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Infinite Horizon Problems

......
Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)
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Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)
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Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2
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u
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�
c, a + J(2)
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1

xk+1 = f(xk, uk, wk) g(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) αkg(xk, uk, wk)

Termination State Infinite Horizon

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

Infinite number of stages, and stationary system and cost
System xk+1 = f (xk , uk ,wk ) with state, control, and random disturbance

Stationary policies µ with µ(x) ∈ U(x) for all x

Cost of stage k : αk g
(
xk , µ(xk ),wk

)
Cost of a policy µ: The limit as N →∞ of the N-stage costs

Jµ(x0) = lim
N→∞

Ewk

{
N−1∑
k=0

αk g
(
xk , µ(xk ),wk

)}

Optimal cost function J∗(x0) = minµ Jµ(x0)

0 < α ≤ 1 is the discount factor. If α < 1 the problem is called Discounted

Problems with α = 1 typically include a special cost-free termination state t and
are called Stochastic Shortest Path (SSP) problems.
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Transition Probability Notation for Finite-State Problems

States: x = 1, . . . , n. Successor states: y . (For SSP there is also the extra
termination state t .)

Probability of x → y transition under control u: pxy (u)

Cost of x → y transition under control u: g(x , u, y)

Going from one notation system to the other (discounted case):

Replace xk+1 = f (xk , uk ,wk ) with xk+1 = wk (a simpler system)

Replace P(w | x , u) with pxy (u) (a 3-dimensional matrix)

Replace cost per stage E
{

g(x , u,w)
}

with
∑n

y=1 pxy (u)g(x , u, y)

Replace cost-to-go E
{

J
(
f (x , u,w)

)}
with

∑n
y=1 pxy (u)J(y)

Example: Bellman equation (translated to the new notation)

J∗(x) = min
u∈U(x)

n∑
y=1

pxy (u)
(
g(x , u, y) + αJ∗(y)

)
(for Discounted)

J∗(x) = min
u∈U(x)

pxt(u)g(x , u, t) +
n∑

y=1

pxy (u)
(
g(x , u, y) + J∗(y)

) (for SSP)

Bertsekas Reinforcement Learning 5 / 29



The Three Theorems for Discounted Problems: If g(x ,u, y) is Bounded
the Entire Exact Theory Goes Through with No Exceptions

1) VI convergence: Jk (x)→ J∗(x) for all J0, where:

Jk+1(x) = min
u∈U(x)

 n∑
y=1

pxy (u)
(
g(x , u, y) + αJk (y)

)

2) J∗ satisfies uniquely Bellman’s equation

J∗(x) = min
u∈U(x)

 n∑
y=1

pxy (u)
(
g(x , u, y) + αJ∗(y)

) , x = 1, . . . , n

3) Optimality condition
A stationary policy µ is optimal if and only if µ(x) attains the minimum for every state x .

Also Jµ is the unique solution of the Bellman equation (for policy µ)

Jµ(x) =
n∑

y=1

pxy
(
µ(x)

)(
g
(
x , µ(x), y

)
+ αJµ(y)

)
, x = 1, . . . , n
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Exact and Approximate Policy Iteration
Alphazero has discovered a new way to play! Base Policy Evaluation

One-Step Lookahead Policy Improvement

u = µ̃(x, r) Current State x µ µ̃
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Base Policy Rollout Policy Approximation in Value Space

One-Step or Multistep Lookahead

Approximation in Policy Space

Approximate Q-Factor Q̃(x, u) At x

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k
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Finite Spaces SSP Problems - Statement of Main Results

Most favorable Assumption (Termination Inevitable Under all Policies)
There exists m > 0 such that for every policy and initial state, there is positive
probability that t will be reached within m stages

Intuitively: This is really a finite horizon problem, but with random horizon. Easy analysis.

VI Convergence: Jk → J∗ for all initial conditions J0, where

Jk+1(x) = min
u∈U(x)

pxt(u)g(x , u, t) +
n∑

y=1

pxy (u)
(
g(x , u, y) + Jk (y)

) , x = 1, . . . , n

Bellman’s equation: J∗ satisfies

J∗(x) = min
u∈U(i)

pxt(u)g(x , u, t) +
n∑

y=1

pxy (u)
(
g(x , u, y) + J∗(y)

) , x = 1, . . . , n,

and is the unique solution of this equation.
Optimality condition: µ is optimal if and only if for every x , µ(x) attains the minimum in
the Bellman equation.
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Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

Discounted Problem SSP Equivalent

r: Vector of weights Original States Aggregate States Discounted
Problem

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)
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1

A discounted problem can be converted to an SSP problem (with termination
inevitable)

Reason: The stage k cost [αk E{g(x , u, y)}] is identical in both problems, under
the same policy.

