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Review - Finite Horizon Deterministic Problem
Control ug
Gy =) @ @ O—-—)
Cost gx (g, uk)

Stage k

@ System
Xk+1:fk(Xk,Uk)7 k:0,1,...7N71

where xi: State, ux: Control chosen from some set Ux(xx)
@ Arbitrary state and control spaces
@ Cost function:

N—1
an(xn) + Z Gk (X, Uk)
k=0

@ For given initial state xp, minimize over control sequences {uo, ..., Uv—_1}
N—1
J(Xo; Lo, - -, Un—1) = GN(XN) + D Gk(Xk, Uk)
k=0
@ Optimal cost function J*(xp) = min U E et J(Xo; Ug, - -, UN—1)
k=0, ...,
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Review - DP Algorithm for Deterministic Problems

Go backward to compute the optimal costs J; (xx) of the xx-tail subproblems
(off-line training - involves lots of computation)

Start with
In(xn) = gn(xn),  forall xy,

andfork=0,...,N—1, let

J: (Xk) = min |:gk(XK~, Uk) + J;+1 (fk(Xk, Uk))} s for all xk.

Uk € Uy (xk)

Then optimal cost J*(xo) is obtained at the last step: J; (xo) = J*(X0).

v

Go forward to construct optimal control sequence {u;, . .

Start with

Up €arg min [go(xo, Uo) + J1 (fo(xo, uo))], Xi° = fo(Xo, Ug)-
Up € Up(x0)

Sequentially, going forward, for k = 1,2,..., N — 1, set

vi carg min gk, U + i (R0 ua) |, X = O, ).
U €U (x})

., Uf_4} (on-line play)
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Q-Factors for Deterministic Problems

An alternative (and equivalent) form of the DP algorithm
@ Generates the optimal Q-factors, defined for all (xk, ux) and k by

Qi (Xk, Uk) = Gk(Xk, U) + Jier1 (fi( Xk, Uk))

@ The optimal cost function J; can be recovered from the optimal Q-factor Qg

Ji = min M
ik (X) Ukeulk(Xk)Qk(Xkauk)

@ The DP algorithm can be written in terms of Q-factors

QK (Xk, Uk) = gk(Xk, Uk) + min Qi1 (Fe(Xk, Uk ), Ukr1)
Uk 41 € Ugp1 (e (X s Uk )

@ Exact and approximate forms of this and other related algorithms, form an
important class of RL methods known as Q-learning.
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Approximation in Value Space

We replace J;i with an approximation Ji during on-line play

@ Start with )
o € arg  min : {go(xo, Up) + J (fo(xmuo))}

ug€lp(Xo
@ Set ;(1 = fo(Xo, Elo)
@ Sequentially, going forward, for k =1,2,...,N — 1, set

U € arg  min_ [gk()?!n ui) + Jist (fe(Xe, Uk))}, Xicr1 = (X, Uk)
Uk € Uk (Xic)

How do we compute Jx1(xXk+1)? This is one of the principal issues in RL
@ Off-line problem approximation: Use as Jk,1 the optimal cost function of a simpler
problem, computed off-line by exact DP

@ On-line approximate optimization, e.g., solve on-line a shorter horizon problem by
multistep lookahead minimization and simple terminal cost (often done in MPC)

@ Parametric cost approximation: Obtain Jx.1(Xk;1) from a parametric class of
functions J(xk+1, r), where r is a parameter, e.g., training using data and a NN.

@ Rollout with a heuristic: We will focus on this for the moment.
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Rollout for Finite-State Deterministic Problems

k(T uk) + Hip1(2k41) |

Heuristic

Heuristic

Current State uj

Heuristic
Next States

Cost approximation by running a heuristic from states of interest )

We generate a single system trajectory {xo, x1, ..., Xy} by on-line play
@ Upon reaching xx, we compute for all ux € Uk(xk), the corresponding next states
X1 = fi(Xk, Uk)
@ From each of the next states xx1 we run the heuristic and compute the heuristic
cost Hk+1 (Xk+1)
@ We apply ik that minimizes over ux € Uk(x«), the (heuristic) Q-factor

Ik (X, Uk) + Hi1 (Xi1)

@ We generate the next state xx1 = fi(Xk, Ux) and repeat
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Traveling Salesman Example

Initial State xg

1
\Base Heuristic

T Matrix of Intercity
0 25
Cost 28

Travel Costs

Complete Tours

Current

. . Nearest Neighbor
Tnitial City Partial Tour “& .

