Figure 1 for depictions of Level 3 connectors.

6Tesla builds and operates a vertically-integrated charging network, while other manufacturers contract with third-
party networks. The vertical integration decision is an interesting topic for future research. This paper focuses on
network size and location choices. Rivian’s Adventure Network is a more recent example of a vertically-integrated
charging network by a vehicle manufacturer.
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be due to its earlier start.

Figure 3 shows locations of charging stations by standard in September 2015. Tesla charging

stations trace out routes between cities, including cities far apart from each other. Chademo

and Combo stations tend to be located within or near cities. These differences in location choice

are consistent with the differences in electric range across standards shown in Figure 1(b). Each

standard has presence throughout the country.

Incompatibility in fast-charging standards is a potential barrier to EV adoption and may be so-

cially inefficient. Any given EV can only access a subset of the fast-charging infrastructure, and any

fast-charging station can only serve a subset of EV drivers. Incompatibility may suppress growth

on either side of the market relative to an interoperable fast-charging infrastructure. Compatibility

or interoperability can be achieved in two different ways. One path toward compatibility is to pick a

“winner.” The European Union Parliament requires that all stations built after 2018 must at least

be compatible with their chosen standard. In other words, multiple standards are allowed at each

station via connectors or adapters (European Commission (2014)), as long as Parliament’s chosen

standard is also available.7 Another way to achieve compatibility is via adapters. With three

different charging standards, any given vehicle would need two adapters. Six one-way adapters

would be required in total. This paper abstracts away from the transition path and examines the

difference between the status quo and a counterfactual U.S. EV market that started with only one

fast charging standard. Consumers are modeled to be indifferent to the technical specifications of

a charging standard and only value a charging standard for the size and locations of its network.

3 Data and Descriptive Evidence

3.1 Data

Market-level information on consumer demand for new cars comes from vehicle registration data,

compiled by IHS Automotive (now S&P Global Mobility and formerly R.L.Polk) from each state’s

department of motor vehicles. The dataset reports the number of registrations for each electric

vehicle (BEV and PHEV) model, geographic market, and quarter. Each vehicle model is defined as

a brand, model name, model year, and fuel type. There are 30 EV models offered by 20 car brands

from 2011 to 2015; niche models that only sold a handful of units such as the McLaren P1 for

over $1 million are dropped from the analysis. Geographic markets are delineated by Metropolitan

7See Ferwerda et al. (2018) for details on the evolution of charging standards in Europe.
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Statistical Areas (MSAs). The panel includes 359 MSAs and 20 quarters from 2011 to 2015.

Vehicle registration data are merged with model-level characteristics information from MSN Auto,

the Environmental Protection Agency, and Automotive News, including manufacturer-suggested

retail price (MSRP), manufacturer discounts, battery capacity, and electric range. I assign vehicle

characteristics associated with the base trim for the modal model year reflected in unit sales.

Charging station data are published by the Alternative Fuels Data Center (AFDC) of the

Department of Energy. The AFDC maintains one of the most comprehensive databases on charging

stations in the U.S. and includes opening date, location (street address and GPS coordinates), speed

tier (Level 1, 2, or 3), standard for Level 3 charging, and operator. I define a charging station as a

collection of charging posts at the same address and affiliated with the same operator. For example,

charging posts near every entrance of a mall, if all operated by ChargePoint, comprise one charging

station. Charging posts operated by Tesla in the parking lot of the same mall would comprise a

second charging station. A charging post plugs into an EV via a connector. The charging standard

of a station is identified by the types of connectors present. The other component of a charging

standard, the communication protocol, is embedded in the charging post’s software.

Nearly all EV charging stations are hosted in the parking area of some other establishment,

such as a parking garage or a mall parking lot. In an analogy to gas stations, a single charging

post can be compared to a single gasoline pump. A charging station is a collection of posts as a

gas station is a collection of pumps. One difference is that gas stations nearly always have their

own street address while charging stations are referenced by the address where the charging posts

are installed.

The American Community Survey provides information on commuting flows. I collect data on

U.S. federal and state subsidies for constructing instruments. The next subsection describes the

variation in federal and state subsidies for EVs and charging stations.

3.2 Descriptive evidence of the impacts of subsidies

EVs face two main barriers to higher market shares: they are more expensive than comparable

gasoline cars, and they lack adequate recharging infrastructure. The empirical analysis in this

paper uses two types of government subsidies in the U.S. to identify parameters in the structural

model, one for EV purchases and another for charging stations. This subsection describes the

policies, demonstrates independent variation in the subsidies for the two sides of the market, and

presents the strength of the impact of the subsidies on their targets.
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Consumers in the U.S. can receive subsidies from the federal and state governments to help offset

the purchase price of an EV. The U.S. federal income tax credit for EV purchases is a piecewise-

linear function of battery capacity and ranges from $2500 to $7500 for qualifying EVs. Federal EV

subsidies phase out for each manufacturer after sales exceed a cap. No manufacturer reached their

sales cap during the study period. Some state governments offer subsidies in addition to the federal

incentives, ranging from $250 to $7500. Each state’s EV subsidy may change over time and may

depend on vehicle characteristics such as battery capacity or fuel type (PHEV vs. BEV).

EV charging stations also receive federal and state government support. The American Recovery

and Reinvestment Act of 2009 (ARRA) allotted funds to the Department of Energy for vehicle

electrification initiatives, of which $115 million were spent on projects related to EV charging

infrastructure.8 The ARRA stations were completed from 2010 to 2013 and were allocated to

different cities across the U.S. In addition to the ARRA, some state governments subsidize charging

stations as a percentage of upfront hardware and installation costs.

Subsidy variation. Figure 4 demonstrates independent variation in state subsidies for EVs and

charging stations. Panel (a) presents a scatterplot of state EV subsidies (which vary by state,

quarter, and vehicle model) against the maximum state charging station subsidy for any charging

level (which varies by state and quarter and could be further disaggregated by Levels 2 and 3).

State charging station subsidies range from 0 to 80%, with many states offering 0, 50, or 80%.

Within these subsidy levels, there remains variation in state EV subsidies ranging from $0 to

over $5000. There is also considerable variation across MSAs and over time in ARRA-subsidized

charging stations (Panel (b)). For example, at $1500 of state EV subsidies, the number of ARRA

stations ranges from 0 to more than 200. The observations with a $1500 state EV subsidy include

50 MSAs in 5 states; out of these, 26 MSAs in 4 states receive a positive number of ARRA stations

during the study period. The city with more than 200 ARRA stations is Los Angeles.

The empirical analysis later in the paper uses within-MSA variation across vehicles and over

time. Panel (c) presents a scatterplot of state EV and charging station subsidies relative to their

state means. The demeaned subsidies show a great deal of independent variation. For example,

where charging station subsidies are 10 percentage points higher relative to the mean, demeaned

EV subsidies range from -$1700 to $4300. Panel (d) presents a scatterplot of state EV subsidies

and ARRA-funded station arrivals relative to their state means. Again, there is considerable

8The ARRA projects involving EV charging are called The EV Project and the ChargePoint America Project.
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variation in ARRA stations within each EV subsidy level and vice versa. Appendix Figure A2

presents variation in EV and charging station subsidies aggregated to the state-year level. While

aggregation smooths over some of the variation, Figure A2 still shows that EVs are subsidized at

times and places different from charging stations. Figure 4 more closely matches the empirical

specification in the rest of the paper, which uses within-MSA variation across vehicles and over

time.

Relationship between subsidies and intended targets. Figure 5 presents the empirical

relationship between subsidies and their targets.9 Panel (a) plots means of log EV sales at the

market-quarter-vehicle model level as a function of the state EV subsidy using a binned scatterplot,

controlling for market and quarter FE and observable vehicle characteristics such as electric range

and BEV indicator.10 The line of best fit is generated from an OLS regression of log EV sales on

EV subsidies with the same set of control variables, and the reported standard error is clustered

at the market-vehicle model level.11 The estimate of the slope is .022, which implies that a one

standard deviation increase in state EV subsidies ($1300) is associated with a 2.8% increase in unit

sales for a given EV model in a given market and quarter, on average. In comparison, unit sales

of EVs in the U.S. at the market and model level grew at an average quarterly rate of 5.6% from

2011 to 2015. Alternative specifications yield qualitatively similar results, such as the association

between the log of total EV sales to subsidies averaged over EV models by state and quarter. The

structural analysis in the paper models consumer vehicle choice and substitution patterns across

vehicle models explicitly.

Panels (b) and (c) of Figure 5 examine the relationship between new Level 2 or 3 charging

stations and subsidies for them using binned scatterplots. Panel (b) plots the mean log number of

new charging stations as a function of the maximum available charging station subsidy in a state

and quarter, controlling for state and quarter fixed effects. The line of best fit is generated from

an OLS regression of the log number of new charging stations on the maximum state charging

9The analysis requires instruments for both EV sales and new charging stations. The EV and charging-station
subsidies provide independent variation to carry out the analysis. When the three instruments are included in the
first-stage regressions, the coefficients on the instruments are similar to the main estimates (see Appendix Table A2):
in the model for log(EV sales), state EV subsidy has a coefficient of 0.019 (s.e. = 0.010); in the model for log(New
Charging Stations), the coefficient on state charging station subsidy is unchanged at 0.009 (s.e. = 0.002), and in the
model of New Charging Stations, the coefficient on new ARRA stations has a coefficient of 0.559 (s.e. = 0.193).

10Appendix Figure A3 presents alternative specifications using different levels of aggregation, at the state-quarter-
vehicle model level for panel (a) and MSA-quarter level for panels (b) and (c), with qualitatively similar results.

11I cluster standard errors at the market-vehicle model level because EV subsidies may depend on vehicle charac-
teristics such as battery capacity or fuel type (PHEV vs. BEV).
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station subsidies for any charging level, controlling for state and quarter fixed effects. The reported

standard error is clustered at the state level. The slope of the line of best fit is .009, which implies

that a one standard deviation increase in state charging station subsidies (16.8 percentage points)

is associated with a 15.8% increase in new stations in a given state and quarter, on average. Given

an average of 17 new stations in each state and quarter from 2011 to 2015, this corresponds to an

additional 2.7 stations in each state and quarter.

Panel (c) of Figure 5 plots the mean number of new charging stations as a function of the

number of newly arriving ARRA stations in a state and quarter, controlling for state and quarter

fixed effects. The line of best fit is generated from an OLS regression of the number of new charging

stations on the number of newly arriving ARRA stations, with the same fixed effects. The reported

standard error is clustered at the state level. The estimated slope of the line of best fit is .56, which

implies that an additional ARRA charging station arriving in a state and quarter is associated with

.56 additional charging stations on net in that state and quarter. The slope is less than 1, which

suggests that ARRA stations crowd out some other investments.

4 Model

This section presents a model of the EV market that captures the role of charging networks in

consumers’ vehicle choices. Car manufacturers play a series of static two-stage games. At the

beginning of each period, the last period’s charging station investments arrive, any new vehicle

models from an exogenous R&D process become available, and unobserved vehicle quality, demand,

and cost shocks become public information. In the first stage, firms invest in charging stations that

arrive at the beginning of the next period. In the second stage, firms set prices, and consumers

choose a vehicle based on price and quality, including the charging network of each vehicle.

4.1 Consumer demand

Consumer vehicle demand follows the discrete-choice framework of Berry et al. (1995) and Petrin

(2002). In each period t and market m, consumers arrive to purchase a vehicle. Consumer i’s

conditional indirect utility from choosing an EV j depends on the consumer’s attributes and vehicle

characteristics. It is given by:

Uijmt = δjmt + µijmt + εijmt,
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where δjmt is the mean utility common to all consumers within a market and period, and µijmt

is the mean-zero individual deviation from mean utility. Consumer-vehicle-specific taste shocks,

εijmt, are assumed to be i.i.d. Type-I extreme value distributed. The outside option is choosing a

non-EV, with its indirect utility normalized to Ui0mt = εi0mt. The mean utility δjmt of vehicle j is:

δjmt = αpjmt + qjmtγ + xjmtβ + ξjmt,

where pjmt is the price, qjmt is a vector of charging network quality measures, and xjmt is a vector

of other vehicle characteristics and control variables. Unobserved vehicle-specific attributes and

demand shocks are represented by ξjmt. Individual deviation µijmt from mean utility is given by:

µijmt = σppjmtνip +
∑
k

σkq
k
jmtνik,

where νip and νik are standard normal draws. I include random coefficients on vehicle price, local

charging network size, and the number of other markets that are reachable. The charging network

quality measures are described in detail below. Consumer i chooses vehicle j if Uijmt ≥ Uij′mt for

all j′. The market share for vehicle j comes from integrating over individual choices:

Sjmt =

∫
exp(δjmt + µij)∑
j′ exp(δj′ + µij′)

dνi.

The parameters from the demand model to be estimated are θ = (α, β, γ, σ). The unobserved ξjmt

can be inferred from the model as a function of parameters θ. I assume that ξjmt evolves according

to a first-order autoregressive process,

ηjmt(θ) = ξjmt(θ)− ρξjm,t−1(θ),

and that ηjmt are mean-zero and independent across products j, markets m, and time periods t.