Proofs for discounted case: Start with SSP analysis, get discounted analysis as
special case.

This line of proof applies to finite-state problems. For infinite-state discounted
problems a different line is needed (based on contraction mapping ideas).
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SSP Extensions

SSP problems often do not satisfy the “termination inevitable for all policies"
assumption (e.g., deterministic SP problems with cycles)

A more general assumption for SSP results: Nonterminating policies are “bad"
Every policy that does not terminate with > 0 probability, has∞ cost for some
initial states.

There exists at least one policy under which termination is inevitable.

Major results are salvaged under this assumption.

SSP further extensions can be very challenging
Bellman’s Eq. can have many solutions

Bellman’s Eq. may have a unique solution that is not equal to J∗ (even for
finite-state, but stochastic, problems)!!

VI and PI may fail (even for finite-state problems)

Infinite-state problems can exhibit “strange" behavior (even with bounded cost per
stage)

See the on-line Abstract DP book (DPB, 2018) for detailed discussion
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Working Break: Challenge Questions About a Tricky SSP Problem; see
the Abstract DP Book, Section 3.1.1, for More Analysis
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(ℓ − 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)
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This example violates the “nonterminating policies are bad" assumption for
a = 0. Then:

Bellman equation, J(1) = min
[
b, a + J(1)

]
, has multiple solutions

VI converges to J∗ from some initial conditions but not from others

Challenge questions: Consider the cases a > 0, a = 0, and a < 0
What is J∗(1)?

What is the solution set of Bellman’s equation?

What is the limit of the VI algorithm Jk+1(1) = min
[
b, a + Jk (1)

]
?
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pxy(u)
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Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

1

Bellman Eq: J(1) = min
[
b, a + J(1)

]
; VI: Jk+1(1) = min

[
b, a + Jk (1)

]

If a > 0 (positive cycle): J∗(1) = b is the unique solution, and VI converges to
J∗(1). Here the “nonterminating policies are bad" assumption is satisfied.
If a = 0 (zero cycle):

I J∗(1) = min[0, b].
I Bellman Eq. is J(1) = min

[
b, J(1)

]
; its solution set is = (−∞, b].

I The VI algorithm, Jk+1(1) = min
[
b, Jk (1)

]
, converges to b starting from J0(1) ≥ b,

and does not move from a starting value J0(1) ≤ b.

If a < 0 (negative cycle): The Bellman Eq. has no solution, and VI diverges to
J∗(1) = −∞.
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Approximations to the VI algorithm: Fitted VI

Consider (discounted problem) VI with sequential approximation

Jk+1(x) = min
u∈U(x)

n∑
y=1

pxy (u)
(
g(x , u, y) + αJk (y)

)
(VI algorithm)

Approximate version: Assume that for some δ > 0

max
x=1,...,n

∣∣∣∣∣∣J̃k+1(x)− min
u∈U(x)

n∑
y=1

pxy (u)
(
g(x , u, y) + αJ̃k (y)

)∣∣∣∣∣∣ ≤ δ (1)

Under condition (1), the cost function error maxx=1,...,n
∣∣J̃k (x)− J∗(x)

∣∣ can be
shown to be ≤ δ/(1− α) (asymptotically, as k →∞).

... but this result may not be meaningful for some natural methods: It may be
difficult to maintain Eq. (1) over an infinite horizon, because {J̃k} may become
unbounded.
Illustration: Start with J̃0, and let J̃k be obtained using a parametric architecture:

I Given parametric approximation J̃k , obtain a parametric approximation J̃k+1 using a
least squares fit.

