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Review - Finite Horizon Deterministic Problem

......

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)
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Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ
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Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)
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(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ
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System
xk+1 = fk (xk , uk ), k = 0, 1, . . . ,N − 1

where xk : State, uk : Control chosen from some set Uk (xk )

Arbitrary state and control spaces

Cost function:

gN(xN) +
N−1∑
k=0

gk (xk , uk )

For given initial state x0, minimize over control sequences {u0, . . . , uN−1}

J(x0; u0, . . . , uN−1) = gN(xN) +
N−1∑
k=0

gk (xk , uk )

Optimal cost function J∗(x0) = min uk∈Uk (xk )
k=0,...,N−1

J(x0; u0, . . . , uN−1)
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Review - DP Algorithm for Deterministic Problems

Go backward to compute the optimal costs J∗
k (xk ) of the xk -tail subproblems

(off-line training - involves lots of computation)
Start with

J∗N(xN) = gN(xN), for all xN ,

and for k = 0, . . . ,N − 1, let

J∗k (xk ) = min
uk∈Uk (xk )

[
gk (xk , uk ) + J∗k+1

(
fk (xk , uk )

)]
, for all xk .

Then optimal cost J∗(x0) is obtained at the last step: J∗0 (x0) = J∗(x0).

Go forward to construct optimal control sequence {u∗
0 , . . . ,u

∗
N−1} (on-line play)

Start with

u∗0 ∈ arg min
u0∈U0(x0)

[
g0(x0, u0) + J∗1

(
f0(x0, u0)

)]
, x∗1 = f0(x0, u∗0 ).

Sequentially, going forward, for k = 1, 2, . . . ,N − 1, set

u∗k ∈ arg min
uk∈Uk (x∗k )

[
gk (x∗k , uk ) + J∗k+1

(
fk (x∗k , uk )

)]
, x∗k+1 = fk (x∗k , u

∗
k ).
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Q-Factors for Deterministic Problems

An alternative (and equivalent) form of the DP algorithm

Generates the optimal Q-factors, defined for all (xk , uk ) and k by

Q∗k (xk , uk ) = gk (xk , uk ) + J∗k+1
(
fk (xk , uk )

)
The optimal cost function J∗k can be recovered from the optimal Q-factor Q∗k

J∗k (xk ) = min
uk∈Uk (xk )

Q∗k (xk , uk )

The DP algorithm can be written in terms of Q-factors

Q∗k (xk , uk ) = gk (xk , uk ) + min
uk+1∈Uk+1(fk (xk ,uk ))

Q∗k+1
(
fk (xk , uk ), uk+1

)
Exact and approximate forms of this and other related algorithms, form an
important class of RL methods known as Q-learning.
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Approximation in Value Space

We replace J∗
k with an approximation J̃k during on-line play

Start with
ũ0 ∈ arg min

u0∈U0(x0)

[
g0(x0, u0) + J̃1

(
f0(x0, u0)

)]
Set x̃1 = f0(x0, ũ0)

Sequentially, going forward, for k = 1, 2, . . . ,N − 1, set

ũk ∈ arg min
uk∈Uk (x̃k )

[
gk (x̃k , uk ) + J̃k+1

(
fk (x̃k , uk )

)]
, x̃k+1 = fk (x̃k , ũk )

How do we compute J̃k+1(xk+1)? This is one of the principal issues in RL

Off-line problem approximation: Use as J̃k+1 the optimal cost function of a simpler
problem, computed off-line by exact DP

On-line approximate optimization, e.g., solve on-line a shorter horizon problem by
multistep lookahead minimization and simple terminal cost (often done in MPC)

Parametric cost approximation: Obtain J̃k+1(xk+1) from a parametric class of
functions J(xk+1, r), where r is a parameter, e.g., training using data and a NN.

Rollout with a heuristic: We will focus on this for the moment.
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Rollout for Finite-State Deterministic Problems
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Figure 1.2.9 Schematic illustration of rollout with one-step lookahead for a de-
terministic problem. At state xk, for every pair (xk, uk), uk ∈ Uk(xk), the base

heuristic generates an approximate Q-factor

Q̃k(xk, uk) = gk(xk, uk) + Hk+1

(
fk(xk, uk)

)
,

and selects the control µ̃k(xk) with minimal Q-factor.

and the corresponding cost

Hk+1(xk+1) = gk+1(xk+1, uk+1) + · · · + gN−1(xN−1, uN−1) + gN (xN ).