Charging network quality. Consumers consider three aspects of charging network quality,

qjmt = (log(Lsmt), Djmt, gst), where s is the Level 3 charging standard of vehicle j. First, local

trips are supported by Level 2 and 3 charging stations within a consumer’s home market, log(Lsmt).

All EVs on the same standard can access the same local stations, so L has subscript s rather than

j. I define Lsmt as a weighted sum of Level 2 and 3 charging stations in a market, with weights

equal to the proportion of the market (MSA) population that commute by car to the county that

contains each charging station. Besides private or dedicated charging at home, drivers tend to
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charge at retail establishments or work (Idaho National Laboratory (2015)).12 The log functional

form accommodates decreasing marginal utility, which is consistent with surveys that find most

drivers conduct their away-from-home charging at a few stations.13 Appendix Figure A4 shows

variation in the number of local charging stations, Lsmt over markets and time, by standard.

Second, inter-city stations allow consumers to reach some destinationsDjmt from each marketm

with vehicle j. Appendix Figure A5 shows variation in the number of MSA destinations, Djmt, over

markets and time, by standard. Djmt is written with subscript j to highlight that the usefulness

of the inter-city stations depends on a vehicle’s electric range. Figure 1(b) shows that from 2011

to 2015, EVs within each standard have similar electric ranges. Thus, in the status quo of Figure

A5, the number of destinations does not vary within each standard. However, in the counterfactual

with a single charging standard, lower-range EVs do not necessarily have the same number of

destinations as higher-range EVs.

Third, the current growth rate gst in the nationwide total number of charging stations represents

a measure of future charging network quality for each standard s. A well-established network can

attract customers based on its existing stations, while a new network without many existing stations

may be able to signal a large future network with a high current growth rate. In Figure 2, each

network begins with a high growth rate, as shown by the initially steep slope. A higher growth

rate is predictive of a larger network (level of each curve) in the future, conditional on the current

size. The network growth rate incorporates some considerations of a forward-looking consumer

in an otherwise static framework. Compared to a completely myopic consumer, a consumer with

network growth rate in the utility function may choose an inside good (EV) earlier and may also

choose among the inside goods differently.

Vehicles without fast-charging capability can only use Level 2 stations in their local network,

reach MSAs within range of the battery, and experience zero network growth rate. PHEVs are

assigned charging network quality based on their battery range, fast-charge capability, and charging

standard. The mobility offered by the internal combustion aspect of PHEVs is constant and

absorbed by a fuel type indicator variable. In estimation, I interact the local and inter-city network

terms, log(Lsmt) and Djmt with a fuel type indicator variable to allow consumers to value charging

network quality differently for PHEVs and BEVs.

12See Hardman et al. (2018) for a review of how consumers use EV charging infrastructure.
13A micro-founded model with consumers who each only use up to some number of most preferred stations can

be consistent with the log functional form if consumers have heterogeneous and smoothly distributed across physical
space or taste space.
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Price. Consumers pay a purchase price pjmt, which is equal to MSRP less manufacturer discounts

(MD) and government subsidies:

pjmt = MSRPjt −MDjt − State Subsidyjmt − Federal Subsidyj . (1)

MSRP and manufacturer discounts are the same across all markets and only vary across vehicle

models and time. State subsidies vary across vehicle models, markets, and time. Federal subsidies

vary across vehicle models but do not vary across time during the data period of this study. This

definition of purchase price assumes full pass-through of subsidies, which is supported by and can

be consistent with prior results from the literature (Muehlegger and Rapson (2022), Sallee (2011),

Busse et al. (2006)). Instrumental variables help to identify the price coefficient. The identifying

assumption is that the instruments are uncorrelated with unobservables, such as measurement error

from not observing the transacted price. Section 5.2 discusses the pass-through results from the

literature, the construction of the instruments, and the identification arguments.

Other demand model considerations. Vehicle characteristics besides price and charging net-

work quality are assumed to evolve according to an exogenous product development process. Bloni-

gen et al. (2017) show that 70% of vehicle models are redesigned every 4 to 7 years, and an entirely

new model takes even longer to design and develop. The electric fuel segment is consistent with

the overall industry pattern. For example, the earliest electric vehicle models from the 2011 model

year only received major updates in late 2016.

One limitation of the model is that the outside good does not include the option value of

waiting to choose in the future. The option value of waiting may be limited in this case because

consumers would have to wait many years, until at least 2017 for significantly longer battery range

at lower prices, such as the Chevrolet Bolt, 2018 model-year Nissan Leaf, and the Tesla Model

3.14 Later-arriving charging stations are accessible to earlier buyers of the same charging standard.

For consumers who wait, Gowrisankaran and Rysman (2012) show that a static choice model

would bias the estimated demand coefficients toward zero, because people who are waiting for the

prices and characteristics to stabilize would be wrongly modeled as not responding to the changing

prices or characteristics of the existing options. The net effect of any bias in demand estimates

on welfare results is theoretically ambiguous, because bias in charging network coefficients and the

14Tesla offered reservations for the Model 3 for $1,000, which was an option to purchase the Model 3 at some
approximate priority in the production queue. The reservation signals interest but is fully refundable and not a
commitment to purchase.
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price coefficient have opposite effects on welfare.

I do not explicitly model the consumer costs of charging station usage for three reasons. First,

non-pecuniary costs of using charging stations - such as search, travel, and hassle costs - are reflected

in the preference parameters on the included charging network quality measures. Second, Level

3 stations, the focus of this paper, are often free to use for the life of the car (Tesla) or the first

few years after purchase (Nissan and BMW) during the study period. Third, charging station

utilization data would be required but are not publicly available.15

4.2 Car manufacturer investment

The model endogenizes firm choices in the quantity and locations of charging stations, conditional

on the standards coalitions that they have joined. These two control variables are part of a dynamic

optimization problem which may include firms’ expectations beyond the time coverage of available

data. Therefore, the model of firm choices is static. I assume that conditional on the choice of

standard and the charging stations that have already been installed, the static profit function is

proportional to the dynamic value function, so that optimization from the static model is consistent

with a long-run dynamic game.16

Firms may produce multiple EV models. The variable profit πft of firm f in period t from its

EV offerings j ∈ Jft is the sum over markups from cars sold, given by

πft(q,p) =
∑
m

∑
j∈Jft

[pjt −mcjt + ZEVjmt]Sjmt(q,p)Nmt,

where mcjt denotes the marginal cost of producing car j in t, and Nmt is the size of market m in

period t. ZEVjmt denotes the shadow value of credits that a vehicle can earn in states with a Zero-

Emission Vehicle (ZEV) Mandate.17 Market shares Sjmt are functions of charging network quality

q and vehicle prices p as well as the exogenous characteristics, shocks, and demand parameters.

Firms maximizing profits over EVs can be consistent with EV divisions being tasked with growing

15The physical incompatibility between vehicles and charging equipment on different standards could be concep-
tualized as an infinite price for accessing a different standard. Differential access prices between 0 and infinity would
likely temper the impacts of a compatibility policy found in this paper.

16The static model can generate increasing EV demand over time from an increasing stock of charging stations and
any decreases in EV prices.

17ZEV mandates are imposed on car manufacturers of a certain size and are present in ten states, including
California. I use $5,000 as the shadow value of each ZEV credit, which is the regulatory fine that firms pay for failing
to meet ZEV sales obligations. McConnell et al. (2019) describe the ZEV mandate in detail and calculate that Tesla
sold credits at $2400 per credit in 2015. The estimates and results of this paper are robust to assuming a $2400
shadow value for each ZEV credit.
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their segment.18

Firms set one price nationally for each model j and period t, which is the MSRP minus man-

ufacturer discounts. The firm’s price pjt does not include government subsidies that are contained

in the consumer-facing price pjmt of Equation 1. Assuming Nash Bertrand competition in prices, I

back out markups and marginal costs from the first-order conditions of the variable profit function.

Let ∆(q,p) be a matrix whose element ∆jh = −∂Sh(q,p)
∂pj

if j and h are sold by the same firm and

zero otherwise. The first-order condition of the firms’ pricing problem implies the following vector

of vehicle marginal costs:

mc = p+ (∆(q,p))−1s (2)

where s is the vector of products’ market shares, and ⊙ is the element-by-element matrix multipli-

cation operator. The markup is given by ∆(q,p))−1s.

I model the charging network build-out problem of the major player for each Level 3 charging

standard: Tesla, Nissan (Chademo), and BMW (Combo).19 In each period, firms simultaneously

choose charging network investment of size Aft to improve the next period’s charging network

quality qf,t+1. The marginal cost of Aft is given by:

c′(Aft) = κ1 + κ2Aft + ωft, (3)

where ωft is a period-and-firm-specific cost shock, assumed to be i.i.d. The profit from new charging

stations depends on how they are allocated across M local networks and the national inter-city

network, aft = (l3f1t, . . . , l3fmt, . . . , l3fMt, nft). The elements of allocation vector aft sum up to

Aft = nft +
∑

m l3fmt. The potential locations for charging stations can be ordered by marginal

profit, detailed below, so that marginal profit is decreasing in Aft. Firms choose A∗
ft such that

π(A∗
ft)− π(A∗

ft − 1) ≥ c′(A∗
ft); π(A∗

ft + 1)− π(A∗
ft) ≤ c′(A∗

ft + 1), (4)

where for clarity of exposition, I write π(A) in place of π(q(A), p(A)).

Within the static framework, the model allows firms to incorporate revenue considerations

beyond the next quarter. Vehicle demand responds to the stock of all charging stations available,

so a firm’s investment in the current period helps the firm sell more cars in each subsequent period.

Inequality 4 contains one-period comparisons of profits and costs of capital. They are equivalent to

18The organizational economics literature has studied when decentralized decision-making is optimal for multi-
product firms with asymmetric product divisions (Rantakari (2008) and Roberts and Saloner (2012)).

19By the end of 2015, other firms had not built nor advertised involvement in building charging stations besides at
their car dealerships.
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firms considering a discounted sum of future profits which result from current-period investment.

Both sides of the inequalities are scaled when summing to obtain a discounted net-present value,

and optimal geographic placement is unchanged.

Charging station placement. A firm f builds Aft charging stations in each period, with alloca-

tion aft = (l3f1t . . . l3fmt . . . l3fMt, nft) across the M local markets and the single national network

and Aft = |aft|. The placement of charging stations improves each of the three charging network

quality measures qjmt = (log(Lsmt) , Djmt, gst) as follows:

Lsmt = Lsm,t−1 +
∑
c∈m

wc(l2mt + l3fmt),

Djmt = djmt(Ns,t−1 + nft),

gst =
Aft

Gs,t−1
.

Firm f has Level 3 charging standard s. The total number of stations with standard s and period t

is Gst, and Gst = Gs,t−1+Aft. The network growth rate gst is thus the investment size Aft divided

by the size of the network in the previous period. The inter-city portion of the network in period t

has Nst stations, and Nst = Ns,t−1+nft. The function djmt maps the inter-city network size to the

number of destinations Djmt that vehicle j can travel to, which also depends on j’s battery range.

I describe d(·) in more detail below. The local network Lsmt of market m grows from exogenous

arrival of Level 2 stations l2, which are universally accessible, and the firm’s investment l3fmt. The

wc are commuting weights for each county c in market m.

I make four modeling choices to simplify the problem of optimally placing a given number of

charging stations, two for the local networks and two for the national inter-city network. The

demand model provides independence of local networks. An improvement in one market’s local

network does not impact consumer vehicle choice and profits in any other market. Local charging

stations can thus be ordered in decreasing marginal profit, which is computationally fast. If the local

networks were not independent, then the optimal solution can only be found by enumeration. With

359 markets (M) and 200 stations (A) to allocate across markets, there are
(
M+A−1

M

)
≈ 2.62×10156

possible allocations, which is more than the number of atoms in the observable universe. Within

each local network, for estimating demand coefficients, I use the observed GPS coordinates of

charging stations to assign them to counties and commuting weights wc. For estimating charging

station costs and counterfactual simulations, I abstract away from the choice over which county
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to put a station in and instead define a “geographic HHI” from the commuting weights, geohhi =∑
c∈mw2

c . If the entire population in a market commutes to a single county for work, then its

geographic HHI would be 1. Every new station would go to that single county and receive full

weight. If a market has the population commuting to all counties evenly, then its geographic HHI

would be low. A new station in such a market, no matter where it is placed, can only serve a

portion of the population.

For the national inter-city network, I model the firm’s choice as whether to electrify the route

between two cities. I assume that firms optimally space out their stations along the route and

abstract away from choosing the exact set of GPS coordinates. The cost of connecting each pair

of stations is estimated from the data. Even with the simplification in choosing which routes to

electrify, the optimal network build-out problem is computationally intractable. For estimating

charging station costs and counterfactual simulations, I use the ordering of route electrification

observed in the data. When a firm allocates nft stations to the national inter-city network, function

djmt adds the next set of routes from the observed ordering that cost up to nft and computes the

number of destinations that each vehicle can reach from each market. For example, if the route

between New York City and Washington DC was previously electrified, and the route from Boston

to New York is added to the charging network, then Boston gains New York and Washington DC

as destinations, while New York and Washington DC each gain Boston as a destination.