I We will give an example where the cost function error accumulates to∞.
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Instability of Fitted VI (Tsitsiklis and VanRoy, 1996)
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T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

1

Approximate Minimization Computation of J̃ Approximation of E{·} Multiagent policy im-

provement Fitted

Simplified Minimization Approximation of Jµ Approximation of E{·} Multiagent policy im-

provement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic PI) Parallel rollout (multiple

policies)

Problem approximation (aggregation) Certainty equivalence b J a + J min[b, a + J ]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk) Terminal State 2 0

Termination State Infinite Horizon Bellman Eq: J(1) = ↵J(2), J(2) = ↵J(2)

J⇤(1) = J⇤(2) = 0 Exact VI: Jk+1(1) = ↵Jk(2), Jk+1(2) = ↵Jk(2)

J̃k = (rk, 2rk) Exact VI iterate J̃k+1 =
�
↵J̃k(2),↵J̃k(2)

�
= (2↵rk, 2↵rk).

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk) Terminal State 2 0

Termination State Infinite Horizon Bellman Eq: J(1) = ↵J(2), J(2) = ↵J(2)

J⇤(1) = J⇤(2) = 0 Exact VI: Jk+1(1) = ↵Jk(2), Jk+1(2) = ↵Jk(2)

J̃k = (rk, 2rk) Exact VI iterate J̃k+1 =
�
↵J̃k(2),↵J̃k(2)

�
= (2↵rk, 2↵rk).

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk) Terminal State 2 0

Termination State Infinite Horizon Bellman Eq: J(1) = ↵J(2), J(2) = ↵J(2)

J⇤(1) = J⇤(2) = 0 Exact VI: Jk+1(1) = ↵Jk(2), Jk+1(2) = ↵Jk(2)

J̃k = (rk, 2rk) Exact VI iterate J̃k+1 =
�
↵J̃k(2),↵J̃k(2)

�
= (2↵rk, 2↵rk).

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk) Terminal State 2 0

Termination State Infinite Horizon Bellman Eq: J(1) = ↵J(2), J(2) = ↵J(2)

J⇤(1) = J⇤(2) = 0 Exact VI: Jk+1(1) = ↵Jk(2), Jk+1(2) = ↵Jk(2)

J̃k = (rk, 2rk) Exact VI iterate Approximate J̃k+1 =
�
↵J̃k(2),↵J̃k(2)

�
= (2↵rk, 2↵rk).

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk) Terminal State 2 0

Termination State Infinite Horizon Bellman Eq: J(1) = ↵J(2), J(2) = ↵J(2)

J⇤(1) = J⇤(2) = 0 Exact VI: Jk+1(1) = ↵Jk(2), Jk+1(2) = ↵Jk(2) (2↵rk, 2↵rk)

J̃k = (rk, 2rk) Exact VI iterate Approximate J̃k+1 =
�
↵J̃k(2),↵J̃k(2)

�
= (2↵rk, 2↵rk).

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

1

xk+1 = f(xk, uk, wk) αkg(xk, uk, wk) Terminal State 2 0

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) = αJk(2) (2αrk, 2αrk)

J̃k = (rk, 2rk) Exact VI iterate Approximate J̃k+1 =
(
αJ̃k(2), αJ̃k(2)

)
= (2αrk, 2αrk).

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

1

xk+1 = f(xk, uk, wk) αkg(xk, uk, wk) Terminal State 2 0 J∗ = (0, 0)

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) = αJk(2) (2αrk, 2αrk)

J̃k = (rk, 2rk) Exact VI iterate Approximate J̃k+1 =
(
αJ̃k(2), αJ̃k(2)

)
= (2αrk, 2αrk).

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

1

xk+1 = f(xk, uk, wk) αkg(xk, uk, wk) Terminal State 2 0 J∗ = (0, 0)

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) = αJk(2) (2αrk, 2αrk)

J̃k = (rk, 2rk) Exact VI iterate Approximate J̃k+1 =
(
αJ̃k(2), αJ̃k(2)

)
= (2αrk, 2αrk).

Orthogonal Projection

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

1

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Sample Q-Factor �s
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Range of Weighted Projections

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

1

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Range of Weighted Projections

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

1

Approximate Minimization Computation of J̃ Approximation of E{·} Multiagent policy im-

provement Fitted

Simplified Minimization Approximation of Jµ Approximation of E{·} Multiagent policy im-

provement

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic PI) Parallel rollout (multiple

policies)

Problem approximation (aggregation) Certainty equivalence b J a + J min[b, a + J ]

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

1

By using a weighted projection we may correct the problem. What is the right projection?
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Policy Iteration (PI) Algorithm: Generates a Sequence of Policies {µk}

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate cost

J̃µ(r) = �r Using Simulation

Generate “Improved” Policy µ

µ(i) = arg min
u⇧U(i)

n↵

j=1

pij(u)
�
g(i, u, j) + �J̃(j, r)

