Topics in Reinforcement Learning:
Lessons from AlphaZero for
(Sub)Optimal Control and Discrete Optimization

Arizona State University

Course CSE 691, Spring 2022

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 6
Model Predictive Control, Multiagent Rollout

Bertsekas Reinforcement Learning 1/28

0 Model Predictive Control (MPC) and Variations
e Multiagent Problems in General

e Multiagent Rollout/Policy Improvement

@ Autonomous Multiagent Rollout

e Multirobot Repair - A Large-Scale Multiagent POMDP Problem

Bertsekas Reinforcement Learning 2/28

Classical Control Problems - Infinite Control Spaces

REGULATION PROBLEM
Keep the state near some given point
Traditionally 0 (the origin)
6=0,0=0

B
FOLLOW A

GIVEN TRAJECTORY
Acceleration
Constraints

Moving Obstacle

Fixed Obstacles

Must Deal with

State and Control Constraints

Linear-Quadratic Formulation is
Often Inadequate

Velocity

Constraints

Bertsekas 4/28

The Original Form of MPC for Regulation to the Origin Problems

Next States
Tk+1

Current State State

(¢ — 1)-Stages Tt =0

Minimization

) Stage k B Stages

kE+1,...k+0-1
@ System: xik11 = f(X«, Uk); O is an absorbing (goal) state, f(0, u) = 0.
@ Cost per stage: g(x«, ux) > 0, except that 0 is cost-free, g(0, u) = 0.
@ Control constraints: ux € U(xx) for all k. Perfect state information.

@ MPC: At x, solve an ¢-step lookahead version of the problem, requiring xx., = 0
(¢: fixed and sulfficiently large to allow the transfer to 0).

@ If {lk, ..., Ukie—1} is the control sequence so obtained, apply U, discard U1, . ..

Bertsekas Reinforcement Learning 5/28

Relation to Rollout - Stability

Next States
Th+1

Current State State
(£ — 1)-Stages e =0

Minimization

I e -
Stage k Stages
k+1,..., k01

@ MPC is rollout w/ base heuristic the (¢ — 1)-step min to 0 (and stay at 0).
@ Let H(x) denote the optimal cost of the (¢ — 1)-step min, starting from x.
@ This heuristic is sequentially improving (not sequentially consistent), i.e.,

min [g(x, u) + H(f(x,u))] < H(x)
ueU(x) ~—~—
opt cost from x to 0in (¢ — 1) steps
opt cost from x to 0 in £ steps then stay at 0 for additional steps

then stay at 0 for additional steps

because (opt. cost to reach 0 in ¢ steps) < (opt. cost to reach 0 in £ — 1 steps)

@ Sequential improvement — “stability", i.e., that the MPC controller has a finite cost
from every initial state xo.

@ Reason: By the cost improvement property, the cost of the MPC controller starting
from xo is no greater than H(xy) < oo.

Bertsekas Reinforcement Learning 6/28

A Major Variant: MPC with Terminal Cost

@ At state xp, instead of requiring that x, = 0, we solve

2—1
=
subject to u; € U(x;) and X1 = f(x;, u;), where G(x) > 0 for x # 0, and G(0) = 0.
@ This is ¢-step lookahead minimization with terminal cost function G.
@ Let us assume that TG < G, where T is the min-Bellman operator, i.e., for all x,

(TG)(x) = urenJPX) [9(x, u) + G(f(x,u))] < G(x).

@ We can show that this condition implies stability of the MPC controller. An
analytical proof is possible (see the “Lessons ..." book, Section 3.2), but we give a
graphical argument in this lecture.

@ The argument is based on the concept of the region of stability: this is the set of all
J such that the policy /i obtained by one-step lookahead minimization,

Tad=TJ,

is stable.

Bertsekas Reinforcement Learning 7/28

Region of Stability - A Terminal Cost Function G Satisfying TG < G

N Stable Policies

Unstable|Policy

Jx=TJ*
Optimal cost
N

|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
TTG G J

Instability Region Stability Region L »

Region where T'J < J

TG < Gimplies that T*G lies within the region of stability for all £ J

Bertsekas Reinforcement Learning 8/28

Abstract Visualization of MPC with ¢-Step Lookahead Minimization and

Terminal Cost Function G Satisfying TG < G

MPC Policy fi
Defined by
T TG =T'G

|
[
1
1

1 =3
|
[
|
[
|
[
\:\
Optimal (:ost“ ‘

Newton Step
Je=TJx !