With the above modeling choices for the inter-city networks and the national network, the

optimal placement of stations across local and national networks is computationally fast for a given

partition of Aft between local and national networks. The search over all partitions of Aft between

the local and national inter-city networks is linear in Aft and computationally fast. For a given

choice of Aft, the network growth rate gst is constant over all possible station allocations. Firms

compare the marginal variable profit from the optimal allocation of Aft with the marginal cost.

5 Estimation, Identification, and Results

In this section, I describe the identification and estimation of the demand and cost parameters.

I eliminate observed zero market shares by shrinking the data toward an empirical Bayes prior

formed from similar markets. This procedure pulls market shares away from zero and enables the

estimation framework of Berry (1994) and Berry et al. (1995). Readers who are not interested

in the technical details of the empirical Bayes procedure can skip directly to Subsection 5.2 for
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identification and Subsection 5.3 for estimation results.

5.1 Zero market shares

This paper studies the U.S. electric vehicle industry from its inception when zero units of some new

car models were sold in some local markets and time periods. The zeros considered in this analysis

are when products are known to be offered but not purchased; products that are not offered in a

given market (for example, inferred from announced staggered roll-out schedules) are considered

true zeros, and those product-market combinations are dropped from estimation. The dataset

covers all new vehicle registrations for each market and period, so any observed zeros are not due

to sampling error, such as from disaggregating a national sample or survey to the local level. As

described in McFadden (1974) and Berry et al. (1995), each consumer’s choice is an independent

draw from a multinomial distribution with a set of purchase probabilities. The observed market

share aggregates over the consumers’ multinomial draws. However, even when the consumer sample

is the full population, observed market shares may still be zero in practice due to small purchase

probabilities coupled with finite market size. Table 2 shows that in the study period, 36.4% of

market shares are 0 in any given model-market-quarter combination, ranging from 18.5% (2011)

to 45.9% (2015). The number of zeros increases over time because new EV models arrive and car

manufacturers expand the number of markets where EVs are offered.

The true purchase probabilities underlying the observed market shares are unknown. One

common practice in demand estimation is to use the observed market shares in place of the true

purchase probabilities, which is implicitly the maximum likelihood estimator (MLE). Zero market

shares are censored at zero and therefore mask information about the true underlying purchase

probabilities. They also make the inversion step impossible in the Berry (1994) and Berry et al.

(1995) estimation framework. I instead use a parametric empirical Bayes or shrinkage estimator,

which generates strictly positive posterior estimates of the true purchase probabilities from infor-

mation in other markets. This is similar to the transformation in Gandhi et al. (2023). To preserve

important heterogeneity across markets, each market’s empirical Bayes prior is formed using similar

markets. I define the set of similar markets to be the 50 markets closest in income per capita, or

14% of the 359 total number of markets. Table A4 in Appendix B investigates priors of different

sizes and shows that demand estimates are robust to the choice of the number of cities in the

empirical Bayes prior.

I model the quantities purchased of each vehicle in each market, Kjm, as a draw from a binomial
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distribution with Nm trials, or total vehicles purchased. The purchase probabilities are s0jm. The

time subscripts t have been suppressed throughout this subsection for simplicity. The purchase

probabilities s0jm are different for each vehicle and market and are drawn from a Beta prior dis-

tribution with hyperparameters λ1jm and λ2jm. This is a Beta-Binomial model of market shares

(which can be generalized to a Dirichlet-Multinomial). The distributions of K and s are given by:

Kjm ∼ Binomial(Nm, s0jm),

s0jm ∼ Beta(λ1jm, λ2jm).

The posterior distribution of the purchase probability is also a Beta distribution,

sjm ∼ Beta(λ1jm +Kjm, λ2jm +Nm −Kjm),

with posterior mean given by,

ŝjm =
λ1jm +Kjm

Nm + λ1jm + λ2jm
.

For reference, the observed shares (MLE) are,

ŝMLE
jm =

Kjm

Nm
.

I use strictly positive posterior means, ŝjm, in demand estimation rather than the MLE. In large

markets, the empirical Bayes posterior is very similar to the observed shares because the observed

sales dominate the prior.

For each car j in market m, the Beta prior is formed using market shares from similar markets,

l ∈ Pm, where l is a market from the set of similar markets Pm. The parameters of the Beta

prior, λ1jm and λ2jm, are estimated from maximizing the log of the likelihood over the outcomes

in the markets that form the priors,

f(Kjl, l ∈ Pm|λ1jm, λ2jm) =
∏

l∈Pm

(
Kjl

Nl

)
Γ(λ1jm + λ2jm)Γ(λ1jm +Kjl)Γ(Nl −Kjl + λ2jm)

Γ(λ1jm)Γ(λ2jm)Γ(Nl + λ1jm + λ2jm)
.

I estimate a pair of hyperparameters λ̂1jm and λ̂2jm for each vehicle, market, and period. The

posterior mean estimate of purchase probabilities is given by ŝjm =
λ̂1jm+Kjm

Nm+λ̂1jm+λ̂2jm
. The posterior

estimates of market shares have lower variance and are strictly positive, as shown in the bottom

panel of Table 2. The means of the observed and empirical Bayes posterior market shares are quite

similar, .00083 and .00080, respectively. Posterior mean estimates of market shares range from

5.72e-12 to .00162. Figure A7 plots observed shares against their posterior mean estimates.
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Berry et al. (2004) provide conditions on the number of consumers relative to the number

of products for consistency and asymptotic normality of the demand estimates when using the

MLE as purchase probabilities. I assume that the same conditions hold when using the empirical

Bayes estimator. Appendix B discusses the advantages of the empirical Bayes estimator over other

common methods and summarizes the methodological papers that treat zero market shares. Table

A7 compares to demand estimates from aggregating to the annual level.

5.2 Identification

Firm investments in prices and charging stations in each period may be correlated with unobserved

product characteristics. Instruments and moment conditions used in estimation are described

below. I maintain the standard assumption that other product characteristics besides price and

charging network are exogenous. Market and time fixed effects are included for all specifications.20

The instruments vary within market, over time, and across vehicle models. Market fixed effects

control for local factors that do not vary much from 2011 to 2015, such as local inclinations to be

green, the proportion of housing stock with off-street parking (thus enabling at-home charging),

the types of electrical wiring in the housing stock, and quality of public transit. Time fixed effects

control for national factors that do not vary across markets, such as national macroeconomic trends

and global fuel price shocks.

Identifying price coefficients. I define a vector of instrumental variables, Zprice from govern-

ment subsidies and BLP instruments. The identifying assumption is that Zprice is orthogonal to

unobserved characteristics ξ(θ),

E[Zpriceξ(θ)] = 0. (5)

The first two sets of instruments are federal and state subsidies. Prices that consumers pay also

include time-varying manufacturer discounts, so federal and state subsidies are not the sole sources

of price variation. The third set of price instruments, the sum of characteristics of other firms’

products in the market (BLP instruments), are relevant because they affect the markups that firms

can charge. The BLP instruments are uncorrelated with ξjmt under the assumption that the other

product characteristics arrive as part of an exogenous development process.

Federal EV subsidies vary by vehicle model and are determined by a piece-wise linear function

20Results are imprecise and have unstable signs if brand or product fixed effects are included. The instruments
constructed from government subsidies vary across markets and time; the specification with only market and time
fixed effects is preferred because it allows variation across competitors to identify the model.
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of battery capacity. This instrument provides identification from the functional form of federal

EV subsidies, which is uncorrelated with unobservables ξjmt conditional on battery capacity. The

structure of these EV subsidies was determined in 2009. I also assume that firms do not choose

components of ξjmt based on the subsidy functional form.

State EV subsidies vary by state, vehicle model, and over time. With market and time fixed

effects, the identifying assumption is that changes in state subsidies over time and differences

in subsidies across states or car models within states are uncorrelated with unobservables ξjmt.

Idiosyncratic differences in state legislative processes support the identifying assumption that the

timing of subsidy changes is plausibly random. Laws may become effective immediately, in the next

tax or calendar year beginning in January, or the next fiscal year beginning in July. The structure

of state subsidies is also plausibly exogenous after controlling for characteristics that these subsidies

condition on, such as battery capacity. Figure A6 shows the variation in state EV subsidies over

vehicle models, states, and time.

The definition of price in Equation 1 assumes that consumers receive the full amount of discounts

and subsidies. We may be concerned that car manufacturers or dealers set prices in a way that leads

to incomplete pass-through. There are several reasons to expect high pass-through of EV subsidies

and discounts. First, car manufacturers set prices and discounts nationally, so they are unlikely

to adjust prices in places and times where states adjust EV subsidies. Second, car manufacturers

also try to discipline car dealer pricing, such as through inventory offerings, as described in Sallee

(2011). Third, consumer awareness of EV subsidies is high because they are well-publicized via

car manufacturer websites, consumer guides, and car dealers. Busse et al. (2006) hypothesize that

pass-through increases with consumer awareness of the discount. Recent evidence finds high pass-

through of subsidies for alternative fuel vehicles. Sallee (2011) finds that consumers capture the

full federal and state incentives for the conventional hybrid car, the Toyota Prius. Muehlegger and

Rapson (2022) analyze an EV subsidy program for low- and middle-income buyers in California

and find results consistent with full pass-through.

We may still be concerned that car dealers adjust prices systematically to capture subsidies.21

I am not aware of a dataset that could quantify subsidy pass-through at the local market level,

which would require transacted vehicle prices and quantities across many cities, ideally with national

21I have run the counterfactuals with price elasticities 10% higher and lower than the estimated elasticities. Charg-
ing station investment correspondingly shifts by up to 10% higher or lower, respectively, though the qualitative
takeaways of compatibility improving social welfare and the gains being larger for longer-range EVs are robust to the
alternative price elasticities.
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coverage. The empirical analysis includes market and time fixed effects, which control for time-

invariant and market-invariant factors that can lead to incomplete pass-through, such as car dealer

market structure or local marginal costs.22 EV price instruments constructed from state subsidies

that vary across states, vehicle models, and time are arguably uncorrelated with car dealer market

power.

Identifying coefficients for charging network quality. I construct instrumental variables

from state charging station subsidies and lagged charging network quality. Section 3.2 shows

independent variation in vehicle and charging station subsidies.

First, state subsidies for charging stations are cost shifters that are assumed to be uncorrelated

with demand shocks conditional on market and time fixed effects. Second, ARRA-funded stations

arrive over time, as described in Section 3.2. Recipient cities are chosen before the beginning

of the U.S. EV market. Each recipient city receives stations predetermined by program funding

availability, independent of the realized evolution of the EV market in each city. Regulators may

have chosen recipient cities where they expected the highest growth rates in or marginal impacts

on local electric vehicle adoption. However, the exact timing of stations arriving in each recipient

city could be due to idiosyncratic permitting and construction lags that are plausibly uncorrelated

with unobserved ξjmt,

E[Zchargingsubsidyξ(θ)] = 0. (6)

The third set of charging station instruments is the one-period lags of local charging network

size and number of MSA destinations. The stations arriving at the beginning of period t are chosen

by car manufacturers based on ξjm,t−1, before ηjm,t are realized. Therefore, new stations arriving

in period t are uncorrelated with ηjm,t. The identifying assumption is that Zcharging is orthogonal

to innovations in unobservables, η(θ),

E[Zcharginglagη(θ)] = 0. (7)

Random-coefficient logit demand parameters θ are estimated using a GMM framework with

moment conditions in Equations 5, 6, and 7.

Identifying charging station costs.

22See Goldberg and Hellerstein (2008) for a discussion of the determinants of incomplete pass-through.
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5.3 Estimation Results

Table 3 reports demand estimates from the logit model (Columns 1 through 3) and the random-

coefficient logit model (Column 4). Column 1 shows OLS logit results. Column 2 shows IV logit

results with instruments as described in Subsection 5.2 and unobservables ξ in all moments. Column

3 uses innovations on unobservables, η, in the charging-station-related moments of Equation 7.

Column 4 adds random coefficients on price, local network size, and number of MSA destinations.

The estimated autocorrelation in unobservables, ρ̂, in Columns 3 and 4 are nearly identical, at

.78 and .77, respectively. The first-stage minimum eigenvalue statistic (Cragg-Donald Wald F-

statistic), the analog to the first-stage F-statistic for multiple endogenous regressors, is 266.37,

indicating strong instruments (Stock and Yogo (2005)).

The estimated coefficients across all specifications are positive for network growth rate, battery

range, engine power, and all-wheel drive. The coefficient for the BEV indicator variable is negative,

which suggests that BEVs are less preferred than PHEVs during the study period from 2011 to

2015. Given the vehicle models offered during this time, consumers prefer having gasoline as an

additional fuel source.

I conduct three sensibility checks on the estimates in Table 3 Column 4. First, the price

coefficients translate to a median price elasticity of 3.42, which is in line with prior literature

(Berry (1994), Berry et al. (1995), and Goldberg (1995)).23 Second, the coefficient for battery

capacity, though statistically imprecise, implies an average willingness to pay of $140 per kWh.