⇥

x = T (x) = Ax + b

pij = 0 ⇥ aij = 0

x̃i1 , . . . , x̃iM

M↵

m=1

⇤im

�
x̃im � ⌅(im)⇤r

⇥2

⌅(i)⇤

x = T (x) = g + �Px

x =
⌅↵

t=0

�tP tg

⇧
n↵

i=1

⇤i ⌅(i)⌅(i)⇤

⌃
r⇥ =

n↵

i=1

⇤i ⌅(i)

⌥
 bi +

n↵

j=1

aij⌅(j)⇤r⇥

�
⌦

⇧
t↵

k=0

⌅(ik)⌅(ik)⇤

⌃
r̂t =

t↵

k=0

⌅(ik)

⇤
bik +

aikjk

pikjk

⌅(jk)⇤r̂t

⌅

rt+1 =

⇧
n↵

i=1

⇤i ⌅(i)⌅(i)⇤

⌃�1 n↵

i=1

⇤i ⌅(i)

⌥
 bi +

n↵

j=1

aij⌅(j)⇤rt

�
⌦

rt+1 =

⇧
t↵

k=0

⌅(ik)⌅(ik)⇤

⌃�1 t↵

k=0

⌅(ik)

⇤
bik +

aikjk

pikjk

⌅(jk)⇤rt

⌅

1

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = �r Using Simulation

Generate “Improved” Policy µ

µ(i) = arg min
u⇧U(i)

n↵

j=1

pij(u)
�
g(i, u, j) + �J̃(j, r)

⇥

x = T (x) = Ax + b

pij = 0 ⇥ aij = 0

x̃i1 , . . . , x̃iM

M↵

m=1

⇤im

�
x̃im � ⌅(im)⇤r

⇥2

⌅(i)⇤

x = T (x) = g + �Px

x =
⌅↵

t=0

�tP tg

⇧
n↵

i=1

⇤i ⌅(i)⌅(i)⇤

⌃
r⇥ =

n↵

i=1

⇤i ⌅(i)

⌥
 bi +

n↵

j=1

aij⌅(j)⇤r⇥

�
⌦

⇧
t↵

k=0

⌅(ik)⌅(ik)⇤

⌃
r̂t =

t↵

k=0

⌅(ik)

⇤
bik +

aikjk

pikjk

⌅(jk)⇤r̂t

⌅

rt+1 =

⇧
n↵

i=1

⇤i ⌅(i)⌅(i)⇤

⌃�1 n↵

i=1

⇤i ⌅(i)

⌥
 bi +

n↵

j=1

aij⌅(j)⇤rt

�
⌦

rt+1 =

⇧
t↵

k=0

⌅(ik)⌅(ik)⇤

⌃�1 t↵

k=0

⌅(ik)

⇤
bik +

aikjk

pikjk

⌅(jk)⇤rt

⌅

1

y1 y2 y3 System Space State i µ(i, r) µ(·, r) Policy

Initial Policy Controlled System Cost per Stage Vector G(r) Transi-
tion Matrix P (r)

Steady-State Distribution ⇧(r) Average Cost ⇤(r)

⌃j1y1 ⌃j1y2 ⌃j1y3 j1 j2 j3 y1 y2 y3 Original State Space

⇥ =

�
⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⇥
⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

1 2 3 4 5 6 7 8 9 x1 x2 x3 x4

⌅ |⇥| (1 � ⌅)|⇥| l(1 � ⌅)⇥| ⌅⇥ O A B C |1 � ⌅⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⌅ = 0 ⌅ = 1 0 < ⌅ < 1

Route to Queue 2

1

Policy Evaluation Evaluate Cost Function Jµ of Current policy µ

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Policy Evaluation Evaluate Cost Function Jµ of Current policy µ

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ

Policy Cost Evaluation Evaluate Cost Function Jµ of Current policy µ

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ

Policy Cost Evaluation Evaluate Cost Function Jµ of Current policy µ

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Given the current policy µk , a PI consists of two phases:
Policy evaluation computes Jµk (x), x = 1, . . . , n, as the solution of the (linear)
Bellman equation system

Jµk (x) =
n∑

y=1

pxy
(
µk (x)

)(
g
(
x , µk (x), y

)
+ αJµk (y)

)
, x = 1, . . . , n

Policy improvement then computes a new policy µk+1 as

µk+1(x) ∈ arg min
u∈U(x)

n∑
y=1

pxy (u)
(
g(x , u, y) + αJµk (y)

)
, x = 1, . . . , n
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Proof of Policy Improvement (Standard Rollout/PI Proof Line)

PI finite convergence: PI generates an improving sequence of policies, i.e.,
Jµk+1(x) ≤ Jµk (x) for all x and k , and terminates with an optimal policy.