¢
Qe — — — — — — — — — — — — —

MPC Policy ji Region where TG < G

Stability Region

TG < Gimplies that G lies in the region of stability, and so does T“G for any ¢ > 1 J

Bertsekas Reinforcement Learning 9/28

MPC with ¢-Step Lookahead Minimization, m-Step Truncated Rollout,

and Terminal Cost Function G:

Base Policy

MPC Policy fu
Defined by
T;}T“’L(T/]‘G) = T{TIG)

Optimal cost !

|
I w« — g |
J=TJ
| | \A l
/ ‘ SR
¢ Ji TVTRG) TG J
abili i Cost of
Stability Region MPC Policy j
{-Step " m-Step Truncated i
o Lookahead Rollout with Eermmél C‘?St
Minimization Stable Policy p PDTO)gmathn
0 . by
Larger values of m and ¢ help make the MPC policy stable J

Bertsekas Reinforcement Learning 10/28

Other Variants of MPC
Unstable System
Thy1 = 2Tk + up

Control constraint: |ug| <1

Tube X = {—-a <z <a}

0 k Tube Constraint Cannot
be Satisfied for all zp € X

ifa>1

MPC with state/safety/tube constraints: x, € X for all k
@ Special difficulty: The tube constraint may be impossible to satisfy for some xp € X

@ Need to construct (off-line) an inner tube from within which the state constraints
can be met

@ Leads to the methods of reachability of target tubes (my 1971 PhD thesis, on-line)

v

Combinations with off-line training methods
Training of terminal cost function approximation, a base policy for truncated rollout, etc

v

MPC for stochastic problems: Must solve an ¢-step stochastic DP problem
on-line. Can be dealt with certainty equivalence, except for the first stage

Bertsekas Reinforcement Learning 11/28

Multiagent Problems - A Very Old (1960s) and Well-Researched Field

@ Multiple agents collecting and sharing information selectively with each other and
with an environment/computing cloud

@ Agent / applies decision u; sequentially in discrete time based on info received

The major mathematical distinction between structures

@ The classical information pattern: Agents are fully cooperative, fully sharing and
never forgetting information. Can be treated by Dynamic Programming (DP)

@ The nonclassical information pattern: Agents are partially sharing information, and
may be antagonistic. HARD because it cannot be treated by DP

v

Bertsekas Reinforcement Learning 13/28

Our Starting Point: A Classical Information Pattern ... but we will
Generalize

The agents have exact state info, and choose their controls as functions of the state)

Model: Stochastic DP (finite or infinite horizon) with state x and control u
@ Decision/control has m components u = (us, ..., Un) corresponding to m “agents”

@ “Agents" is just a metaphor - the important math structure is u = (us, ..., Un)
@ We apply approximate DP/rollout ideas, aiming at faster computation in order to:

Deal with the exponential size of the search/control space
Be able to compute the agent controls in parallel (in the process we will deal in part with
nonclassical info pattern issues)

v

Bertsekas Reinforcement Learning 14/28

Multiagent Rollout/Policy Improvement When u = (uy, ..., Un)

To simplify notation, consider infinite horizon setting. The standard rollout operation is

(A1(x), .., fim(x)) € arg (u1min Ew{g(x, Uty ..oy Um, W) + oy (F(X, Un, - U, w))};

»»»»» Um)

the search space is exponential in m (u is the base policy, seq. consistency holds)

Multiagent rollout (a form of simplified rollout; implies cost improvement)

Perform a sequence of m successive minimizations, one-agent-at-a-time

fin(x) € arg min Eu{ gx, un, 12(x), - . pm(x), W) + e (F(, Uy 2 (X), ..., (), W)) }
ﬂZ(X) € arg [T;Illzn EW{g(Xv ["1 (X)v Uz, NS(X) ©o0g /’Lm(X)v W)+aJH(f(X7 ["1 (X)v Uz, /’LS(X)v oo 0y Mm(X)7 w
ﬂm(x) € arg nJILn EW{g(X’ /7‘1 (X)’ ﬁZ(X), coog /J'm—1 (X)’ Um, W)+aJP« (f(X, /7‘1 (X), ﬁZ(X), coog /J'm—1 (X)

@ Has a search space with size that is linear in m; ENORMOUS SPEEDUP!

