Topics in Reinforcement Learning:
Lessons from AlphaZero for
(Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2022

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 11
Approximate Linear Programming;
Policy Gradient and Random Search Methods

Bertsekas Reinforcement Learning 1/27

o Linear Programming: Another Approach to Approximation in Value Space
e Approximation in Policy Space: Motivation

@ Training of Policies by Cost Optimization - Random Search

0 Training of Policies by Cost Optimization - Policy Gradient Methods

e Implementation Issues of Policy Gradient Methods

Bertsekas Reinforcement Learning 2/27

Exact Solution of Discounted DP by Linear Programming

J(2)

7(2) = g(2.ut)

J(2) = g(2,u) + apar (u2)J (1) + apaa (u2)J(2)

- apa1 (ul) J(1) + apaz(ul)J(2)

= (1), J*(2))

J(1) = g(1,u?) + api (u?) J (1) + apra(u?)J(2)

N

J(1) = g(1,u') + apii(ul) J(1) + apia(ul)J(2)

0

J(1)

Key idea: J* is the “largest” J that satisfies the constraint
n
J(i) <> pi(u)(g(i,u,j) +ad(j)), foralli=1,....,nand ue U(i),
j=1

so that J* = (J*(1),...,J*(n)) maximizes ., J(i) subject to the above constraint.

Proof: Generate sequence {Jx} with VI, starting from any J = J, satisfying the
constraint, which implies that Jy < J;. Since Jx = T*Jp and T is monotone, we have
J=do < Jk < Jks1 — J*. So any J satisfying the constraint also satisfies J < J*.

Bertsekas

Reinforcement Learning 4/27

Linear Programming with Approximation in Value Space

Difficulty of the exact LP algorithm for large problems
Too many variables (n) and too many constraints (the # of state-control pairs).

Introduce a linear feature-based architecture J* (i) ~ J(i,r) = X7 ree(i)

Replace J(i) with J(i, r) to reduce the number of variables.
Introduce constraint sampling to reduce the number of constraints.
Maximize ¥,.;J(i, r) subject to

iel

J(i,r) < i:p,-,-(u)(g(i., u,j) +ad(j,r)), iel, ue0()

This is a linear program.
I'is a set of “representative states”, U(i) is a set of “representative controls".

Sampling with some known suboptimal policies is typically used to select a subset
of the constraints to enforce; progressively enrich the subset as necessary.

The approach has not been used widely, but has been successful on substantive
test problems (see Van Roy and De Farias’ works, among others).

@ Capitalizes on the reliability of large-scale LP software.

Bertsekas Reinforcement Learning 5/27

General Framework for Approximation in Policy Space

@ Parametrize stationary policies with a parameter vector r; denote them by fi(r),
with components fi(i,r), i=1,...,n. Each r defines a policy.

@ The parametrization may be problem-specific, or feature-based, or may involve a
neural network.

@ The idea is to optimize some measure of performance with respect to r.

An example of problem-specific/natural parametrization: Supply chains,

inventory control
Production Retail Demand
Delay >
Center Storage

@ Retail center places orders to the production center, depending on current stock;
there may be orders in transit; demand and delays can be stochastic.

@ State is (current stock, orders in transit, ++). Can be formulated by DP but can be
very difficult to solve exactly.

@ Intuitively, a near-optimal policy is of the form: When the retail inventory goes
below level ri, order an amount r.. Optimize over the parameter vector r = (ry, r2).

@ Extensions to a network of production/retail centers, multiple products, etc.

Bertsekas Reinforcement Learning 7127

Another Example: Policy Parametrization Through Value

Parametrization

Indirect parametrization of policies through cost features

@ Suppose J(i, r) is a cost function parametric approximation.

@ J may be a linear feature-based architecture that is natural for the given problem.

@ Define . L P

adi,ry earg min 3. py(u)(gCi, u.)) + 4G, 1)
ue 1 j:1

@ This is useful when we know a good parametrization in value space, but we want
to use a method that works well in policy space, and results in an easily
implementable policy.

Tetris example: There are good linear parametrizations through features. Great
success has been achieved by indirect approximation in policy space. J

Bertsekas Reinforcement Learning 8/27

Working Break: When Would you Use Approximation in Policy Space?

Think about at least six contexts where approximation in policy space is either

essential or is helpful
@ Problems with natural policy parametrizations (like the supply chain problem)

@ Problems with natural value parametrizations (like the tetris problem), where a
good policy training method works well.

@ Approximation in policy space on top of approximation in value space.
@ Learning from a software or human expert.

@ Unconventional information structures (limited memory, etc) - Conventional DP
breaks down.

@ Multiagent systems with local information (not shared with other agents).

Bertsekas Reinforcement Learning

9/27

Policy Approximation on Top of Value Approximation

@ Compute approximate cost-to-go function J using an approximation in value space
scheme.

@ This defines the corresponding suboptimal policy i1 through one-step lookahead,
i r) earg min 37 p;(u)(9(i,u.j) + J(. 1))
€] j:1

or a multistep lookahead version.