Heuristic

j

Nearest Neighbor
Heuristic

Nearest Neighbor
Heuristic
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Stochastic DP Problems - Perfect State Observation (We Know x)

Random Transition

Tr1 = fe(@r, ur, wr)

OO DO )
Random Cost

Gk (Th, Uk, W)

@ System xx1 = fi(Xk, Uk, wik) with random “disturbance" wx (e.g., physical noise,
market uncertainties, demand for inventory, unpredictable breakdowns, etc)

@ Cost function: £ {gN(xN) + N Gr(Xiy Uk Wk)}

@ Policies m = {po, ..., un—1}, where py is a “closed-loop control law" or “feedback
policy"/a function of xx. A “lookup table" for the control ux = u«(xx) to apply at xk.

@ An important point: Using feedback (i.e., choosing controls with knowledge of the
state) is beneficial in view of the stochastic nature of the problem.

@ For given initial state xo, minimize over all * = {uo, ..., un—1} the cost

N—1
Jr(x0) =E {gN(XN) + Z Ik (xk,uk(xk) Wk)}
k=0

@ Optimal cost function: J*(xo) = min, Jx(xo). Optimal policy: J.«(x0) = J*(X0)
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The Stochastic DP Algorithm

Produces the optimal costs J;(xx) of the tail subproblems that start at xx
Start with Jy(xv) = gnv(xn), and fork =0,...,N —1, let

J;(Xk) = ukéTl]JLTxk) Ewk{gk(xfn Uk, Wk) + J:+1 (fk(Xk, Uk, Wk))}, for all x.

@ The optimal cost J*(xo) is obtained at the last step: Jy(x0) = J*(x0).

@ The optimal policy component ux can be constructed simultaneously with J;, and
consists of the minimizing u; = p(x«) above.

Alternative on-line implementation of the optimal policy, given J;, ..., Jy_;

Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

Uy €arg min EWk{gk(xk,u;ﬂWk)+J,f+1(fk(xk,uk,Wk))}.
Uk € U (Xk)

Issues: Need to know Ji, , compute expectation for each ux, minimize over all ux

4

Approximation in value space: Use Ji in place of J; ; approximate E{-} and miny,. J
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A Very Favorable Case: Linear-Quadratic Problems

An example of a linear-quadratic problem
@ Keep car velocity constant (like oversimplified cruise control): xx 1 = Xk + bux + wi

@ Here xx = vk — v is the deviation between the vehicle’s velocity vk at time k from
desired level v, and b is given

@ Uy is unconstrained; wy has 0-mean and variance o°

@ Cost over N stages: gx3 + Zk 0 '(gx¢ + ru?), where g > 0 and r > 0 are given
@ Consider a more general problem where the system is X1 = axx + bux + wx
@ The DP algorithm starts with J;;(xn) = gx2, and generates J; according to

Ji (x¢) = min Ew {Qxk + rug + Jivi(axe + bug + wi)}, k=0,...,N—1
k

@ DP algorithm can be carried out in closed form to yield
Ji (xk) = Kixg 4 const, i (xx) = Lkxk: Kk and Lx can be explicitly computed

@ The solution does not depend on the distribution of wy as long as it has 0 mean:
Certainty Equivalence (a common approximation idea for other problems)

Bertsekas Reinforcement Learning 14/29



Derivation - DP Algorithm starting from Terminal Cost Jj(x) = gx?

J,*V,1(XN_1) = LI;\,:’]II“: E{qx,%,,1 + ru,z\,,1 + J,T,(axN_1 + buy—_1 + WN_1)}

= min E{qxR_1 + ruy_+ + q(axn—1 + bun_1 + wn_1)*}
N—1

UN—1

= min [qxN_1 + rux_1 + (&Xn—1 + bun_1)* + 2 E{wn_1 }(a@Xn—1 + bun—1) + q E{wx_
—_—— ———

=0 —

=qx3 1+ min [rur_1 + g(axn—1 + bun—1)?] + qo°
N—1

Minimize by setting to zero the derivative: 0 = 2ruy_1 + 2gb(axy—1 + bun—_1), to obtain

’

. : abq
1) = Ly_1Xn— h Ly1=-—

BN—1(Xn—1) N—1XN—1 Wit N—1 r+ b2q
and by substitution, Ji_;(xv 1) = Py 1xf_; + o, where Py = £/ + g
Similarly, going backwards, we obtain for all k:

N—1

a&rP abP,
5 o 2 2 * . . k+1 o k+1

Jk(Xk) - Pka+U Z Pm+17 Nk(Xk) = Lka7 P = m"‘q Ly = _m

m=k
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Linear-Quadratic Problems in General

Observations and generalizations
@ The solution does not depend on the distribution of wy, only on the mean (which is
0), i.e., we have certainty equivalence
@ Generalization to multidimensional problems, nonzero mean disturbances, etc
@ Generalization to infinite horizon

@ Generalization to problems where the state is observed partially through linear
measurements: Optimal policy involves an extended form of certainty equivalence