Survey reference: Bertsekas, D., "Multiagent Reinforcement Learning: Rollout and

Policy lteration,” IEEE/CAA J. of Aut. Sinica, 2021 (and earlier papers quoted there).

Bertsekas Reinforcement Learning 16/28

Spiders-and-Flies Example

(e.g., Delivery, Maintenance, Search-and-Rescue, Firefighting)

7 7
-~ = |
78 7
- - 15 spiders move in 4 directions with perfect vision
S = 78 3 blind flies move randomly
78
7~ 7 7~ IR
7

@ Objective is to catch the flies in minimum time
@ At each time we must select one out of ~ 55 joint move choices

@ Multiagent rollout reduces this to 5 - 15 = 75 choices (while maintaining cost
improvement); applies a sequence of one-spider-at-a-time moves

@ Later, we will introduce “precomputed signaling/coordination" between the spiders,
so the 15 spiders will choose moves in parallel (extra speedup factor of up to 15)

Bertsekas Reinforcement Learning 17/28

Four Spiders and Two Flies: lllustration of Various Forms of Rollout

Video: Base Policy Video: Standard Rollout Video: Mutiagent Rollout

Base policy: Move along the shortest path to the closest surviving fly (in the Manhattan
distance metric). No coordination.

v

Time to catch the flies
@ Base policy (each spider follows the shortest path): Capture time = 85
@ Standard rollout (all spiders move at once, 5* = 625 move choices):
Capture time = 34

@ Agent-by-agent rollout (spiders move one at a time, 4 - 5 = 20 move choices):
Capture time = 34

—
Bertsekas Reinforcement Learning 18/28

Let’s Take a Working Break

Control up*
Random Transition
1 Thy1 = fon, up, wi)
Random Cost

1
akg(ay, ur, w)

Stage k

Think about an equivalent problem reformulation for multiagent rollout
@ “Unfold" the control action
@ Consider standard (not multiagent) rollout for the reformulated problem
@ What about cost improvement?

Bertsekas Reinforcement Learning 19/28

Justification of Cost Improvement through Reformulation: Trading off

Control and State Complexity (NDP Book, 1996)

Control up*
Random Transition

m—1 Ty1 = fon, ug, wy)

Random Cost
akg(wg, ug, wy)

Stage k

An equivalent reformulation - “Unfolding" the control action

@ The control space is simplified at the expense of m — 1 additional layers of states,
and corresponding m — 1 cost functions

JOx), Px,un,), T (X un L Uneq)

@ Multiagent rollout is just standard rollout for the reformulated problem

@ The increase in size of the state space does not adversely affect rollout (only one
state per stage is looked at during on-line play)

@ Complexity reduction: The one-step lookahead branching factor is reduced from
n™ to n- m, where n is the number of possible choices for each component u;

Bertsekas Reinforcement Learning 20/28

Multiagent MPC (A Form of Simplified MPC)

Consider MPC where ux consists of both discrete and continuous components

1 m
Uk = (ykv"'vyk vvk)v
where y!, ...,y are discrete, and v is continuous.

@ For example y;, ..., ¥y may be system configuration variables, and vx may be a
multidimensional vector with real components (e.g., as in linear quadratic control).

@ The base policy may consist of a “nominal configuration" y;, ..., 7" (that depends
on the state xx), and a continuous control policy that drives the state to 0 in (¢ — 1)
steps with minimum cost.

@ In a component-by-component version of MPC, at state x:

y,l, ...,y are first chosen one-at-a-time, and with all future components fixed at the
values determined by the nominal configuration/base policy.

Then the continuous component vy is chosen to drive the state to 0 in £ steps at
minimum cost with the discrete components fixed.

@ This simplifies lookahead minimization by:

Separating the “difficult" minimization over y;, ..., yi" from the continuous minimization
over Vg
Optimizing over y,l, ..., yi' one-at-a-time (simpler integer programming problem).

@ Maintains the cost improvement/stability property of MPC.