The rollout algorithm then applies the control that minimizes over uk ∈
Uk(xk) the tail cost expression for stages k to N :

gk(xk, uk) + Hk+1(xk+1).

Equivalently, and more succinctly, the rollout algorithm applies at
state xk the control µ̃k(xk) given by the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk), (1.14)

where Q̃k(xk, uk) is the approximate Q-factor defined by

Q̃k(xk, uk) = gk(xk, uk) + Hk+1

(
fk(xk, uk)

)
; (1.15)

see Fig. 1.2.9. Rollout defines a suboptimal policy π̃ = {µ̃0, . . . , µ̃N−1},
referred to as the rollout policy, where for each xk and k, µ̃k(xk) is the
control produced by the Q-factor minimization (1.14).

Note that the rollout algorithm requires running the base heuristic
for a number of times that is bounded by Nn, where n is an upper bound
on the number of control choices available at each state. Thus if n is
small relative to N , it requires computation equal to a small multiple of N
times the computation time for a single application of the base heuristic.
Similarly, if n is bounded by a polynomial in N , the ratio of the rollout
algorithm computation time to the base heuristic computation time is a
polynomial in N .

Cost approximation by running a heuristic from states of interest

We generate a single system trajectory {x0, x1, . . . , xN} by on-line play

Upon reaching xk , we compute for all uk ∈ Uk (xk ), the corresponding next states
xk+1 = fk (xk , uk )

From each of the next states xk+1 we run the heuristic and compute the heuristic
cost Hk+1(xk+1)

We apply ũk that minimizes over uk ∈ Uk (xk ), the (heuristic) Q-factor

gk (xk , uk ) + Hk+1(xk+1)

We generate the next state xk+1 = fk (xk , ũk ) and repeat
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ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk
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Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE
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xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=
Ps

`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)
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ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk
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Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE
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ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk
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x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗
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1

Cost-to-go approximation Expected value approximation

Optimal cost J∗ Jµ1(x)/Jµ0(x) = K1/K0 L0 r

TµJ Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃ Cost of base policy µ

Cost of rollout policy µ̃ Optimal Base Rollout Terminal Score Ap-
proximation

Simplified minimization

Changing System, Cost, and Constraint Parameters

Linearized Bellman Eq. at Jµ Yields Rollout Policy µ̃ 20

Through Tµ̃Jµ = TJµ Lookahead Minimization

Value iterations

Rollout with Base Off-Line Obtained Policy

Policy Improvement with Base Policy µ
Policy evaluations for µ and µ̃

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

αb2 K̃ K K∗ Kk Kk+1 F (K) = αrK
r+αb2K + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step Value Network Policy Network

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation
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u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
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3 ũ1 x̃2 ũ2 x̃3
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within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial City Current Partial Tour Next Cities Nearest Neighbor

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N �1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

Initial City Current Partial Tour Next Cities Nearest Neighbor

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

Initial City Current Partial Tour Next Cities Nearest Neighbor

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

Initial City Current Partial Tour Next Cities Nearest Neighbor

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Complete Tours Current Partial Tour Next Cities Next States

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

Generate Improved Policy µ Next Partial Tour

Generate “Improved” Policy µ̃ by µ̃(i) 2 arg minu2U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r⇤

Representative States Controls u are associated with states i

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1
r⇤x`

r⇤xm
Footprint Sets J̃(i) J̃(j) =

P
y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

nX

j=1

pxj(u)�jy ĝ(x, u) =

nX

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J⇤(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /2 Ix �jy = 1 for j 2 Iy �jy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) �j1y1 �j1y2 �j1y3 �jy with Aggregation Probabilities �jy = 0 or 1

Relate to Rm r⇤m�1 r⇤m x0
k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

1

Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

Generate Improved Policy µ Next Partial Tours

Generate “Improved” Policy µ̃ by µ̃(i) 2 arg minu2U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r⇤

Representative States Controls u are associated with states i

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1
r⇤x`

r⇤xm
Footprint Sets J̃(i) J̃(j) =

P
y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

nX

j=1

pxj(u)�jy ĝ(x, u) =

nX

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J⇤(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /2 Ix �jy = 1 for j 2 Iy �jy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) �j1y1 �j1y2 �j1y3 �jy with Aggregation Probabilities �jy = 0 or 1