This is close to $100, which industry analysts and experts consider as the point when EVs could

become price-competitive with internal-combustion engine vehicles.24 Third, the coefficients for

charging network quality imply a willingness to pay for a Level 3 charging adapter. Chademo is the

dominant and de facto single standard in Japan. Tesla developed a one-way adapter to give Tesla

vehicles access to Chademo stations and in March 2015 launched the adapter in the U.S. market.

Based on a conversation with a Tesla engineer, the adapter took at least two years of development.

From the demand system and estimated demand coefficients, I find that willingness to pay for

access to Chademo stations by Tesla vehicles is on average $790 in 2015. Tesla initially launched

23Li et al. (2017) find a price elasticity of -1.29. I can replicate the estimates of Li et al. (2017) (I estimate a price
elasticity of -1.25) by adopting their specification. The most important contributors to the differences in estimates
are (1) their use of log sales quantities compared to the logit/r.c.-logit demand system here, and (2) their modeling
vehicles with the same charging network quality while I restrict vehicles to access only the compatible charging
stations. The choices in specifications suit the research question of each paper. My demand system allows me to
recover substitution patterns for counterfactuals, and differences in charging standards are central to this paper’s
research question.

24https://www.bloomberg.com/news/newsletters/2021-05-25/hyperdrive-daily-the-ev-price-gap-narrows
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the adapter for pre-order at $1000 and shortly after adjusted the retail price to $450. Willingness

to pay for an adapter computed from the model is consistent with the observed retail prices.

PHEV and BEV indicator variables are interacted with local charging network size and number

of MSA destinations to show whether consumers value charging networks differently by fuel type.

Table 3 Columns (1) and (2) suggest that local charging network size is more important for PHEVs.

The difference disappears in Columns (3) and (4) when using innovations on unobservables, η, in

the moments for lagged charging stations. The coefficient for the number of MSA Destinations

for PHEVs is negative due to consumer substitution. PHEVs and BEVs with the same charging

standard can access the same set of charging stations. When the number of MSA destinations

increases for a charging standard, consumers substitute away from PHEVs on that standard toward

BEVs. The magnitude of the coefficient for the MSA destinations× PHEV interaction term appears

large, but it matches the magnitude of the BEV indicator and thus could be sensible.

Marginal costs and markups of vehicles are computed following Equation 2. The estimated

vehicle marginal costs range from $20,400 for the Mitsubishi i-MiEV to $113,800 for the BMW i8.

Vehicle marginal cost estimates seem sensible when compared to industry estimates of the costs

of batteries during the study period. I estimate a marginal cost of $24,100 for the Nissan Leaf

(which has a 24kWh battery for the most basic trim) and $62,400 for the Tesla Model S (which

has a 60kWh battery for the most basic trim). Battery packs cost between $1000 to $500 per kWh

during this period and are the bulk of EV marginal costs. Table A3 presents estimates of own-price

elasticities, markups, and vehicle marginal costs.

Per-period Level 3 charging station costs are inferred from vehicle sales profits following In-

equality 4 and assuming that it binds with equality. A firm builds a station if it expects vehicle

profits in each future period (assumed equal next-period profits) to exceed the per-period station

cost. Cost parameters are estimated following Equation 3 and presented in Table 4. Instruments

include the average (weighted by market size) state and ARRA charging station subsidies and the

BLP instrument for the BEV fuel type. These instruments are shifters for charging station costs

or charging station demand. Column (1) is the base specification with no additional controls, Col-

umn (2) includes a time trend, and Column (3) includes time fixed effects. The coefficient for new

charging stations is positive across all specifications, implying increasing marginal costs. Increas-

ing marginal costs could reflect constraints such as the managerial capacity of the department for

charging network roll-out. The implied average per-period cost that a firm would be willing to pay

for a charging station is reported in the bottom row in thousands of dollars. The estimate from
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Column (2) is used in counterfactuals, though Columns (2) and (3) imply similar per-period costs

of $27,000 before any applicable state subsidies. The estimated costs include annualized upfront

direct project costs such as hardware and labor, indirect costs such as the time of employees in

the charging network department to manage the project, as well as ongoing maintenance costs.

Government subsidies typically only cover direct project costs.

As a sanity check on the model, the discounted net present value of total charging station

costs can be estimated by assuming a discount rate (such as from a firm’s weighted average cost

of capital) and using a net present value of vehicle profits in Inequality 4. A charging station

improves the network growth rate in the next period and the local or long-distance network where

the station is placed in every future period. I calculate that Level 3 charging stations have average

discounted net present costs ranging from $253,000 (with a 10% discount rate) to $504,000 (with a

5% discount rate). Given an average of 1.7 charging posts per station, these estimates imply total

direct, indirect, and maintenance costs of $152,000 to $302,000 per charging post. Best available

industry estimates from engineering calculations and grant applications25 for direct costs range

from $50,000 to more than $200,000 per charging post. My cost estimates are in line with industry

estimates and suggest a discount rate on the higher end. I use per-period costs in counterfactual

simulations and do not need to assume a discount rate.

6 Compatible Charging Standards

This section studies the impact of a counterfactual scenario with compatibility across different

charging standards. I present the results in two steps. Section 6.1 presents the demand response

from compatibility. Charging stations in the status quo from 2011 to 2015 are made compatible

with all car brands. The number and location of charging stations are held fixed. In Section 6.2,

firms optimize the number and location of stations in each period, taking into account consumer

EV purchases and competitor charging station investments.26

Throughout the counterfactual analysis, other vehicle characteristics such as price, Level 3

charging capability, and electric range are held fixed to their values in the status quo; prices

25See, for example, TechCrunch in 2013, Rocky Mountain Institute in 2014, and Texas Commission on Environ-
mental Quality in 2021 (persistent URLs embedded for each source).

26A compatibility policy that begins after stations and EVs of different standards have been introduced to the
market can be evaluated by combining the approaches of Sections 6.1 and 6.2. All previously built stations keep their
original locations and can be made compatible with all car brands via retrofits or Level 3 (fast-charging) adapters.
This paper does not estimate the costs of retrofits or adapter development. Going forward, firms invest in new
stations knowing that all other car brands can use all stations. See Simcoe and Farrell (2012) for a discussion of
paths toward compatibility.
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are held fixed to isolate the effect of charging compatibility. EVs can still be differentiated in

charging network quality in the counterfactual, depending on whether they are capable of fast

charging and whether their electric range allows them to drive between pairs of charging stations.

Car manufacturers therefore can still choose charging station investments that are relatively more

beneficial for sales of their own EVs.

Social welfare is the sum of consumer surplus and producer profits. As shown by Small and

Rosen (1981) and Williams (1977), the change in consumer surplus from a comparison scenario to

a counterfactual scenario, with market and time subscripts suppressed, is given by:

∆CS =

∫
i

1

αi

ln

J∑
j=1

exp(δ1j + µ1
ij)

−

ln

J∑
j=1

exp(δ0j + µ0
ij)

 dF (νi).

Following the notation of Section 4, αi = α + σpνip is the marginal utility of income, (δ1j , µ
1
ij) are

the mean utility and individual deviations in the counterfactual scenario, and (δ0j , µ
0
ij) are the mean

utility and individual deviations in the comparison scenario. Total consumer surplus is the integral

over heterogeneous consumers i with attributes νi = (νip, νik).

6.1 Compatible charging stations with stations fixed to status quo

Table 5 presents changes in EV sales from charging standard compatibility with charging station

investments fixed to the status quo. The results sum over changes in quarterly sales from 2011 to

2015. Compatibility is applied to each charging quality measure separately in Columns (1) - (3).

Column (4) presents the impact of compatibility over all charging quality measures on EV unit

sales, and Column (5) shows percent changes.

Examining the impact of compatibility on one charging quality measure at a time highlights the

relative advantages of each standard’s EVs and charging network in the status quo. Figure 2 shows

that the Chademo network started earliest and has the highest station count, followed by Tesla and

Combo. Towards the end of 2015, Combo overtakes Tesla in station count. Figure 3 shows that

Chademo and Combo stations tend to be located within or near cities, and Tesla’s stations tend to

trace routes between cities.

Table 5 Column (1) presents impacts on EV sales from compatibility in charging stations within

cities. The high number of existing Chademo stations within cities leads Chademo EV sales (Nissan

LEAF, Mitsubishi i-MiEV, and Kia Soul EV) to benefit least from local network compatibility. Tesla

(Model S, Model X) gains the most among the standards. Level 3-capable EVs gain market share
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overall. Column (2) presents impacts from compatibility in inter-city stations, which determine

the number of MSA destinations an EV can reach. Combo EVs (BMW i3, Chevrolet Spark EV,

and Volkswagen e-Golf) gain the most from inter-city station compatibility. Combo and Chademo

EVs have similar ranges, so Combo EVs benefit from being able to use the high number of existing

Chademo stations. Chademo and Combo EVs receive limited benefits from access to the Tesla

network due to their shorter range.27 Chademo EV sales hardly change from inter-city compatibility

and even fall slightly. The Tesla network gains new MSA destinations from its long-range vehicles

being able to use Chademo and Combo stations. Column (3) shows that network growth rate helps

new networks attract customers. In the counterfactual, Chademo maintains the same network

growth rate in the periods before Tesla and Combo enter with their vehicles and stations. The

growth of the combined network slows by the time Tesla and Combo EVs enter the market. With

compatibility, Tesla and Combo can no longer differentiate with higher growth rates of their separate

networks, and their EV sales decrease from this quality measure.

Columns (4) and (5) show the net impact of compatibility in all charging quality measures.

The majority of gains in market share for Level 3-capable EVs come from stealing market share

from the outside good, which is non-electric vehicles. Sales of Level 3-capable EVs, or EVs that

can fast-charge, increase by 14,000 units, which is 9% of Level 3 EV sales and 3% of all EV sales.

The inter-city portion of the network plays a relatively more important role in the overall impact

of compatibility.28

6.2 Compatible charging stations with endogenous station investment

In each period, firms play a simultaneous-move game as described in Section 4. Firms choose where

and how many new charging stations to build, which take one period to complete. Consumers

maximize utility and choose between EVs and the outside option, taking into account the available

charging network. To find an equilibrium of the firms’ simultaneous-move game, I simulate firms

playing iterated best response until no firm changes its strategy relative to the previous iteration.

In each iteration, a firm conditions on other firms’ investments from the previous iteration to solve

its charging station investment problem.

27The average number of destinations more than doubles for Combo EVs from inter-city compatibility. Chademo
and Combo EVs have lower electric range and cannot traverse the distance between Tesla stations placed between
100 to 150 miles apart. Tesla stations contribute 9% and 12% to the number of destinations reachable by Combo
and Chademo EVs, respectively, when stations become compatible.

28The sales changes from Columns (1) - (3) do not add up exactly to Column (4) because the cross-partial derivatives
of market share over product characteristics are nonzero.
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I simulate a Social Planner to provide a benchmark for comparison to firms’ charging networks

from profit-maximization. The Planners’ charging stations are compatible with all vehicle brands.

The Planner has access to all three firms’ charging station departments (cost functions) and can

build charging stations at the lowest cost available. For any given number of charging stations, the

Planner chooses locations to maximize consumer surplus. In each period, the Planner builds until

the marginal cost of a charging station exceeds the marginal benefit to consumer surplus.

How far apart should the Planner’s inter-city stations be placed? I simulate two versions of the

Planner, differing only in the inter-city portion of the network. The constrained Planner builds

inter-city routes with stations 50 miles apart so that they can be traversed by EVs of all available

electric ranges, such as the lower-range Nissan LEAF or BMW i3 BEV. Serving the lowest EV

ranges on inter-city routes is consistent with the spirit of compatibility and the current plan under

the IIJA to subsidize charging stations every 50 miles along highways. The unconstrained Planner

searches over routes with stations either 150 miles apart (which would only serve long-range EVs)

or 50 miles apart. The unconstrained planner has the option of filling in 150-mile-apart routes in

later periods. Although the unconstrained Planner may be less realistic as a policy option, as it

uses public funds to build infrastructure that is only accessible to part of the market, the exercise

may be helpful as a closer comparison to firms, who still get to differentiate their inter-city station

spacing even with compatible stations.

Table 6 presents and compares the counterfactual outcomes from each of the four regimes: (1)

Incompatible charging standards with firm charging investment, (2) Compatible charging stan-

dards with firm charging investment, (3) Compatible charging standards with constrained Planner

charging investment, and (4) Compatible charging standards with unconstrained Planner charging

investment. The first panel of Table 6 presents consumer surplus, producer vehicle profits, and

social welfare. Over 2011 to 2015, private investment under compatibility (C) results in about $400

million higher consumer surplus than under incompatibility (I). The constrained Planner (SP1)

achieves about $100 million lower consumer surplus than firms (C) with compatibility. This is

because firms can differentiate the inter-city station spacing where it’s profitable for them. The un-

constrained Planner (SP2) which searches over both short- and long-range station spacing achieves

$300 million higher consumer surplus than firms under compatibility (C). The constrained Planner

achieves lower consumer surplus because stations spaced 50 miles apart are less valuable on average.