Bertsekas Reinforcement Learning 21/28

Parallelization of Agent Actions in Multiagent Rollout:

Allowing for Agent Autonomy

Multiagent rollout/policy improvement is an inherently serial computation. How can we
parallelize it, to get extra speedup, and also deal with agent autonomy?

Precomputed signaling
@ Obstacle to parallelization: To compute the agent £ rollout control we need the
rollout controls of the preceding agents i < ¢

@ Signaling remedy: Use precomputed substitute “guesses” 1i(x) in place of the
preceding rollout controls fi;(x)

Signaling possibilities
@ Use the base policy controls for signaling zi(x) = pi(x), i=1,...,£ — 1 (this may
work poorly)
@ Use a neural net representation of the rollout policy controls for signaling
wi(x) = fi(x), i =1,...,£—1 (this requires training/off-line computation)
@ Other, problem-specific possibilities

Bertsekas Reinforcement Learning 23/28

The Pitfall of Using the Base Policy for Signaling

Fly 1 Spider 1 Spider 2 Fly 2
@ *—0—0—0—0—90

Two spiders trying to catch two stationary flies in minimum time
@ The spiders have perfect vision/perfect information. The flies do not move.
@ Base policy for eachspider: Move one step towards the closest surviving fly

Performance of various algorithms

@ Optimal policy: Split the spiders towards their closest flies
@ Standard rollout is optimal for all initial states (it can be verified)
@ Agent-by-agent rollout is also optimal for all initial states (it can be verified)

@ Agent-by-agent rollout with base policy signaling is optimal for “most” initial states,
with A SIGNIFICANT EXCEPTION

@ When the spiders start at the same location, the spiders oscillate and never caich
the flies

Bertsekas Reinforcement Learning 24/28

Multirobot Repair of a Network of Damaged Sites (2020 Paper by
Bhatacharya, Kailas, Badyal, Gil, DPB, from my Website)

Agent 1
Agent 2
Agent 3

Agent 4

Damage level 0

Damage level 1

Damage level 2

Damage level 3

Damage level 4

=
L
[_
=
[]
Ed

@ Damage level of each site is unknown, except when inspected. It deteriorates
according to a known Markov chain unless the site is repaired (this is a POMDP)

@ Control choice of each robot: Inspect and repair (which takes one unit time), or
inspect and move to a neighboring site

@ State of the system: The set of robot locations, plus the belief state of the site
damages

@ Stage cost at each unrepaired site: Depends on the level of its damage

Bertsekas Reinforcement Learning 26/28

Videos: Multirobot Repair in a Network of Damaged Sites

(Agents Start from the Same Location)

ideo: Base Policy (Shortest Path/No Coordinatior) Video: Multiagent Rollout

Video: Multiagent with Base Policy Signaling Video: Multiagent with Policy Network Signaling

Cost comparisons
@ Base policy cost: 5294 (30 steps)
@ Multiagent rollout : 1124 (9 steps)
@ Multiagent Rollout with base policy signaling: 31109 (Never stops)
@ Multiagent Rollout with neural network policy signaling: 2763 (15 steps)

We will return to this problem in the future (in the context of infinite horizon policy
iteration)

Bertsekas Reinforcement Learning

27/28

About the Next Lecture

We will cover:
@ Rollout algorithms for constrained deterministic problems
@ Applications in combinatorial and discrete optimization

Note on today’s and next lectures:

@ The material on rollout and MPC are minimally covered in the class notes. The
book "Lessons from AlphaZero ..." has more material.

@ Multiagent rollout is covered extensively in the survey paper D. P. Bertsekas,
“Multiagent Reinforcement Learning: Rollout and Policy lteration,” IEEE/CAA
Journal of Automatica Sinica, Vol. 8, 2021, pp. 249-271; see also the
corresponding Video at http://web.mit.edu/dimitrio/www/RLbook.html.

V.

Homework: Exercise 1.3 of latest version of class notes; due Sunday, Feb. 27 J

About questions on your project
@ Send me email (dbertsek@asu.edu)
@ Make appointment to talk by zoom (there are no fixed office hours in this course)

Bertsekas Reinforcement Learning 28/28

	Model Predictive Control (MPC) and Variations
	Multiagent Problems in General
	Multiagent Rollout/Policy Improvement
	Autonomous Multiagent Rollout
	Multirobot Repair - A Large-Scale Multiagent POMDP Problem