Lk E{xx | measurements}

where E{x, | measurements} is provided by an estimator (e.g., Kalman filter)
@ Linear systems and quadratic cost are a starting point for other lines of
investigations and approximations:
Problems with safety/state constraints [Model Predictive Control (MPC)]
Problems with control constraints (MPC)
Unknown or changing system parameters (adaptive control)
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Approximation in Value Space - The Three Approximations

Simplified minimization

First Step “Future”

-+ >
min F {gk (.Ik. U, wk) —+ Jk'+1 (:L'k+1 )} “On-Line Play”
up, /
Expected value approximation Cost-to-go approximation

Important variants: Use multistep lookahead, replace E{-} by limited simulation (e.g., a
“certainty equivalent" of wy), multiagent rollout (for multicomponent control problems)

An example: Truncated rollout with base policy and terminal cost
approximation (however obtained, e.g., off-line training)

Possible States Possible States
Th+1 A Byl
Rollout with
Base Policy
Uk, Wk e e - @
m-Step germingl C<?st
Truncated Horizon DRrcRmation
e »@ for Stages
Beyond
Truncation
e bt @
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Let’'s Take a 15-min Working Break: Catch your Breath, Collect your

Questions, and Consider the Following Challenge Puzzle

A chess match puzzle
@ A chess player plays against a chess computer program a two-game match.

@ A win counts for 1, a draw counts for 1/2, and a loss counts for 0, for both player
and computer.
@ “Sudden death" games are played if the score is tied at 1-1 after the two games.
@ The chess player can choose to play each game in one of two possible styles:
Bold play (wins with probability pw < 1/2 and loses with probability 1 — pw) or
Timid play (draws with probability py < 1 and loses with probability 1 — py).

@ The style for the 2nd game is chosen after seeing the outcome of the 1st game.

@ Note that the player plays worse than the computer (on the average), regardless of
chosen style of play, and must play bold at least one game to have any chance to
win.

@ Speculate on the optimal policy of the player.

@ Is it possible for the player to have a better than 50-50 chance to win the match,
even though the computer is the better player?
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Answer: Depending on py,, and py, Player’s Win Prob. May be > 1/2

Match Win Probability

1—pa

@ Pw (Sudden death)

pw (Sudden death)

Bold Play
Optimal Policy

@ The optimal policy: Play bold in the 1st game. Then play bold again if the 1st
game is lost, and timid if the 1st game is won (see the full DP solution in DPB, DP
textbook, Vol. |, Chapter 1; available from Google Books).

@ Example: For p, = 0.45 and py; = 0.9, optimal style of play policy gives a match
win probability of roughly 0.53 (a simple DP calculation that you can try).

@ Intuition: The player can use feedback, while the computer cannot.
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Infinite Horizon Problems

Random Transition
Thr1 = f(Tr, ug, wi) Infinite Horizon

Random Cost

akg(@r, uk, wi)

Infinite number of stages, and stationary system and cost
@ System xx.1 = f(Xk, Uk, wk) with state, control, and random disturbance.
@ Policies m = {0, p1, . . .} with ux(x) € U(x) for all x and k.
@ Cost of stage k: g (X, sk (Xk), Wk)-
@ Cost of a policy m = {0, i1, .. .}: The limit as N — oo of the N-stage costs

N—1
JTr(XO) = N|E;]’]oo EWk {kzo Ozkg(Xk., ,Ll,k(Xk)7 Wk)}
@ 0 < a <1 isthe discount factor. If & < 1 the problem is called discounted.
@ Optimal cost function J*(xp) = min, J(Xo).

@ Problems with a = 1 typically include a special cost-free termination state f. The
objective is to reach (or approach) t at minimum expected cost.
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Infinite Horizon Problems - The Three Theorems

Intuition: N-stages opt. costs — Infinite horizon opt. cost
@ Apply DP, let Viy_«(x) be the optimal cost-to-go starting at x with k stages to go:

Vn_k(x) = u?uipx) EW{aN—kg(x’ u, w) + V—ke1 (f(x, u, w))}, Wn(x)=0

@ Define Ji(x) = Vi «(x)/a" ¥, i.e., reverse the time index and divide with oV =:
Je(x) = WT)E&QQJLW)+a¢,ﬂKX¢LWD},.bQ)EO (DP)
ue X

@ Jy(x) is equal to Vy(x), the N-stages optimal cost starting from x
@ So for any k, Jk(x) = k-stages optimal cost starting from x. Intuitively:

J*(x) = kIme Jk(x), for all x

J* satisfies Bellman’s equation: Take the limit in Eq. (DP) (?)

Mﬂ:g&hQWMM+MUWMMH, for all x

u

Optimality condition: Let x*(x) attain the min in the Bellman equation for all x

The policy {un*, ", ...} is optimal. (This type of policy is called stationary.)
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Infinite Horizon Problems - Algorithms

Value iteration (VI): Generates finite horizon opt. cost function sequence {Jx}

Je(x) = min Ew{g X, U, w) + a1 (F(x, U, w))} Jo is “arbitrary” (??)