As the number of stations built depends on comparing marginal benefit to marginal cost, the con-

strained Planner also builds fewer stations. This exercise shows that mandated compatibility with

30



investment by firms can perform better than even a Social Planner when the Planner is constrained

to spacing them 50 miles apart.

Aggregate producer vehicle profits follow the same patterns as consumer surplus, though not all

firms reap the same benefits from compatibility. BMW, with a late-arriving EV model and charging

network, benefits in all counterfactual regimes. Nissan loses sales from the unconstrained Planner

(SP2) relative to all other regimes because some routes are not accessible by Nissan’s low-range

EVs. Tesla, on the other hand, loses sales from the constrained Planner (SP1) relative to all other

regimes because uniformly accessible inter-city routes erode some of Tesla’s long-range advantage.

Social Welfare is the sum of Consumer Surplus, Producer Vehicle, Profits, less Charging Station

costs. Social Welfare is $650 million higher under compatibility (C) than incompatibility (I), and

an additional $500 million higher with the unconstrained Planner.

The second panel of Table 6 presents the number of charging stations built under each pol-

icy regime. Compatibility changes firms’ investment incentives in two ways. First, for any given

existing network, a firm derives lower profits from investments when its competitors can also ac-

cess it. Investment falls due to this channel. Second, for certain consumer demand substitution

patterns, compatibility can turn charging station investments into strategic complements (from

strategic substitutes with incompatible stations). Competitors’ investments improve the quality of

the network that a firm can access, which may increase the returns to any investments that the

firm may consider29. For example, Tesla building stations between cities reduces the number of

new stations that BMW or Nissan would need to build to connect the same cities and increases

their returns per station. Investment can rise from this channel. Whether investments are strategic

complements under compatibility and the net effect of the two forces depends on the empirical

estimates of demand and cost parameters. Table 6 results show that firms invest more on net

under compatibility compared to incompatibility. Consistent with intuition, most of the market

share gained by firms in the compatible counterfactual (Panel 3 of Table 6) comes from the outside

good. Charging compatibility increases sales of EVs by 4.3% compared to incompatibility.

Even when all stations are compatible, firms do not fully internalize the benefits of their invest-

ments for consumer welfare and other firms (such as from network effects). Firms thus build fewer

stations and in places that are on average less socially useful than the unconstrained Planner (SP2).

29In a logit demand model and a linear product characteristic, firms’ investments are strategic complements if the
outside good share s0 ≥ .5. The outside good share in the EV market during the period studied is well above .5, but
whether this result still holds with more flexible substitution patterns from random coefficients depends on empirical
estimates from data.
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Some firms can be worse off in the Planner’s world. Panel 1 of Table 6 shows that Nissan loses

profits with the Planner, which can be attributed to the Planner directing more stations toward

the inter-city portion of the network and building half as many local stations as Nissan would.

Table 6 Panel 1 shows that firms earn higher profits from EV sales under compatibility. There

are three potential explanations for why firms have not offered compatible standards without pres-

sure from regulation. First, firms face a costly coordination challenge in agreeing upon how to

achieve compatibility, such as through choosing the standard that all firms would offer or develop-

ing all combinations of bilateral adapters. Second, compatibility may not be a Nash equilibrium in

the stage game of choosing standards and whether to offer interoperability. A firm can do better by

taking access to competitors’ networks and ‘defecting’ by not offering access in return, which they

can implement through software restrictions or differential access pricing. Specifying a contract for

compatibility and enforcing it may be costly. The social welfare benefits estimated from this paper

could be considered an upper bound on society’s willingness to pay for the costs of achieving com-

patibility. Lastly, incompatibility can decrease the threat of new entrants in EV manufacturing or

charging networks. Entry using one of the three established standards under incompatibility is less

attractive because the entrant can only use a subset of existing stations. Any entrant with a new

standard would have to set up a costly charging network to be competitive against the incumbents

with well-established networks.

This paper does not analyze the decisions of third-party charging firms, though by the early

2020s, third-party entry in Level 3 charging is still quite sparse. The strategic effects across car

manufacturers studied in this paper do not apply to third-party charging firms. Compatibility would

strictly increase the expected revenue of a potential third-party charging firm by expanding the set

of potential customers to all EVs rather than only those on a specific standard. Therefore, consumer

surplus from any third-party charging sector would unambiguously increase in the counterfactual.

7 Conclusion

This paper studies how firms compete in product markets by investing in complementary goods and

how investment incentives change when those complements become compatible. The EV market

itself is an important market to understand because it could become a larger presence in the

automotive industry and carry large potential environmental benefits.

With fuel efficiency and environmental regulations becoming increasingly stringent, car man-
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ufacturers continue to add EVs to their lineup. The most recent sales figures for new vehicles

from the 1st quarter of 2022 show that EVs reached 5% of market shares. Yet, different Level 3

charging standards persist in the U.S. market. The guidance document following the IIJA of 2021

takes one step toward charging compatibility by specifying that only SAE CCS (Combo) charging

stations qualify for federal funds. Recently in 2023, major automakers including GM, Ford, Rivian,

Volvo, and Mercedes-Benz have announced that they will join the Tesla charging standard in the

coming years, first by producing vehicles on the Combo standard and offering an adapter to access

Tesla’s stations, and later by producing vehicles with only Tesla ports. The recent announcements

by automakers do not divulge details about the transfers or contracts between the automakers nor

whether charging will be priced differently for Tesla drivers and non-Tesla drivers.

The shift of the industry toward the Tesla standard in 2023 may be due to the confluence

of manufacturers trying to meet government vehicle electrification targets and gasoline car bans

announced for 2025 or 2030 as well as reliability issues with the networks of other standards that are

holding back EV adoption. The reliability issues on non-Tesla networks could be caused by inherent

technical problems with the Combo standard as well as incentive and agency issues arising from

lack of vertical integration. The framework developed in this paper could be useful for studying

how charging station investment will change with increasing compatibility in the industry and the

specific planned changes in standards membership.

This paper presents and estimates a structural model of consumer vehicle demand with utility

over the electric vehicle charging network. Consumers have tastes over the local usefulness of

the charging network relative to their commuting patterns as well as over national traversability.

The demand parameters are combined with a model of oligopolistic car manufacturers to recover

vehicle markups and charging station costs. The simulated counterfactual results show that, under

compatibility, firms would reduce investments in charging stations. Yet, the size of the electric

vehicle market would still expand since consumers can access all stations. A compatibility policy

would improve social welfare despite the cutback in car manufacturer charging station investment.

This paper motivates three lines of future work. First, the dynamic incentives in investment

intended to influence the equilibrium number of standards remain unexplored. Second, this paper

abstracts away from charging station pricing, as many networks offered free charging during the

study period. The framework of this paper could be pushed to incorporate pricing and potential

roaming fees that could arise as more firms announce their plans to join the Tesla standard. Third,

and more generally, a deeper understanding of industries’ ability and willingness to self-organize
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into a uniform standard or to make joint investments would inform antitrust and innovation policy.

Finally, this paper contributes to the understanding of the role of directed technological change

in climate change policy. Although a market price on environmental damages from emissions

and pollution may be part of the first-best solution, Acemoglu et al. (2016) develop an endogenous

growth model to show that the optimal climate policy path includes both carbon taxes and research

subsidies for clean technologies. Aghion et al. (2016) show that firms in the automobile industry

respond to higher tax-inclusive fuel prices by innovating more in alternative fuel (electric, hybrid,

and hydrogen) technologies. This paper suggests that in addition to market failures in the upstream

innovation stage, other inefficiencies and market failures in downstream product markets can hinder

technological change.
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Figure 1: Charging Standards and EV Characteristics

(a) Level 3 (DC, Fast) Charging Standards
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(b) MSRP and Electric Range of EV Models
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Notes: Panel (a) depicts the connectors of each Level 3 (also called DC or fast) charging standard,
along with the make and model of cars compatible with each standard as of the end of 2015. Only
some EV models are capable of Level 3 charging. The listed automakers without vehicle models
next to them had pledged to produce Level-3-capable EVs under that standard but had not yet done
so by the end of 2015. Panel (b) plots the MSRP in thousands of dollars and electric range in miles
of all EV models sold in the U.S. from 2011 to 2015. EVs compatible with each Level 3 standard
are denoted by the symbols according to the legend. Other battery EVs (BEVs) and plug-in hybrid
EVs (PHEVs) that cannot use Level 3 charging are denoted by “+” and “×” respectively.
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Figure 2: Charging Network Size over Time, by Standard
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Notes: This figure shows the number of charging stations available over time for each charging
standard. The y-axis is presented in log scale. Vertical bars mark when the first cars compatible
with each standard became available in the U.S. market.

1. Nissan began deliveries of the Leaf in December 2010 and began building Chademo stations at
the same time.

2. Tesla began deliveries of the Model S in June 2012 and announced the Tesla Supercharger
program three months later, in September 2012.

3. BMW began deliveries of the i3 in May 2014 and announced a program to build stations under
the Combo standard two months later, in July 2014. Before BMW i3’s market entry, a total of
9 stations with the Combo standard were built at car dealerships.
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Figure 3: Level 3 (DC, Fast) Charging Stations

Notes: This figure shows where Level 3 charging stations are located for each standard as of September 2015, using data from the
Alternative Fuels Data Center of the Department of Energy.
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Figure 4: Independent Variation in EV and Charging Station Subsidies

(a) Subsidy levels

0
2

4
6

8
S

ta
te

 E
V

 S
u

b
s
id

y
 (

$
1

0
0

0
)

0 20 40 60 80
State Charging Station Subsidy (%)

(b) Variation across cities (MSAs) in x-axis
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(c) Subsidy changes
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Notes: This figure plots subsidies for EVs against subsidies for charging stations to show that
incentives for vehicles and charging stations are allocated at different times and places. In all, circle
sizes represent the number of observations (MSA-quarter-vehicle model) that take on that value.
EV subsidies that vary by state, quarter, and vehicle model are scattered against the maximum
charging station subsidies (over Levels 2 and 3) which vary by state and quarter in (a) and total
stations funded by the ARRA, which vary by MSA and quarter, in (b). Demeaned EV subsidies are
scattered against demeaned charging subsidies in (c) and demeaned counts of new stations funded
by the ARRA in (d).
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Figure 5: Relationship between Subsidies and EV Sales and New Charging Stations

(a) MSA-Quarter-Vehicle Level
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(b) State-Quarter Level
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(c) State-Quarter Level
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Notes: This figure shows the relationship between subsidies for EV purchases and charging station investments and
their targets. Panel (a) plots means of model-level log EV sales as a function of the state EV subsidy (controlling
for market and quarter FE and observable vehicle characteristics such as electric range and BEV indicator) using
a binned scatterplot. The line of best fit is generated from an OLS regression of model-level log EV sales on state
EV subsidies with the same set of control variables. The reported standard error is clustered at the market-model
level. Panel (b) and (c) examine the relationship between new charging stations and subsidies for them using binned
scatterplots. Panel (b) plots the mean log number of new charging stations as a function of the maximum available
charging station subsidy (lagged by one period because charging stations take one period to complete), controlling
for state and quarter fixed effects. Panel (c) plots the mean number of new charging stations as a function of the
number of newly arrived ARRA stations, controlling for state and quarter fixed effects. The line of best fit is shown
in each. The reported standard errors are clustered at the state level.
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Table 1: Evolution of Key Variables, 2011 to 2015

2011 2012 2013 2014 2015

Markets with EVs For Sale 321 357 354 359 359
EV Models Available in the U.S. 3 6 15 22 27
EV Unit Sales 13,556 41,686 93,818 163,799 148,359

MSRP of EV Models (min) 32.78 29.12 25.00 23.00 23.00
MSRP of EV Models (mean) 56.96 45.71 49.61 47.27 48.46
MSRP of EV Models (max) 109.00 116.00 102.00 135.70 136.50

Electric Range (min) 35 11 11 11 11
Electric Range (mean) 117.67 48.33 64.80 65.00 63.33
Electric Range (max) 245 76 208 208 208

Notes: This table describes key variables of the U.S. electric vehicle market from 2011 to 2015,
using vehicle registration data from IHS Automotive and vehicle characteristics data from MSN
Auto. An electric vehicle (EV) is any vehicle that can be plugged in for recharging, including plug-
in hybrids (PHEVs) and battery electric vehicles (BEVs). A market is defined as a metropolitan
statistical area (MSA). The number of markets where EVs are available for sale increases over
time because automakers take some time to roll out EV offerings across the U.S. The number of
markets appears to decrease in 2013 because of idiosyncratic missing data from the data provider
for 5 markets. MSRP is in thousands of dollars. Electric range is the number of miles a vehicle can
travel starting with a full battery and, for a PHEV, using only the battery. Means are computed
over EV models available each year.
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Table 2: Unit Sales, Market Shares, and Empirical Bayes Posterior Market Shares

Variable Mean Std. Dev. Min 10% Median 90% Max % Zeros N

EV Sales 11.2 58.0 0 0 1 16 2,727 36.4 41,224
2011 9.3 34.6 0 0 1 17 486 18.5 1,459
2012 10.7 49.5 0 0 2 17 1,126 23.5 3,887
2013 11.6 47.5 0 0 1 20 1,542 31.9 8,096
2014 13.6 72.4 0 0 1 20 2,727 33.4 12,041
2015 9.4 54.0 0 0 1 13 2,647 45.9 15,741

All Vehicle Sales 14,444.3 30,669.0 202 1,141 4,017 38,073 295,117 - 41,224

Observed EV Shares 0.00083 0.0019 0 0 0.00022 0.0023 0.133 36.4 41,224
Posterior Mean EV Shares 0.00080 0.0015 5.720e-12 0.000027 0.00033 0.0020 0.074 0 41,224

Notes: This table shows summary statistics of vehicle sales, observed market shares, and estimates of empirical Bayes posterior mean
market shares. The data are from IHS Automotive from 2011 to 2015. Each observation is a MSA-vehicle model-quarter. The number
of observations per year grows over time because more EV models become available and are offered in more markets. The top panel
summarizes vehicle unit sales. The last row of the top panel shows total vehicle unit sales over all fuel types, which is also defined as
the vehicle market size. For example, the maximum number of vehicles sold in any MSA-quarter is 295,117, in New York-Newark-Jersey
City in the 2nd quarter of 2015. The bottom panel summarizes product-level shares of EVs, first observed shares followed by empirical
Bayes posterior means. See Table 1 for the number of markets with EVs available and the number of EV models offered in the US, by
year.
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Table 3: Demand System Estimates

(1) (2) (3) (4)
Logit OLS Logit IV Logit IV R.C. Logit

Param. Std. Err. Param. Std. Err. Param. Std. Err. Param. Std. Err.