@ Approximate /i using a training set consisting of a large number q of sample pairs
(%,u%), s=1,...,q, where u® = i(i°).

@ In particular, introduce a parametric family of policies fi(i, r). Then obtain r by

L s s .2
mran |u® = a0
s=1

Bertsekas Reinforcement Learning 10/27

Learning from a Software or Human Expert

@ Suppose we have a software or human expert that can choose a “good" or
“near-optimal" control u® at any state i°.

@ We form a sample set of representative state-control pairs (i°, u®), s=1,...,q.
@ We introduce a parametric family of policies fi(/, r). Then obtain r by

N .
mrlnz |u® = a0
s=1

@ This approach is known as expert supervised training.
@ It has been used (in various forms) in backgammon and in chess.

@ It can be used, among others, for initialization of other methods.

Bertsekas Reinforcement Learning 11/27

Unconventional Information Structures

@ Approximation in value space is based on a DP formulation, so the controller has
access to the exact state (or a belief state in case of partial state information).

@ In some contexts this may not be true. There is a DP-like structure, but no full
state or belief state is available.

@ Example 1: The controller “forgets" information, e.g., “limited memory".

@ Example 2: Some control components may be chosen on the basis of different
information that others.

Example: Multiagent systems with local agent information

@ Suppose decision making and information gathering is distributed among multiple
autonomous agents.

@ Each agent’s action depends only on his/her local information.
@ Agents may be receiving delayed information from other agents.

@ Then conventional DP and much of the approximation in value space methodology
breaks down.

@ Approximation in policy space is still applicable.

Bertsekas Reinforcement Learning 12/27

Optimization/Training Framework

Uncertainty
Control l
u= /1(27 T) System ﬁ»
™ Environment >
Current State ¢

Controller|
ﬂ(',’f‘)

A

Training by Cost Optimization

@ Each r defines a stationary policy fi(r), with components i(i,r), i=1,...,n.
@ Determine r through the minimization

min J;ir) (o)

where J; () (o) is the cost of the policy fi(r) starting from initial state .
@ More generally, determine r through the minimization

min £{J;) (o) }

where the E{-} is with respect to a suitable probability distribution of .

Bertsekas

Reinforcement Learning 14/27

Training by Random Search

Random search methods apply to the general minimization min,.z F(r)

@ They generate a parameter sequence {r*} aiming for cost reduction.

@ Given r¥, points are chosen in some random fashion in a neighborhood of r*, and
some new point r**' is chosen within this neighborhood.

@ In theory they have good convergence properties. In practice they can be slow.

@ They are not affected as much by local minima (as for example gradient-type
methods).

@ They don’t require a differentiable cost function, and they apply to discrete as well
as continuous minimization.

@ There are many methods and variations thereoff.

Some examples
@ Evolutionary programming.
@ Tabu search.
@ Simulated annealing.

@ Cross entropy method.

Bertsekas Reinforcement Learning 15/27

Cross-Entropy Method - A Sketch

Epq1

Ey

@ At the current iterate r*, construct an ellipsoid Ex centered at rk.

@ Generate a number of random samples within Ex. “Accept" a subset of the
samples that have “low" cost.

Let r**! be the sample “mean"” of the accepted samples.

Construct a sample “covariance" matrix of the accepted samples, form the new
ellipsoid Ex.1 using this matrix, and continue.

@ Limited convergence rate guarantees. Success depends on domain-specific
insight and the skilled use of implementation heuristics.

Simple and well-suited for parallel computation. Resembles a “gradient method".

Bertsekas Reinforcement Learning 16/27

Policy Gradient Method for Deterministic Problems

Consider the minimization of J;(- (fo) over r by using the gradient method
et = —”/kVJg(rk)(io)

assuming that J; (i) is differentiable with respect to r.

@ The difficulty is that the gradient VJ;) (io) may not be explicitly available.

@ Then the gradient must be approximated by finite differences of cost function
values J; k) (io)-

@ When the problem is deterministic the gradient method may work well.

@ When the problem is stochastic, the cost function values may be computable only

through Monte Carlo simulation. Very hard to get accurate gradients by
differencing function values.

Bertsekas Reinforcement Learning 18/27

Policy Gradient Method for Stochastic Problems

Consider the generic optimization problem min,.z F(z)
We take an unusual step: Convert this problem to the stochastic optimization problem

min £,{F(2)}

where
@ zis viewed as a random variable.
@ Pz is the set of probability distributions over Z.
@ p denotes the generic distribution in Py.
@ E,{-} denotes expected value with respect to p.

How does this relate to our infinite horizon DP problems?

@ For this framework to apply to a stochastic DP context, we must enlarge the set of
policies to include randomized policies, mapping a state i into a probability
distribution over the set of controls U(/).

@ Note that in our DP problems, optimization over randomized policies gives the
same results as optimization over ordinary/nonrandomized policies.

@ In the DP context, z is the state-control trajectory: z = {iy, Uo, i1, U1, .. .}.

Bertsekas Reinforcement Learning 19/27

Gradient Method for Solution of min,.z F(z)

Parametrization of the probability distributions
@ We restrict attention to a parametrized subset 77 c P of probability distributions
p(z;r), where r is a continuous parameter.