Policy Iteration (P1): Generates sequences of policies {14} and their cost

functions {J,«}; u° is “arbitrary”

The typical iteration starts with a policy . and generates a new policy /i in two steps:
@ Policy evaluation step, which computes the cost function J,, (base) policy

@ Policy improvement step, which computes the improved (rollout) policy fi using the
one-step lookahead minimization

fx) € arg min Ew{g(xu.w) + ad, (F(x.u. w)) |

There are several options for policy evaluation to compute J,

@ Solve Bellman’s equation for u [J,.(x) = E{g(x, u(x), w) + ad.(f(x, u(x), w))}] by
using VI or other method (it is linear in J,,)

@ Use simulation (on-line Monte-Carlo, Temporal Difference (TD) methods)
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Exact and Approximate Policy lteration

] Policy
Base | Policy Improvement
> Policy >  Evaluation > . -
7 J Bellman Eq. with
H J,, instead of J*

Rollout Policy f

<
<%

Important facts (to be discussed later):
@ Pl yields in the limit an optimal policy (?)
@ Pl is faster than VI; can be viewed as Newton’s method for solving Bellman’s Eq.
@ Pl can be implemented approximately, with a value and (perhaps) a policy network

Base Approximation Approximation
»| Policy »| in Value Space »{in Policy Space >
H Value Network Policy Network
Value Data Policy Data
Rollout Policy i
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A More Abstract Notational View

Bellman’s equation, VI, and Pl can be written using Bellman operators
Recall Bellman’s equation

J*(x) = uren&l) Ew{g(x, u,w) + aJ* (f(x,u,w)) }, for all x

It can be written as a fixed point equation: J*(x) = (TJ*)(x), where T is the Bellman
operator that transforms a function J(-) into a function (TJ)(-)

(T)(x) = min. Ew{g(x, u, w) + ad(f(x, u, w))}, for all x

Shorthand theory using Bellman operators:
@ VIl is the fixed point iteration Jx.1 = TJ
@ There is a Bellman operator T, for any policy i and corresponding Bellman Eq.
Ju(X¥) = (Tudu)(x) = E{g(x, u(x), W) + oy (F(x, u(x), w))}
@ Plis written compactly as J,« = T J,« (policy evaluation) and T 1 J,« = TJ
(policy improvement)

v

The abstract view is very useful for theoretical analysis, intuition, and visualization J
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Deterministic Linear Quadratic Problem - Infinite Horizon, Undiscounted

Linear system xx,1 = axx + buy; quadratic cost per stage g(x, u) = gx® + ru?
Bellman equation: J(x) = min, {qx® + ru® + J(ax + bu)}

Finite horizon results (quadratic optimal cost, linear optimal policy) suggest:
@ J*(x) = K*x? where K* is some positive scalar
@ The optimal policy has the form p*(x) = L*x where L* is some scalar
@ To characterize K* and L*, we plug J(x) = Kx? into the Bellman equation

Kx® = min {gx® + r/® + K(ax + bu)®} = - -- = F(K)x®
u

where F(K) = ri’f}( + g with the minimizing u being equal to —rf‘t’)'z(Kx

@ Thus the Bellman equation is solved by J*(x) = K*x2, with K* being a solution of
the Riccati equation
arK*

K =P = ke

+q
and the optimal policy is linear:

- abK*
r+ b2K*
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Graphical Solution of Riccati Equation

Riccati Equation: K = F(K)
from
Bellman Equation on
Space of Quadratic Functions
J(x) = Ka2

ot s

45°Line
L rox
Jis
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Visualization of VI

Value Iteration: K1 = F(K})
from
Jk+1(17) = Kk+1l'2 = F(Kk)l'2 = Jk(li)
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About the Next Lecture

Linear quadratic problems and Newton step interpretations
@ Approximation in value space as a Newton step for solving the Riccati equation
@ Rollout as a Newton step starting from the cost of the base policy
@ Policy lteration as repeated Newton steps

Problem formulations and reformulations
@ How do we formulate DP models for practical problems?
@ Problems involving a terminal state (stochastic shortest path problems)

@ Problem reformulation by state augmentation (dealing with delays, correlations,
forecasts, etc)

@ Problems involving imperfect state observation (POMDP)
@ Multiagent problems - Nonclassical information patterns
@ Systems with unknown or changing parameters - Adaptive control

v

PLEASE READ SECTIONS 1.5 and 1.6 OF THE CLASS NOTES (AMAP) )

1ST HOMEWORK (DUE IN ONE WEEK): Exercise 1.1 of the Class Notes
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