Mean Valuation

Price ($1000) -0.05 (0.001) -0.08 (0.004) -0.09 (0.004) -0.13 (0.021)
Log(Local Charging) × PHEV 0.02 (0.004) 0.03 (0.009) 0.10 (0.029) 0.23 (0.056)
Log(Local Charging) × BEV 0.001 (0.006) 0.003 (0.013) 0.07 (0.030) 0.21 (0.076)
MSA Destinations × PHEV -0.12 (0.013) -0.09 (0.022) 0.041 (0.028) -1.24 (0.568)
MSA Destinations × BEV 0.003 (0.0002) 0.001 (0.0004) 0.004 (0.0004) 0.003 (0.022)
Charging Network Growth 0.12 (0.011) 0.23 (0.017) 0.25 (0.014) 0.33 (0.032)
BEV -2.08 (0.025) -2.08 (0.061) -1.97 (0.055) -2.51 (0.163)
Electric Range (10 miles) 0.14 (0.009) 0.12 (0.019) 0.12 (0.015) 0.12 (0.024)
Battery Capacity (10kWh) -0.01 (0.032) 0.07 (0.068) 0.006 (0.055) 0.18 (0.095)
Power (100kWh) 0.74 (0.026) 1.54 (0.119) 1.78 (0.107) 1.58 (0.153)
All-Wheel Drive 1.19 (0.055) 2.34 (0.212) 2.29 (0.194) 1.70 (0.230)
Gasoline Price ($/gal) 0.07 (0.084) -0.07 (0.099) 0.05 (0.087) -0.10 (0.125)
Electricity Price (cents/kWh) 0.005 (0.011) -0.004 (0.012) -0.0001 (0.011) 0.001 (0.011)
MSA Income (per capita, $1000) 0.02 (0.009) 0.02 (0.011) 0.03 (0.011) 0.03 (0.012)
ρ, Autocorrelation of ξ - - - - 0.78 (0.009) 0.77 (0.009)

Standard Deviation

Price ($1000) 0.03 (0.006)
Log(Local Charging) × PHEV 0.04 (0.177)
Log(Local Charging) × BEV 0.00 (1.935)
MSA Destinations × PHEV 0.69 (0.220)
MSA Destinations × BEV 0.00 (0.270)

Observations 41,224 36,541 36,541 36,541

Notes: One observation is a vehicle model available for sale in a market and quarter. All columns use the empirical
Bayes posterior mean market shares. Logit in (1) is from OLS, logit in (2) is from 2SLS, logit in (3) uses the optimal
weighting matrix from 2-step GMM and moments with innovations on ξ where relevant, and random-coefficient logit in
(4) follows (3) while allowing for individual deviations in coefficients. All columns show robust standard errors clustered
at the MSA-vehicle level. For (2), the weak instrument test statistic (Cragg-Donald Wald F-statistic) is 266.37. Charging
network quality for each vehicle is captured by three measures: (i) number of local charging locations including Level 2
and Level 3, (ii) number of MSAs reachable from a given market using Level 3 locations and a vehicle’s electric range,
and (iii) growth rate of the Level 3 charging network.



Table 4: Charging Station Cost Parameter Estimates

(1) (2) (3)

No. of New Stations 1.22 0.66 0.84
(0.93) (0.29) (0.32)

Observations 60 60 60
Time Trend X
Time FE X

Per-Period Cost ($1000) 38.56 26.83 27.06

Notes: One observation is a firm’s charging station investment in a quarter. All columns use the
marginal cost inferred from marginal profits and include a constant. Standard errors are robust.
The bottom row “Per-Period Cost” is in thousands of dollars and is the average per-period cost
that a firm would be willing to pay for a charging station.

Table 5: Demand Response to Compatibility (Charging Network Fixed to Status Quo)

Change in EV Sales (US MSAs, 2011-2015)

Local Inter-City Growth Rate All Charging Quality Measures

∆Q ∆Q ∆Q ∆Q % Change
(1) (2) (3) (4) (5)

Level 3-Capable 1,700 19,516 -6,055 14,370 9.0
Chademo Brands 297 -30 809 1,081 1.3
Combo Brands 582 13,702 -3,142 10,391 45.6
Tesla 820 5,845 -3,722 2,898 5.5

Non-Level 3-Capable -68 -300 207 -161 -0.1

All EVs 1,632 19,217 -5,847 14,209 3.1

Notes: This table shows the consumer demand response to existing charging stations made compat-
ible across all car brands, from 2011 to 2015. The charging network (number of charging stations
and their locations) is held fixed to the status quo. Columns (1) - (3) show EV sales changes from
each charging network quality measure while others are held fixed. Column (4) shows sales changes
from all charging quality measures becoming compatible, and Column (5) shows percent changes.
Figure 1(a) lists Level 3-Capable EV models for Chademo and Combo brands.
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Table 6: Market Outcomes with Charging Standard Compatibility

Simulated Counterfactual Outcomes Difference Across Regimes

Incompatible (I) Compatible (C)
Constrained Unconstrained

(C-I) (SP1-C) (SP2-C)
Social Planner (SP1) Social Planner (SP2)

1. SOCIAL WELFARE $millions

Consumer Surplus 5,070 5,468 5,352 5,795 398 -116 327
Producer Vehicle Profits 4,449 4,703 4,521 4,903 254 -181 200

Nissan 723 734 729 717 10 -5 -17
BMW 271 320 413 392 49 94 72
Tesla 606 813 533 963 207 -280 150

Social Welfare 9,427 10,076 9,776 10,590 649 -300 515

2. NUMBER OF CHARGING STATIONS

Total Charging Stations 1,953 2,066 1,931 2,108 113 -135 42
built by Nissan 1,384 1,401 - - 17 - -
built by BMW 366 383 - - 17 - -
built by Tesla 203 282 - - 79 - -

3. EV UNITS SOLD

All EVs 462,996 482,770 470,570 499,680 19,773 -12,199 16,910
Level 3-Capable 163,675 183,932 170,776 201,461 20,257 -13,157 17,529

Chademo Brands 85,769 86,987 86,486 85,053 1,218 -501 -1,934
Combo Brands 30,203 32,810 42,358 40,368 2,607 9,548 7,558
Tesla 47,704 64,135 41,931 76,040 16,431 -22,204 11,905

Non-Level 3-Capable 299,321 298,838 299,795 298,219 -484 957 -618

Notes: This table presents counterfactual market outcomes with: (1) Three incompatible standards and private charging investment, (2) Compatible standards
and private investment, (3) Compatible standards and constrained Social Planner investment, and (4) Compatible standards and unconstrained Social Planner
investment. Columns (4)-(6) compare outcomes across the specified pairs of regimes. Figure 1(a) lists Level 3-Capable EV models for Chademo and Combo

brands.
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Supplementary Appendix For Online Publication

A Additional Data Description and Estimates

Figure A1: Distribution of EV Characteristics by Year

(a) MSRP ($1000)

0

50

100

150

2011 2012 2013 2014 2015

Year

(b) Manufacturer Discount ($1000)

0

1

2

3

2011 2012 2013 2014 2015

Year

(c) Electric Range (miles)

0

50

100

150

200

250

2011 2012 2013 2014 2015

Year

Notes: This figure shows the distribution of vehicle characteristics by year in jittered strip plots: (a)
manufacturer suggested retail price (MSRP) in thousands of dollars, (b) manufacturer discounts in
thousands of dollars, and (c) electric range (miles an EV can drive starting with a full battery, using
only the battery). Each dot represents one EV model available for sale in a particular year. The
column of points for each year shows the distribution of that vehicle characteristic along the y-axis.
Points are shifted, or ‘jittered,’ horizontally within each year to better visualize close or overlapping
data markers. The grey horizontal lines mark the median in each year. Table 1 reports, by year, the
mean, minimum, and maximum for MSRP, electric range, and the number of EV models available.
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Figure A2: Independent Variation in EV and Charging Station Subsidies, State-Year Aggregate

(a) Subsidy levels
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(b) Variation across states in x-axis

0
2

4
6

8
0 200 400 600 800

Total ARRA Charging Stations

(c) Subsidy changes

−
4

−
2

0
2

4
6

D
e

m
e

a
n

e
d

 S
ta

te
 E

V
 S

u
b

s
id

y
 (

$
1

k
)

−60 −40 −20 0 20 40
Demeaned State Charging Station Subsidy (%)

(d) Variation across states in x-axis
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Notes: This figure plots EV and charging station subsidies to show that incentives for each are
allocated at different times and places. In all, circle sizes represent the number of observations
(state-year-vehicle model) that take on that value. State subsidies for EVs and charging stations
that vary more frequently are aggregated to the yearly level. ARRA station counts are aggregated
to the state-year level. EV subsidies are scattered against the maximum charging station subsidies
(over Levels 2 and 3) in (a) and total stations funded by the ARRA in (b). Demeaned EV subsidies
are scattered against demeaned charging subsidies in (c) and demeaned counts of new stations
funded by the ARRA in (d).
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Figure A3: Relationship between Subsidies and EV Sales and New Charging Stations, Alternative
Aggregation Specifications

(a) State-Quarter-Vehicle Level
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(b) MSA-Quarter Level
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(c) MSA-Quarter Level
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Notes: This figure shows the relationship between subsidies for EV purchases and charging station
investments and their targets. Panel (a) plots means of model-level log EV sales as a function of the
state EV subsidy (controlling for market and quarter FE and observable vehicle characteristics such
as electric range and BEV indicator) using a binned scatterplot. The line of best fit is generated
from an OLS regression of model-level log EV sales on state EV subsidies with the same set of
control variables. The reported standard error is clustered at the market-model level. Panel (b)
and (c) examine the relationship between new charging stations and subsidies for them using binned
scatterplots. The line of best fit is shown in each. The reported standard errors are clustered at
the MSA level. Panel (b) plots the mean log number of new charging stations at the MSA-quarter
level as a function of the maximum available charging station subsidy in the state, controlling for
MSA and quarter fixed effects. Panel (c) plots the mean number of new charging stations as a
function of the number of newly arrived ARRA stations, at the MSA-quarter level and controlling
for MSA and quarter fixed effects.
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Figure A4: Panel Variation in Local Charging Network Size

(a) Chademo

0

200

400

600

800

2011 2012 2013 2014 2015 2016

(b) Tesla

0

200

400

600

2011 2012 2013 2014 2015 2016

(c) Combo

0

200

400

600

2011 2012 2013 2014 2015 2016

Notes: This figure plots the number of Level 2 or 3 charging stations within each market (MSA)
from 2011 to 2015, by quarter and charging standard. Each dot represents one MSA in a particular
quarter, and the position of the dot along the vertical axis is the number of charging stations within
that MSA.