@ In other words, we approximate the problem min..z F(z) with the restricted
problem
min Epzn{F(2)}

@ We use a gradient method for solving this problem:

Ay ’ka(Ep(z;,k){F(z)})

@ Key fact: There is a useful formula for the gradient, which involves the gradient
with respect to r of the natural logarithm log (p(z; r")).

Bertsekas Reinforcement Learning 20/27

The Gradient Formula (Reverses the Order of E{-} and V)

Assuming that p(z; r¥) is a discrete distribution, we have
V(Exern{F()}) =¥ (Z;Mz; th(z))
= Y. vp(z:r*)F(2)

zeZ
- TPl) R)

= p(z;,k){V(bg (,O(Z; rk)))F(Z)}

Sample-Based Gradient Method for Parametric Approximation of min .z F(z)
@ At r* obtain a sample z¥ according to the distribution p(z; r*).
@ Compute the sample gradient v(log (p(2"; rk)))F(z").
@ Use it to iterate according to
ret =i ykv(log (p(Z"; rk)))F(zk)

Bertsekas Reinforcement Learning 21/27

Policy Gradient Method - Discounted Problem

@ Denote by z the infinite horizon state-control trajectory:
Z= {io,Uo,i1,U1,...}.

@ We consider a parametrization of randomized policies p(u | i; r) with parameter r,
i.e., the control at state i is generated according to a distribution p(u | i; r) over
ud.

@ Then for a given r, the state-control trajectory z is a random trajectory with
probability distribution denoted p(z; r).

@ The cost corresponding to the trajectory z is
F(z) = Z " g(im, Um, im+1),
m=0

and the problem is to minimize Ep,,»{F(z)}, over r.
@ The gradient needed in the gradient iteration

PRtk _,ka(k)g (p(zk; rk)))F(Zk)

is given by

v(log (p(2;r))) = io 108 (Piis (um)) + ¥ (Tog (p(um | imi 1)))

m=0

Bertsekas Reinforcement Learning 22/27

Unusual Aspects of the Policy Gradient Method

@ It involves the cost function of the discounted problem, but not its gradient ... In
fact the cost per stage g may be nondifferentiable!

@ The problem solved is a randomized version of the original ... so if r — 7 and the

distribution p(z,) is not atomic, a solution has to be extracted from this
distribution.

Some of the implementation issues

@ How to collect the trajectory samples z* to strike a balance between convenient
implementation and exploration of the search space.

@ How to reduce the large noise in the cost calculation F(z).
@ Use of baseline b, i.e., iterate according to

= wkv(log (p(Z*; rk)))(F(zk) -b)

instead of
rk+1 _ f'k _,ykv(k)g (p(zk; rk)))F(Zk)

There is theoretical basis for this (see the next slide).

Bertsekas Reinforcement Learning 24 /27

Cost Shaping Technique - Can Serve for Noise Reduction

Introduce an equivalent “variational" problem (known since the 1960s)
@ Subtract any known function V(x) from J*(x):
JX)=J(x)-V(x), x=1,...,n
@ Replace the cost per stage g(x, u, y) with

aix,u,y) =g(x,u,y)+aV(y) - V(x), x=1,....n

@ Then the original problem’s Bellman’s equation is written as another Bellman
equation

~ . n ~ ~
J(X): rEI(n)ZpXY(u)(g(X?uvy)+aJ(Y))7 X:17"'7n
ue X y:1

@ Jis the optimal cost of another problem: g(x, u, y) is replaced by §(x, u, y)
@ The reformulated problem is equivalent as far as exact solution is concerned

@ BUT J may have more favorable “shape” for approximation, i.e., policy gradient
and other methods may work better for the reformulated problem

@ Example: If V ~ J*, approximation methods can capture more easily small scale
variations in J* ... compare with the discussion on advantage updating (Lecture 8)

Bertsekas Reinforcement Learning 25/27

Robustness of Policy Gradient Methods

There is a generic difficulty with using a fixed policy on-line:
@ ltis all-training no on-line play. (This could be good but could be very bad.)
@ It does not adapt to changes in the problem’s parameters.
@ So approximation in policy space may not work well in adaptive control contexts.
@ Also it does not yield the benefit of on-line lookahead minimization/rollout.

@ Approximation in value space, and rollout may work much better (e.g., in
AlphaZero).

An alternative use of approximation in policy space methods (including policy
gradient)

It can provide a base policy for use in (truncated) rollout or can be used in Monte Carlo
Tree Search. This is what is done in AlphaZero.

Bertsekas Reinforcement Learning 26/27

About the Next Lecture

We will cover aggregation, which trains off-line a cost function approximation. J

We will use videolecture 12 from the 2021 ASU class. J

Bertsekas Reinforcement Learning 27/27

	Linear Programming: Another Approach to Approximation in Value Space
	Approximation in Policy Space: Motivation
	Training of Policies by Cost Optimization - Random Search
	Training of Policies by Cost Optimization - Policy Gradient Methods
	Implementation Issues of Policy Gradient Methods