Let µ̃ be the rollout policy obtained from base policy µ: Will show that Jµ̃ ≤ Jµ
Denote by JN the cost function of a policy that applies µ̃ for the first N stages and
applies µ thereafter.

We have the Bellman equation Jµ(x) =
∑n

y=1 pxy
(
µ(x)

)(
g
(
x , µ(x), y

)
+ αJµ(y)

)
,

so

J1(x) =
n∑

y=1

pxy
(
µ̃(x)

)(
g
(
x , µ̃(x), y

)
+αJµ(y)

)
≤ Jµ(x) (by policy improvement eq.)

From the definition of J2 and J1, and the preceding relation, we have

J2(x) =
n∑

y=1

pxy
(
µ̃(x)

)(
g
(
x , µ̃(x), y

)
+αJ1(y)

)
≤

n∑
y=1

pxy
(
µ̃(x)

)(
g
(
x , µ̃(x), y

)
+αJµ(y)

)
= J1(x)

so J2(x) ≤ J1(x) ≤ Jµ(x) for all x .

Continuing similarly, we obtain JN+1(x) ≤ JN(x) ≤ Jµ(x) for all x and N. Since
JN → Jµ̃ (VI for µ̃ converges to Jµ̃), it follows that Jµ̃ ≤ Jµ.
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Optimistic PI - This is Just Repeated Truncated Rollout

Generates sequence of policy-cost function approximation pairs
{
(µk , Jk )

}

Given the typical pair (µk , Jk ), do truncated rollout with base policy µk and cost
approximation Jk :

Policy evaluation (mk steps of rollout using µk ): Starting with Ĵk,0 = Jk , compute
Ĵk,1, . . . , Ĵk,mk according to

Ĵk,m+1(x) =
n∑

y=1

pxy (µ
k (x))

(
g
(
x , µk (x), y

)
+ αĴk,m(y)

)
, x = 1, . . . , n

Policy improvement (standard): Set

µk+1(x) ∈ arg min
u∈U(x)

n∑
y=1

pxy (u)
(
g(x , u, y) + αĴk,mk (y)

)
, x = 1, . . . , n,

Jk+1(x) = min
u∈U(x)

n∑
y=1

pxy (u)
(
g(x , u, y) + αĴk,mk (y)

)
, x = 1, . . . , n.

Convergence (using similar argument to standard PI)
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Multistep PI: Uses Multistep Lookahead

Given the typical policy µk :

Policy evaluation (standard): Computes Jµk (x), x = 1, . . . , n, as the solution of the
(linear) Bellman equation

Jµk (x) =
n∑

y=1

pxy
(
µk (x)

)(
g
(
x , µk (x), y

)
+ αJµk (y)

)
, x = 1, . . . , n

Policy improvement with `-step lookahead: Solves the `-stage problem with
terminal cost function Jµk . If {µ̂0, . . . , µ̂`−1} is the optimal policy of this problem,
then the new policy µk+1 is µ̂0.

Motivation: It may yield a better policy µk+1 than with one-step lookahead, at the
expense of a more complex policy improvement operation.

Convergence (using similar argument to standard PI)
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Approximate Rollout and PI Variants

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

dℓi = 0 if i /∈ Iℓ

φjℓ̄ = 1 if j ∈ Iℓ̄

p̂ff̄(u) =

n∑

i=1

dfi

n∑

j=1

pij(u)φjf̄

1

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

dℓi = 0 if i /∈ Iℓ

φjℓ̄ = 1 if j ∈ Iℓ̄

p̂ff̄(u) =

n∑

i=1

dfi

n∑

j=1

pij(u)φjf̄

1

Simplified Minimization Multiagent policy improvement

min
u2U(x)

nX

y=1

pxy(u)
�
g(x, u, y) + ↵J̃µ(y)

�

xk+2 x0
k+2 uk+1 u0

k+1 x00
k+2 x000

k+2 u00
k+1 u000

k+1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) � 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk 2 Uk(0)