Figure A5: Panel Variation in MSA Destinations
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Notes: This figure plots the number of MSA destinations from each home market from 2011 to
2015, by quarter and charging standard. Each dot represents one MSA in a particular quarter,
and the position of the dot along the vertical axis is the number of destinations possible from that
MSA using the Level 3-capable EVs of each charging standard. The grey horizontal lines mark
the median in each quarter. Conditional on being able to use Level 3 charging and the Level 3
standard, vehicles happen to have similar electric ranges. Therefore, for a given charging standard,
quarter, and home MSA, there is no variation across vehicles in their number of destinations.
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Figure A6: State Subsidies for EVs across State, Time, and Vehicle Model

(a) By Vehicle
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Notes: This figure depicts variation in state-level subsidies for BEV and PHEVs from 2011 to 2015.
The subsidies are manually collected from each state’s legislative records. Subsidies vary across
vehicle model, state, and time. The subfigures show standard deviations over each dimension
separately. In (a), shortened brand and model names are displayed and refer to the electric version.
For example, “BMW X5” represents the “BMW X5 xDrive40e,” “Kia Soul” refers to the “Kia Soul
EV,” and “Toyota RAV4” refers to the “Toyota RAV4 EV.” Sales of Toyota RAV4 EV are only
observed in California, so there is no variation in subsidies for this vehicle model.
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Table A1: Summary Statistics of EV and Charging Station Subsidies, 2011 to 2015

Variable Mean Std. dev. Min Max Obs

Federal EV subsidy ($1000) 6.27 1.83 2.5 7.5 41,224
State EV subsidies ($1000) 0.75 1.31 0 7.5 41,224

ARRA station arrivals 0.36 2.33 0 50 41,224
State Level 2 charging station subsidies (%) 6.85 18.14 0 80 41,224
State Level 3 charging station subsidies (%) 4.89 15.96 0 80 41,224

Notes: This table presents summary statistics of government subsidies for EV purchases and charg-
ing station investments. The subsidy policies are described in Section 3.2. Observations are by
MSA, vehicle model, and quarter.
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Table A2: First-Stage Regressions and Independent Variation Among IVs

(1) (2) (3) (4) (5) (6)
Log(EV Sales) Log(EV Sales) Log(New CS) Log(New CS) New CS New CS

State EV Subsidy ($1k) 0.022 0.019 -0.001 0.672
(0.010) (0.010) (0.031) (0.585)

State Charging Station Subsidy (%) 0.000 0.009 0.009 0.062
(0.001) (0.002) (0.002) (0.074)

New ARRA Charging Stations -0.003 0.013 0.562 0.559
(0.001) (0.007) (0.194) (0.193)

Observations 26220 26220 1012 1012 1428 1428
MSA FE X X
State FE X X X X
Time FE X X X X X X

Notes: This table presents the relationship between subsidies and their targets in Columns (1), (3), and (5). These relationships are
also depicted in the binned scatter plots of Figure 5. “CS” is used for “Charging Station” in the column titles due to horizontal spacing
constraints. Columns (2), (4), and (6) include the other subsidies to investigate whether the instruments offer independent variation.
Standard errors are in parentheses and are clustered at the market-model level for (1) and (2), and state level for (2) - (6). The state
charging station subsidies in (3) and (4) are lagged by one period because charging stations take one period to complete. Contemporaneous
charging station subsidies are used in (5) and (6).

57



Table A3: Price Elasticities, Markups, and Marginal Costs

Variable Mean Std. Dev. Min 10% Median 90% Max

Own-Price Elasticity 3.701 1.212 1.780 2.240 3.415 5.410 5.887
Markup 11.166 3.388 8.197 8.572 9.567 16.906 22.324
Vehicle Marginal Cost 45.104 24.117 20.423 21.987 37.505 83.334 113.842

Notes: This table reports price elasticities, charging station fixed costs, markups, and vehicle
marginal costs calculated from the random-coefficients logit demand estimates from Table 3 com-
bined with first-order conditions of the firms’ profit function with respect to price. Each observation
is a vehicle model.
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B Empirical Bayes Estimator for Market Shares

First, I describe alternative approaches to dealing with zero market shares. Next, I examine demand

estimates from empirical Bayes priors of different sizes and the aggregation approach. Lastly, I

discuss the methodological papers that treat zero market shares.

Priors of different sizes. The empirical Bayes posterior estimate is consistent with the demand

model and, in the context of the needs of this paper’s research question, has advantages over other

approaches. The first common method is to aggregate to a larger market definition and average

away the zeros. Aggregation would smooth over important spatial and time variation in charging

station availability. The second solution is to add a very small constant to all the market shares.

This is not ideal because the model may predict different purchase probabilities for two products

that both have zero sales. Transforming zero shares into the same non-zero share is inconsistent

with the demand model. In Figure A7(b), the spike at 0 on the x-axis (Observed Market Shares)

shows that observed zero shares are mapped to different empirical Bayes posterior means. The

third solution is to drop the observations with zero shares. This solution is not ideal because

products that are known to be in the consumer choice set would be conflated with products that

were not available to consumers at all. Consumers not purchasing a product in their choice set and

consumers not having a particular product in their choice set at all have different implications for

the underlying consumer preferences.

Figure A7: Empirical Bayes Posterior Mean vs. Observed Market Shares
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(b) Zooming In
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Notes: This figure plots the empirical Bayes posterior means against the observed market shares.
Each dot represents an MSA-vehicle model-quarter observation. Posterior mean estimates may be
larger or smaller than the original observed market shares, represented in the scatter plots as being
above or below the 45-degree line. Subfigure (a) shows all data points. Subfigure (b) zooms into
the smallest market shares.
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I first examine demand estimates from different empirical Bayes priors. Table A4 presents

estimation results from a logit demand model using observed market shares and mean empirical

Bayes market shares with priors of different sizes. Column (1) is produced from observed market

shares. There are fewer observations because those with market shares of zero are dropped in

estimation. Columns (2) through (6) use the mean empirical Bayes posterior, each with a different

number of cities in the prior. The closest 10 cities in per capita income are in the prior for Column

(2), the 30 closest cities in per capita income in the prior for Column (3), and so on. In Column

(6), all other cities’ market shares are used in the empirical Bayes prior. As a group, the empirical

Bayes estimates differ from those produced using observed market shares in Column (1). The most

noticeable differences are in the coefficients on price, charging network variables for BEVs, and

the BEV indicator. Results from different priors in Columns (2) through (6) are similar, with

some improvement in precision with more cities in the priors. These results show that the findings

of the paper are robust to this choice of the number of cities in the empirical Bayes prior. The

counterfactual and welfare results in the paper use 50 cities in the prior.

In Table A4, Column (1) differs from the later columns in two ways: (i) having fewer observations

because zero shares are dropped, and (ii) shares being MLE rather than empirical Bayes posterior

means. I investigate how these two differences contribute to the differences in coefficients between

Table A4 Column (1) and the later columns. Table A5 presents the summary statistics of the

different market share estimates. Panel A presents summary statistics of all data, and Panels B

and C show statistics by nonzero and zero observed shares, respectively. In panels A and B, the

empirical Bayes method produces market shares with similar means and lower variances compared

to the observed shares. Empirical Bayes shares from different priors are similarly distributed. In

panel C, the zero subsample, observed shares are 0, while empirical Bayes shares are pulled away

from 0 based on the priors.

Table A6 presents demand estimates for the nonzero subsample. The empirical Bayes demand

estimates (Columns 2 - 6) are closer to the observed share estimates in the nonzero subsample

(Column 1), especially for the charging network coefficients and the BEV indicator. For example,

in Table A6 the BEV coefficient estimated with observed shares is -1.084. The BEV coefficient

estimated on the same nonzero subsample with empirical Bayes shares (50 cities in the prior,

Column 4) is -1.246. Using the full empirical Bayes sample, including the observations that are

observed zero shares, yields a BEV coefficient of -2.084 (Table A4 Column 4). The comparison

between Tables A4 and A6 shows that including the observed zeros in some way (such as via the

empirical Bayes estimator) could meaningfully change demand estimates. The demand estimates

from the full sample (which is only possible by pulling the zero shares away from zero in some

systematic way, such as with empirical Bayes posteriors) are preferred because the zeros contain

information about consumers’ preferences and should not be dropped.

Aggregation. Aggregation is a common approach to dealing with zero market shares. Aggrega-

tion can be over any of the dimensions available in the data. In the EV market setting of this paper,
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Table A4: Logit IV Demand Estimates with Empirical Bayes Market Shares (All Data)

(1) (2) (3) (4) (5) (6)
VARIABLES Observed EB 10 EB 30 EB 50 EB 70 EB All

Price ($1000) -0.0689*** -0.0873*** -0.0801*** -0.0768*** -0.0756*** -0.0752***
(0.00415) (0.00651) (0.00453) (0.00416) (0.00407) (0.00397)

Log(Local Charging) × PHEV 0.0336*** 0.0404** 0.0310*** 0.0345*** 0.0341*** 0.0339***
(0.00950) (0.0171) (0.00999) (0.00875) (0.00875) (0.00864)

Log(Local Charging) × BEV -0.0252 0.0157 0.0144 0.00437 0.00658 0.00519
(0.0166) (0.0258) (0.0160) (0.0129) (0.0128) (0.0126)

MSA destinations × PHEV -0.0812*** -0.0655*** -0.0764*** -0.0825*** -0.0840*** -0.0787***
(0.0202) (0.0201) (0.0188) (0.0191) (0.0192) (0.0183)

MSA destinations × BEV 0.00209*** 0.000164 0.000359 0.000940** 0.00106** 0.00110**
(0.000428) (0.000677) (0.000481) (0.000446) (0.000438) (0.000438)

Charging Network Growth 0.167*** 0.264*** 0.230*** 0.229*** 0.224*** 0.221***
(0.0186) (0.0243) (0.0182) (0.0172) (0.0169) (0.0170)

BEV -1.084*** -2.718*** -2.172*** -2.084*** -2.075*** -2.050***
(0.0607) (0.0963) (0.0678) (0.0606) (0.0601) (0.0584)

Electric Range (10 miles) 0.120*** 0.174*** 0.121*** 0.132*** 0.133*** 0.137***
(0.0187) (0.0271) (0.0190) (0.0184) (0.0183) (0.0180)

Battery Capacity (10kWh) -0.201*** 0.0842 0.108 0.0368 0.0256 0.00416
(0.0636) (0.0976) (0.0680) (0.0655) (0.0651) (0.0640)

Power (100kWh) 1.247*** 1.768*** 1.616*** 1.488*** 1.461*** 1.436***
(0.110) (0.181) (0.128) (0.117) (0.114) (0.111)

All-Wheel Drive 1.701*** 3.021*** 2.385*** 2.276*** 2.218*** 2.237***
(0.255) (0.274) (0.219) (0.206) (0.203) (0.200)

Gasoline Price ($/gal) -0.167* -0.285* -0.124 -0.0668 -0.0486 -0.0787
(0.0939) (0.165) (0.107) (0.0981) (0.0969) (0.0954)

Electricity Price (cents/kWh) 0.00266 4.88e-05 -0.0101 -0.00349 -0.00280 -0.00683
(0.0129) (0.0183) (0.0138) (0.0121) (0.0116) (0.0116)

MSA Income (per capita, $1000) -0.00987 0.0569*** 0.0239* 0.0226** 0.0175 0.0124
(0.0110) (0.0189) (0.0128) (0.0114) (0.0110) (0.0108)

Observations 21,782 36,541 36,541 36,541 36,541 36,541
R-squared 0.432 0.244 0.327 0.383 0.398 0.408
Mkt FE X X X X X X
Time FE X X X X X X

Notes: This table presents logit IV demand estimates for different market share construction approaches. Column
(1) uses observed market shares and has fewer observations because zeros are dropped in estimation. Columns (2)
through (6) use mean empirical Bayes (denoted “EB”) posteriors as market shares, with different numbers of cities
in the prior. Column (2) has 10 MSAs closest in per capita income in the prior, Column (3) has 30 MSAs, and so
on, until Column (6) has all other cities in the prior. Standard errors in parentheses are clustered by MSA-vehicle
model. *** p<0.01, ** p<0.05, * p<0.1

further aggregation across space is undesirable because the spatial variation in charging network

quality is the main focus of the empirical analysis. I examine demand estimates from aggregation

to the annual level. Market shares are defined as

total model-level sales for each MSA over a year

total vehicle sales for each MSA over a year
.