Relate to Rm r⇤m�1 r⇤m x0
k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

1
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Stochastic DP Problems - Perfect State Observation (We Know xk )

......
Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Stage k Future Stages

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
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x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)
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1

System xk+1 = fk (xk , uk ,wk ) with random “disturbance" wk (e.g., physical noise,
market uncertainties, demand for inventory, unpredictable breakdowns, etc)

Cost function: E
{

gN(xN) +
∑N−1

k=0 gk (xk , uk ,wk )
}

Policies π = {µ0, . . . , µN−1}, where µk is a “closed-loop control law" or “feedback
policy"/a function of xk . A “lookup table" for the control uk = µk (xk ) to apply at xk .

An important point: Using feedback (i.e., choosing controls with knowledge of the
state) is beneficial in view of the stochastic nature of the problem.

For given initial state x0, minimize over all π = {µ0, . . . , µN−1} the cost

Jπ(x0) = E

{
gN(xN) +

N−1∑
k=0

gk
(
xk , µk (xk ),wk

)}

Optimal cost function: J∗(x0) = minπ Jπ(x0). Optimal policy: Jπ∗(x0) = J∗(x0)
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The Stochastic DP Algorithm

Produces the optimal costs J∗
k (xk ) of the tail subproblems that start at xk

Start with J∗N(xN) = gN(xN), and for k = 0, . . . ,N − 1, let

J∗k (xk ) = min
uk∈Uk (xk )

Ewk

{
gk (xk , uk ,wk ) + J∗k+1

(
fk (xk , uk ,wk )

)}
, for all xk .

The optimal cost J∗(x0) is obtained at the last step: J∗0 (x0) = J∗(x0).

The optimal policy component µ∗k can be constructed simultaneously with J∗k , and
consists of the minimizing u∗k = µ∗k (xk ) above.

Alternative on-line implementation of the optimal policy, given J∗
1 , . . . , J

∗
N−1

Sequentially, going forward, for k = 0, 1, . . . ,N − 1, observe xk and apply

u∗k ∈ arg min
uk∈Uk (xk )

Ewk

{
gk (xk , uk ,wk ) + J∗k+1

(
fk (xk , uk ,wk )

)}
.

Issues: Need to know J∗k+1, compute expectation for each uk , minimize over all uk

Approximation in value space: Use J̃k in place of J∗k ; approximate E{·} and minuk .
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A Very Favorable Case: Linear-Quadratic Problems

An example of a linear-quadratic problem
Keep car velocity constant (like oversimplified cruise control): xk+1 = xk + buk + wk

Here xk = vk − v̄ is the deviation between the vehicle’s velocity vk at time k from
desired level v̄ , and b is given

uk is unconstrained; wk has 0-mean and variance σ2

Cost over N stages: qx2
N +

∑N−1
k=0 (qx2

k + ru2
k ), where q > 0 and r > 0 are given

Consider a more general problem where the system is xk+1 = axk + buk + wk

The DP algorithm starts with J∗N(xN) = qx2
N , and generates J∗k according to

J∗k (xk ) = min
uk

Ewk

{
qx2

k + ru2
k + J∗k+1(axk + buk + wk )

}
, k = 0, . . . ,N − 1

DP algorithm can be carried out in closed form to yield
J∗k (xk ) = Kk x2

k + const, µ∗k (xk ) = Lk xk : Kk and Lk can be explicitly computed

The solution does not depend on the distribution of wk as long as it has 0 mean:
Certainty Equivalence (a common approximation idea for other problems)
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Derivation - DP Algorithm starting from Terminal Cost J∗
N(x) = qx2

J∗N−1(xN−1) = min
uN−1

E
{

qx2
N−1 + ru2

N−1 + J∗N(axN−1 + buN−1 + wN−1)
}

= min
uN−1

E
{

qx2
N−1 + ru2

N−1 + q(axN−1 + buN−1 + wN−1)2}
= min

uN−1

[
qx2

N−1 + ru2
N−1 + (axN−1 + buN−1)2 + 2 E{wN−1}︸ ︷︷ ︸

=0

(axN−1 + buN−1) + q E{w2
N−1}︸ ︷︷ ︸

=σ2

]
= qx2

N−1 + min
uN−1

[
ru2

N−1 + q(axN−1 + buN−1)2]+ qσ2

Minimize by setting to zero the derivative: 0 = 2ruN−1 + 2qb(axN−1 + buN−1), to obtain