(`� 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk�1, uk, uk�1, wk)

u3 um�1 (x, u1, . . . , um�1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J⇤ = TJ⇤ xk+1 = max(0, xk + uk � wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

1

s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Aggregation Adaptive simulation Monte-Carlo Tree Search

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Monte Carlo tree search

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N �1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)
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f(0, uk) = 0, g(0, uk) = 0 for some control uk 2 Uk(0)
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States at the End of the Lookahead Final States
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xk+1 = fk(xk, xk�1, uk, uk�1, wk)

u3 um�1 (x, u1, . . . , um�1) Control um Stage m-Component Control u = (u1, . . . , um)
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Simplified Minimization Approximation of Jµ Approximation of E{·} Multiagent policy im-

provement

min
u2U(x)
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y=1

pxy(u)
�
g(x, u, y) + ↵J̃µ(y)

�

Rollout by (possibly inexact) simulation Truncated rollout Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence
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Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) � 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk 2 Uk(0)

(`� 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk�1, uk, uk�1, wk)

u3 um�1 (x, u1, . . . , um�1) Control um Stage m-Component Control u = (u1, . . . , um)

1

Approximate Minimization Computation of J̃ Approximation of E{·} Multiagent policy im-

provement

Simplified Minimization Approximation of Jµ Approximation of E{·} Multiagent policy im-

provement

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic PI) Parallel rollout (multiple

policies)

Problem approximation (aggregation) Certainty equivalence b J a + J min[b, a + J ]

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

1

Multistep lookahead may be used

Multiple policies variant uses J̃(y) = min
{

Jµ1(x), . . . , Jµm (x)
}

Corresponding PI variants

Approximate PI: Repeated approximate rollout; generates a sequence of policies
{µk}
Approximate PI needs off-line training of policies and/or terminal cost function
approximations
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Approximate (Nonoptimistic) Policy Iteration - Error Bound (NDP, 1996)
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x0 xk x1
k+1 x2
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k+1 x4
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k xk+1 x0
k+1 x00

k+1
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u
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J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0
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(x) Fµk+1

(x)
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x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . .

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ

Policy Cost Evaluation Evaluate Cost Function Jµ of Current policy µ

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)
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Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)
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Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)
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�
F (i)

�
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�
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�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�
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...
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Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

�jf̄ =

⇢
1 if j 2 If̄

0 if j /2 If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

d`i = 0 if i /2 I`

1

Assuming an approximate policy evaluation error satisfying

max
x=1,...,n

∣∣J̃µk (x)− Jµk (x)
∣∣ ≤ δ

and an approximate policy improvement error satisfying

max
x=1,...,n

∣∣∣∣ n∑
y=1

pxy
(
µk+1(x)

)(
g(x , µk+1(x), y) + αJ̃µk (y)

)
− min

u∈U(x)

n∑
y=1

pxy (u)
(
g(x , u, y) + αJ̃µk (y)

)∣∣∣∣ ≤ ε
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Error Bound for the Case Where Policies Converge (NDP, 1996)
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Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN�1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

�jf̄ =

⇢
1 if j 2 If̄

0 if j /2 If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

d`i = 0 if i /2 I`

1

A better error bound (by a factor 1− α) holds if the generated policy sequence
{µk} converges to some policy.

Convergence of policies is guaranteed in some cases; approximate PI using
aggregation is one of them.
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Truncated Rollout with Multistep Lookahead - Error Bound

Consider truncated rollout with
`-step lookahead

Followed by rollout with a policy µ for m steps

Followed by terminal cost function approximation J̃

For the rollout policy µ̃, we have:
The error bound

‖Jµ̃ − J∗‖ ≤ 2α`

1− α
(
αm‖J̃ − Jµ‖+ ‖Jµ − J∗‖

)
,

where ‖J‖ = maxx=1,...,n
∣∣J(x)∣∣ is the max-norm.

The cost improvement bound

Jµ̃(x) ≤ Jµ(x) +
2αm−1

1− α ‖J̃ − Jµ‖, x = 1, . . . , n

Note that it helps to have:

` and m: large, ‖J̃ − Jµ‖ and ‖Jµ − J∗‖: small
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About the Next Lecture

We will cover distributed and multiagent RL:
Multiagent rollout and policy iteration

State space partitioning and use of parallel computation

Case studies
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