There are 11,738 total MSA-vehicle model-year observations, of which 13.4% have zero market

shares. In comparison, the MSA-vehicle-model-quarter specification has 41,224 observations, of

which 36.3% have zero market shares.
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Table A5: Summary statistics of Observed Shares and Empirical Bayes Posterior Shares

Variable Mean Std. Dev. Min Max Obs

Panel A: All data

Observed shares .00083 .0019 0 .13 41,224
Empirical Bayes (10 MSAs in prior) .00077 .0015 9.2e-15 .088 41,224
Empirical Bayes (30 MSAs in prior) .0008 .0015 1.0e-13 .071 41,224
Empirical Bayes (50 MSAs in prior) .0008 .0015 5.7e-12 .074 41,224
Empirical Bayes (70 MSAs in prior) .00081 .0015 1.5e-13 .061 41,224
Empirical Bayes (All other MSAs in prior) .00084 .0016 1.9e-07 .092 41,224

Panel B: Nonzero subsample

Observed shares .0013 .0022 3.5e-06 .13 26,220
Empirical Bayes (10 MSAs in prior) .0011 .0018 6.3e-09 .088 26,220
Empirical Bayes (30 MSAs in prior) .0012 .0018 2.0e-07 .071 26,220
Empirical Bayes (50 MSAs in prior) .0012 .0018 2.3e-06 .074 26,220
Empirical Bayes (70 MSAs in prior) .0012 .0018 2.4e-06 .061 26,220
Empirical Bayes (All other MSAs in prior) .0012 .0019 3.3e-06 .092 26,220

Panel C: Zeros subsample

Observed shares 0 0 0 0 15,004
Empirical Bayes (10 MSAs in prior) .00019 .00026 9.2e-15 .0041 15,004
Empirical Bayes (30 MSAs in prior) .00017 .00022 1.0e-13 .002 15,004
Empirical Bayes (50 MSAs in prior) .00016 .00021 5.7e-12 .0018 15,004
Empirical Bayes (70 MSAs in prior) .00016 .00021 1.5e-13 .0018 15,004
Empirical Bayes (All other MSAs in prior) .00017 .00021 1.9e-07 .0016 15,004

Notes: This table presents summary statistics of observed market shares and empirical Bayes posterior shares. Panel
A includes all observations (each observation is an MSA, quarter, and vehicle model). Panel B summarizes the market
shares for the subsample of data where observed shares are greater than zero. Panel C summarizes the market shares
for the subsample of data where observed shares are zero. In Panels A and B, the empirical Bayes shares closely
match the observed shares in means and have slightly lower variance.

Estimates are robust to aggregating to the annual specification, though they become less precise.

Table A7 presents logit demand estimates from the MSA-vehicle model-year specification. Zero

market shares are dropped in estimation. Aggregated to the annual level, the quality of the local

network is defined as the log of the average number of charging stations available in each MSA over

the quarters of the year. The number of MSA destinations is averaged over the year. I define the

network growth rate as the growth rate in the size of the network from the 4th quarter of a year

relative to the 3rd quarter of the same year. All other characteristics are constant within the year

or take the linear average for the annual value. Time FE are annual.

Column (1) of Table A7 presents OLS estimates. Compared to the MSA-vehicle model-quarter

specification (Table 3 Column (1) in the paper), the coefficients on price, local charging network

size, number of MSA destinations, and electric range are similar in magnitude and standard errors.

The impact of network growth rate on annual market shares is about half (.0525) than its impact on

quarterly market shares (.12). All remaining control variables have noticeably different magnitudes

and standard errors. One possible explanation for the differences between the quarter and annual

specifications is that the logit and BLP demand models gain some identification from variation
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Table A6: Logit IV Demand Estimates with Empirical Bayes Market Shares (Nonzero Subsample)

(1) (2) (3) (4) (5) (6)
VARIABLES Observed EB 10 EB 30 EB 50 EB 70 EB All

Price ($1000) -0.0689*** -0.0827*** -0.0816*** -0.0801*** -0.0795*** -0.0782***
(0.00415) (0.00434) (0.00421) (0.00413) (0.00413) (0.00408)

Log(Local Charging) × PHEV 0.0336*** 0.0395*** 0.0355*** 0.0321*** 0.0315*** 0.0323***
(0.00950) (0.00869) (0.00829) (0.00833) (0.00832) (0.00804)

Log(Local Charging) × BEV -0.0252 -0.0124 -0.0218 -0.0259 -0.0257 -0.0323**
(0.0166) (0.0165) (0.0160) (0.0159) (0.0159) (0.0155)

MSA destinations × PHEV -0.0812*** -0.0989*** -0.0947*** -0.0924*** -0.0922*** -0.0868***
(0.0202) (0.0223) (0.0213) (0.0212) (0.0211) (0.0199)

MSA destinations × BEV 0.00209*** 0.00206*** 0.00210*** 0.00217*** 0.00220*** 0.00224***
(0.000428) (0.000419) (0.000414) (0.000410) (0.000408) (0.000410)

Charging Network Growth 0.167*** 0.205*** 0.205*** 0.199*** 0.196*** 0.196***
(0.0186) (0.0180) (0.0177) (0.0175) (0.0176) (0.0176)

BEV -1.084*** -1.355*** -1.278*** -1.246*** -1.238*** -1.208***
(0.0607) (0.0608) (0.0594) (0.0588) (0.0585) (0.0579)

Electric Range (10 miles) 0.120*** 0.168*** 0.158*** 0.152*** 0.149*** 0.149***
(0.0187) (0.0191) (0.0188) (0.0184) (0.0183) (0.0182)

Battery Capacity (10kWh) -0.201*** -0.315*** -0.287*** -0.272*** -0.264*** -0.255***
(0.0636) (0.0651) (0.0639) (0.0627) (0.0623) (0.0619)

Power (100kWh) 1.247*** 1.500*** 1.460*** 1.424*** 1.414*** 1.375***
(0.110) (0.114) (0.112) (0.110) (0.110) (0.109)

All-Wheel Drive 1.701*** 2.115*** 2.126*** 2.060*** 2.043*** 2.043***
(0.255) (0.283) (0.278) (0.272) (0.271) (0.267)

Gasoline Price ($/gal) -0.167* -0.201* -0.184* -0.149 -0.137 -0.117
(0.0939) (0.103) (0.0992) (0.0968) (0.0962) (0.0946)

Electricity Price (cents/kWh) 0.00266 -0.00339 -0.000339 -0.000382 -0.000396 -0.00236
(0.0129) (0.0129) (0.0127) (0.0127) (0.0127) (0.0128)

MSA Income (per capita, $1000) -0.00987 -0.00718 -0.00466 -0.00387 -0.00625 -0.00841
(0.0110) (0.0117) (0.0112) (0.0110) (0.0110) (0.0108)

Observations 21,782 21,782 21,782 21,782 21,782 21,782
R-squared 0.432 0.375 0.394 0.405 0.408 0.427
Mkt FE X X X X X X
Time FE X X X X X X

Notes: This table presents logit IV demand estimates for different market share construction approaches, restricted
to the subsample with observed shares greater than zero. Column (1) uses observed market shares and has fewer
observations because zeros are dropped in estimation. Columns (2) through (6) use mean empirical Bayes (denoted
“EB”) posteriors as market shares, with different numbers of cities in the prior. Column (2) has 10 MSAs closest
in per capita income in the prior, Column (3) has 30 MSAs, and so on, until Column (6) has all other cities in the
prior. Standard errors in parentheses are clustered by MSA-vehicle model. *** p<0.01, ** p<0.05, * p<0.1

in choice sets. Aggregation to the annual level smooths over some changes in choice sets from

exogenous product entry and exit.

Column (2) of Table A7 presents IV logit estimates. One set of instruments for the charging

network variables is the lagged charging network quality from the previous period. At the MSA-

vehicle model-year specification, the annual lag in the IVs causes a dramatic loss in the number

of observations and leads to some seemingly nonsensical coefficients. For example, a larger local

network would seem to decrease the desirability of both PHEVs and EVs. A negative coefficient

on charging network quality suggests that charging stations may be built to boost EV demand
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in areas where demand would otherwise be lower, and instrumenting in the limited sample with

available lags cannot overcome this selection effect. Assigning zeros to missing lags to preserve as

many observations as possible does not change the results.

Column (3) of Table A7 presents IV logit estimates with quarterly lags as instruments. For

example, the local charging variable is the log of the average network size over the quarters of a

year. The lagged instrument is the log of the average network size from the 4th quarter of the

previous year to the 3rd quarter of the year. In other words, the instrument is constructed from a

window with a length of one year, rolled back by one quarter. The identifying assumption for this

instrument to be valid is the same as in the MSA-vehicle model-quarter specification, namely that

there’s an innovation in the error term in the 4th quarter of the present year that is uncorrelated

with the instrument, which is the charging network quality from last year’s 4th quarter up to the 3rd

quarter of the present year. The coefficients in Column (3) are economically similar to the IV logit

estimates in the paper’s main demand specification (Table 3 Column (2)). Some point estimates

differ, though they have similar economic meaning. The specification of Column (3) has the benefit

of aggregating sales from the year to smooth over some zero market shares while preserving the

same identifying assumptions about the instruments and the evolution of unobservables.

The aggregation method and the empirical Bayes approach can produce similar estimates. The

timescale of vehicle choice could plausibly be studied with quarterly as well as annual data. As

Column (2) of Table A7 shows, the 5-year panel is a bit too short for the most straightforward

analysis at the annual level. The hybrid version of Column (3), using market shares at the annual

level and instruments with quarterly lags can produce estimates that have at least sensible signs.

The specification of Column (3) also has a stronger first stage than Column (2), with Cragg-

Donald Wald F statistics of 57.6 and 19.2 for Columns (3) and (2), respectively. The specification

in the main text at the MSA-vehicle model-quarter level may be preferred because all variables and

instruments take on the same level of disaggregation.

The empirical Bayes method can be a useful alternative to aggregation when important variation

would be lost. The empirical Bayes method can be a helpful tool in other settings where aggregation

may not be appropriate. For example, Levin et al. (2017) finds from a high-frequency dataset of

city-level expenditures that estimating demand for gasoline at higher levels of spatial and temporal

aggregation produces increasingly inelastic estimates. In the setting of this paper, some of the

subsidy changes used for identifying variation occur within years at different times, suggesting that

a time period shorter than a year may be preferred.

Other approaches to zero shares. Gandhi et al. (2023) discuss the small and zero market

share problem in more detail and present an estimation framework to partially identify demand

parameters. First, they pull market shares away from zero with a Bayesian posterior estimate

founded upon Laplace’s rule of succession. Next, they present a moment inequality approach

to partially identifying demand parameters. The prior from Laplace’s rule of succession assigns

the same market share for each product, equal to 1
Jmt

, where Jmt is the number of products in
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Table A7: Logit Demand Estimates with Aggregate (MSA-Vehicle Model-Year) Specification

(1) (2) (3)
VARIABLES OLS IV Annual Lag IV Quarter Lag

Price ($1000) -0.0287*** -0.0689*** -0.0503***
(0.00126) (0.00449) (0.00354)

log(Local Charging) × PHEV 0.0255*** -0.544*** 0.0537*
(0.00740) (0.105) (0.0323)

log(Local Charging) × BEV 0.000753 -0.594*** 0.0225
(0.0102) (0.108) (0.0356)

MSA Destinations × PHEV -0.143*** -0.168*** -0.121***
(0.0242) (0.0326) (0.0273)

MSA Destinations × BEV 0.00431*** 0.00397*** 0.00386***
(0.000484) (0.000669) (0.000577)

Charging Network Growth 0.0525 1.370*** 0.162***
(0.0342) (0.215) (0.0357)

BEV -1.456*** -1.502*** -1.457***
(0.0573) (0.101) (0.0557)

Electric Range (10 miles) 0.123*** 0.132*** 0.146***
(0.0168) (0.0353) (0.0156)

Battery Capacity (10kWh) -0.218*** -0.207* -0.302***
(0.0591) (0.110) (0.0569)

Power (100kWh) 0.273*** 1.195*** 0.872***
(0.0510) (0.133) (0.107)

All-Wheel Drive 0.405*** 1.986*** 0.946***
(0.0864) (0.253) (0.132)

Gasoline Price ($/gal) 0.223*** -0.268*** 0.140***
(0.0339) (0.0540) (0.0412)

Electricity Price (cents/kWh) -0.0340 0.0410 -0.0312
(0.0222) (0.0363) (0.0225)

MSA Income (per capita, $1000) 0.00126 0.0475** -0.00221
(0.0121) (0.0188) (0.0121)

Observations 10,157 5,707 10,157
R-squared 0.442 0.361 0.413
Mkt FE X X X
Time FE X X X

Notes: This table presents logit demand estimates for data aggregated to the annual level. Each observation
represents an MSA-vehicle model-year. Market shares are total model-level sales in each MSA and year divided by
total vehicle sales in each MSA and year. The quality of the local network is defined as the log of the average number
of charging stations available in each MSA over the quarters of the year. The network growth rate is the network
growth rate from the 4th quarter of a year relative to the 3rd quarter of the same year. All other characteristics
are constant or averaged over the year. Time FE are annual in the MSA-vehicle model-year specification. Column
(1) presents OLS results. Column (2) presents IV logit results with instruments lagged by one year. Column (3)
presents IV logit estimates with instruments lagged by one quarter. Standard errors in parentheses are clustered by
MSA-vehicle model. *** p<0.01, ** p<0.05, * p<0.1
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the market. The assumption is that we know nothing about what the true purchase probabilities

should be, besides that we have observed no purchases in this particular market. In my setting with

panel data, the outcomes in other markets arguably contain information on purchase probabilities

that can be exploited.

Lastly, two other sets of methods are available in the literature for dealing with zero market

shares. First, Ackerberg and Rysman (2005) and Quan and Williams (2018) relax the i.i.d. assump-

tion on the idiosyncratic taste term, the logit errors. In practice, this framework can be thought

of as a random effects model which can allow for across-market variance in idiosyncratic tastes for

a particular product and rationalizes zero market shares. However, it is not possible to recover

the market-specific random effects, which are necessary to run counterfactual analyses. Second,

Dubé et al. (2020) propose an estimator with a selection step using “consideration instruments”

for whether a product will have positive sales.
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