µ∗N−1(xN−1) = LN−1xN−1 with LN−1 = − abq
r + b2q

and by substitution, J∗N−1(xN−1) = PN−1x2
N−1 + qσ2, where PN−1 = a2rq

r+b2q + q

Similarly, going backwards, we obtain for all k :

J∗k (xk ) = Pk x2
k +σ2

N−1∑
m=k

Pm+1, µ
∗
k (xk ) = Lk xk , Pk =

a2rPk+1

r + b2Pk+1
+q, Lk = − abPk+1

r + b2Pk+1

Bertsekas Reinforcement Learning 15 / 29



Linear-Quadratic Problems in General

Observations and generalizations
The solution does not depend on the distribution of wk , only on the mean (which is
0), i.e., we have certainty equivalence

Generalization to multidimensional problems, nonzero mean disturbances, etc

Generalization to infinite horizon

Generalization to problems where the state is observed partially through linear
measurements: Optimal policy involves an extended form of certainty equivalence

Lk E{xk | measurements}

where E{xk | measurements} is provided by an estimator (e.g., Kalman filter)
Linear systems and quadratic cost are a starting point for other lines of
investigations and approximations:

I Problems with safety/state constraints [Model Predictive Control (MPC)]
I Problems with control constraints (MPC)
I Unknown or changing system parameters (adaptive control)
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Approximation in Value Space - The Three Approximations
min

uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
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)
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Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy
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u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
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High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ
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Similar to the deterministic case, Q-learning involves the calculation
of either the optimal Q-factors (1.16) or approximations Q̃k(xk, uk). The
approximate Q-factors may be obtained using approximation in value space
schemes, and can be used to obtain approximately optimal policies through
the Q-factor minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk). (1.17)

In Chapter 4, we will discuss the use of neural networks in such approxi-
mations.

Cost Versus Q-factor Approximations - Robustness and On-
Line Replanning

We have seen that it is possible to implement approximation in value space
by using cost function approximations [cf. Eq. (1.15)] or by using Q-factor
approximations [cf. Eq. (1.17)], so the question arises which one to use in a
given practical situation. One important consideration is the facility of ob-
taining suitable cost or Q-factor approximations. This depends largely on
the problem and also on the availability of data on which the approxima-
tions can be based. However, there are some other major considerations.

In particular, the cost function approximation scheme

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

E
{
gk(xk, uk, wk) + J̃k+1

(
fk(xk, uk, wk)

)}
,

has an important disadvantage: the expected value above needs to be com-
puted on-line for all uk ∈ Uk(xk), and this may involve substantial compu-
tation. On the other hand it also has an important advantage in situations
where the system function fk, the cost per stage gk, or the control con-
straint set Uk(xk) can change as the system is operating. We will discuss
in more detail how this situation can arise in practice later in this chapter.
Assuming that the new values of fk, gk, or Uk(xk) become known to the
controller, on-line replanning may be used, as discussed earlier for deter-
ministic problems. This may improve substantially the robustness of the
approximation in value space scheme.

By comparison, the Q-factor function approximation scheme (1.17)
does not allow for on-line replanning. On the other hand, for problems
where there is no need for on-line replanning, the Q-factor approximation
scheme does not require the on-line computation of expected values and
may allow for a much faster on-line computation of the minimizing control
µ̃k(xk) via Eq. (1.17).

1.3.2 Infinite Horizon Problems - An Overview

We will now provide an outline of infinite horizon stochastic DP with an
emphasis on its aspects that relate to our RL/approximation methods.
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Let’s Take a 15-min Working Break: Catch your Breath, Collect your
Questions, and Consider the Following Challenge Puzzle

A chess match puzzle
A chess player plays against a chess computer program a two-game match.

A win counts for 1, a draw counts for 1/2, and a loss counts for 0, for both player
and computer.

“Sudden death" games are played if the score is tied at 1-1 after the two games.
The chess player can choose to play each game in one of two possible styles:

I Bold play (wins with probability pw < 1/2 and loses with probability 1 − pw ) or
I Timid play (draws with probability pd < 1 and loses with probability 1 − pd ).

The style for the 2nd game is chosen after seeing the outcome of the 1st game.

Note that the player plays worse than the computer (on the average), regardless of
chosen style of play, and must play bold at least one game to have any chance to
win.

Speculate on the optimal policy of the player.

Is it possible for the player to have a better than 50-50 chance to win the match,
even though the computer is the better player?
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Answer: Depending on pw and pd , Player’s Win Prob. May be > 1/2
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{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of Unstable Policy

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Style Choice Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of Unstable Policy

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Style Choice Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of Unstable Policy

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Style Choice Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of Unstable Policy

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Style Choice Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of Unstable Policy

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Style Choice Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of Unstable Policy

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ

1

The optimal policy: Play bold in the 1st game. Then play bold again if the 1st
game is lost, and timid if the 1st game is won (see the full DP solution in DPB, DP
textbook, Vol. I, Chapter 1; available from Google Books).

Example: For pw = 0.45 and pd = 0.9, optimal style of play policy gives a match
win probability of roughly 0.53 (a simple DP calculation that you can try).

Intuition: The player can use feedback, while the computer cannot.
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Infinite Horizon Problems

......
Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Stage k Future Stages

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

xk+1 = f(xk, uk, wk) g(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) αkg(xk, uk, wk)

Termination State Infinite Horizon

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

Infinite number of stages, and stationary system and cost
System xk+1 = f (xk , uk ,wk ) with state, control, and random disturbance.

Policies π = {µ0, µ1, . . .} with µk (x) ∈ U(x) for all x and k .

Cost of stage k : αk g
(
xk , µk (xk ),wk

)
.

Cost of a policy π = {µ0, µ1, . . .}: The limit as N →∞ of the N-stage costs

Jπ(x0) = lim
N→∞

Ewk

{
N−1∑
k=0

αk g
(
xk , µk (xk ),wk

)}

0 < α ≤ 1 is the discount factor. If α < 1 the problem is called discounted.

Optimal cost function J∗(x0) = minπ Jπ(x0).

Problems with α = 1 typically include a special cost-free termination state t . The
objective is to reach (or approach) t at minimum expected cost.
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Infinite Horizon Problems - The Three Theorems

Intuition: N-stages opt. costs –> Infinite horizon opt. cost
Apply DP, let VN−k (x) be the optimal cost-to-go starting at x with k stages to go:

VN−k (x) = min
u∈U(x)

Ew

{
αN−k g(x , u,w) + VN−k+1

(
f (x , u,w)

)}
, VN(x) ≡ 0

Define Jk (x) = VN−k (x)/αN−k , i.e., reverse the time index and divide with αN−k :

Jk (x) = min
u∈U(x)

Ew

{
g(x , u,w) + αJk−1

(
f (x , u,w)

)}
, J0(x) ≡ 0 (DP)

JN(x) is equal to V0(x), the N-stages optimal cost starting from x

So for any k , Jk (x) = k -stages optimal cost starting from x . Intuitively:

J∗(x) = lim
k→∞

Jk (x), for all x

J∗ satisfies Bellman’s equation: Take the limit in Eq. (DP) (?)

J∗(x) = min
u∈U(x)

Ew

{
g(x , u,w) + αJ∗

(
f (x , u,w)

)}
, for all x

Optimality condition: Let µ∗(x) attain the min in the Bellman equation for all x

The policy {µ∗, µ∗, . . .} is optimal. (This type of policy is called stationary.)
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Infinite Horizon Problems - Algorithms

Value iteration (VI): Generates finite horizon opt. cost function sequence {Jk}

Jk (x) = min
u∈U(x)

Ew

{
g(x , u,w) + αJk−1

(
f (x , u,w)

)}
, J0 is “arbitrary" (??)

Policy Iteration (PI): Generates sequences of policies {µk} and their cost
functions {Jµk }; µ0 is “arbitrary"

The typical iteration starts with a policy µ and generates a new policy µ̃ in two steps:

Policy evaluation step, which computes the cost function Jµ (base) policy µ

Policy improvement step, which computes the improved (rollout) policy µ̃ using the
one-step lookahead minimization

µ̃(x) ∈ arg min
u∈U(x)

Ew

{
g(x , u,w) + αJµ

(
f (x , u,w)

)}
There are several options for policy evaluation to compute Jµ

Solve Bellman’s equation for µ [Jµ(x) = E{g(x , µ(x),w) + αJµ(f (x , µ(x),w))}] by
using VI or other method (it is linear in Jµ)

Use simulation (on-line Monte-Carlo, Temporal Difference (TD) methods)
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Important facts (to be discussed later):
PI yields in the limit an optimal policy (?)

PI is faster than VI; can be viewed as Newton’s method for solving Bellman’s Eq.

PI can be implemented approximately, with a value and (perhaps) a policy network
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0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1
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A More Abstract Notational View

Bellman’s equation, VI, and PI can be written using Bellman operators
Recall Bellman’s equation

J∗(x) = min
u∈U(x)

Ew

{
g(x , u,w) + αJ∗

(
f (x , u,w)

)}
, for all x

It can be written as a fixed point equation: J∗(x) = (TJ∗)(x), where T is the Bellman
operator that transforms a function J(·) into a function (TJ)(·)

(TJ)(x) = min
u∈U(x)

Ew

{
g(x , u,w) + αJ

(
f (x , u,w)

)}
, for all x

Shorthand theory using Bellman operators:
VI is the fixed point iteration Jk+1 = TJk

There is a Bellman operator Tµ for any policy µ and corresponding Bellman Eq.
Jµ(x) = (TµJµ)(x) = E{g(x , µ(x),w) + αJµ(f (x , µ(x),w))}
PI is written compactly as Jµk = Tµk Jµk (policy evaluation) and Tµk+1 Jµk = TJµk

(policy improvement)

The abstract view is very useful for theoretical analysis, intuition, and visualization
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Deterministic Linear Quadratic Problem - Infinite Horizon, Undiscounted

Linear system xk+1 = axk + buk ; quadratic cost per stage g(x ,u) = qx2 + ru2

Bellman equation: J(x) = minu
{

qx2 + ru2 + J(ax + bu)
}

Finite horizon results (quadratic optimal cost, linear optimal policy) suggest:

J∗(x) = K ∗x2 where K ∗ is some positive scalar

The optimal policy has the form µ∗(x) = L∗x where L∗ is some scalar

To characterize K ∗ and L∗, we plug J(x) = Kx2 into the Bellman equation

Kx2 = min
u

{
qx2 + ru2 + K (ax + bu)2} = · · · = F (K )x2

where F (K ) = a2rK
r+b2K + q with the minimizing u being equal to − abK

r+b2K x

Thus the Bellman equation is solved by J∗(x) = K ∗x2, with K ∗ being a solution of
the Riccati equation

K ∗ = F (K ∗) =
a2rK ∗

r + b2K ∗
+ q

and the optimal policy is linear:

µ∗(x) = L∗x with L∗ = − abK ∗

r + b2K ∗
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Graphical Solution of Riccati Equation
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Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
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(
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)}

Truncated Rollout Policy µ m Steps
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One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

using an Corresponds to One-Step Lookahead Policy µ̃

Line
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Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃
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µ J̃ Yields Truncated Rollout Policy µ̃ Defined by

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)
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Visualization of VI
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ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗
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High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ
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3 ũ0 x̃1 ũ1 x̃1
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Stochastic Problems

Perfect-State Info Ch. 3
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Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J
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About the Next Lecture

Linear quadratic problems and Newton step interpretations
Approximation in value space as a Newton step for solving the Riccati equation

Rollout as a Newton step starting from the cost of the base policy

Policy Iteration as repeated Newton steps

Problem formulations and reformulations
How do we formulate DP models for practical problems?

Problems involving a terminal state (stochastic shortest path problems)

Problem reformulation by state augmentation (dealing with delays, correlations,
forecasts, etc)

Problems involving imperfect state observation (POMDP)

Multiagent problems - Nonclassical information patterns

Systems with unknown or changing parameters - Adaptive control

PLEASE READ SECTIONS 1.5 and 1.6 OF THE CLASS NOTES (AMAP)

1ST HOMEWORK (DUE IN ONE WEEK): Exercise 1.1 of the Class Notes
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