Online Learning

Lorenzo Rosasco

MIT, 9.520 Class 18
April 182012

About this class

Goal To introduce theory and algorithms for online learning.

- Different views on online learning
- From batch to online least squares
- Other loss functions
- Theory

(Batch) Learning Algorithms

A learning algorithm \mathcal{A} is a map from the data space into the hypothesis space and

$$
f_{S}=\mathcal{A}(S)
$$

where $S=S_{n}=\left(x_{0}, y_{0}\right) \ldots\left(x_{n-1}, y_{n-1}\right)$.
We typically assume that:

- \mathcal{A} is deterministic,
- \mathcal{A} does not depend on the ordering of the points in the training set.
notation: note the weird numbering of the training set!

Online Learning Algorithms

The pure online learning approach is:
let $f_{1}=$ init
for $n=1, \ldots$
$f_{n+1}=\mathcal{A}\left(f_{n},\left(x_{n}, y_{n}\right)\right)$

- The algorithm works sequentially and has a recursive definition.

Online Learning Algorithms (cont.)

A related approach (similar to transductive learning) is:
let $f_{1}=$ init
for $n=1, \ldots$.
$f_{n+1}=\mathcal{A}\left(f_{n}, S_{n},\left(x_{n}, y_{n}\right)\right)$

- Also in this case the algorithm works sequentially and has a recursive definition, but it requires storing the past data S_{n}.

Why Online Learning?

Different motivations/perspectives that often corresponds to different theoretical framework.

- Biologically plausibility.
- Stochastic approximation.
- Incremental Optimization.
- Non iid data, game theoretic view.

Online Learning and Stochastic Approximation

Our goal is to minimize the expected risk

$$
I[f]=\mathbb{E}_{(x, y)}[V(f(x), y)]=\int V(f(x), y) d \mu(x, y)
$$

over the hypothesis space \mathcal{H}, but the data distribution is not known.

The idea is to use the samples to build an approximate solution and to update such a solution as we get more data.

Online Learning and Stochastic Approximation

Our goal is to minimize the expected risk

$$
I[f]=\mathbb{E}_{(x, y)}[V(f(x), y)]=\int V(f(x), y) d \mu(x, y)
$$

over the hypothesis space \mathcal{H}, but the data distribution is not known.

The idea is to use the samples to build an approximate solution and to update such a solution as we get more data.

Online Learning and Stochastic Approximation (cont.)

More precisely if

- we are given samples $\left(x_{i}, y_{i}\right)_{i}$ in a sequential fashion
- at the n - th step we have an approximation $G\left(f,\left(x_{n}, y_{n}\right)\right)$ of the gradient of $I[f]$
then we can define a recursion by

Online Learning and Stochastic Approximation (cont.)

More precisely if

- we are given samples $\left(x_{i}, y_{i}\right)$ in a sequential fashion
- at the n - th step we have an approximation $G\left(f,\left(x_{n}, y_{n}\right)\right)$ of the gradient of $I f]$
then we can define a recursion by
let $f_{0}=$ init
for $n=0, \ldots$
$f_{n+1}=f_{n}+\gamma_{n}\left(G\left(f_{n},\left(x_{n}, y_{n}\right)\right)\right.$

Incremental Optimization

Here our goal is to solve empirical risk minimization

$$
I_{S}[f]
$$

or regularized empirical risk minimization

$$
I_{S}^{\lambda}[f]=I_{S}[f]+\lambda\|f\|^{2}
$$

over the hypothesis space \mathcal{H}, when the number of points is so big (say $n=10^{8}-10^{9}$) that standard solvers would not be feasible.

Memory is the main constraint here.

Incremental Optimization (cont.)

In this case we can consider
let $f_{0}=$ init
for $t=0, \ldots$
$\boldsymbol{f}_{t+1}=\boldsymbol{f}_{t}+\gamma_{t}\left(G\left(f_{t},\left(x_{n_{t}}, y_{n_{t}}\right)\right)\right.$
where here $G\left(f_{t},\left(x_{n_{t}}, y_{n_{t}}\right)\right)$ is a pointwise estimate of the gradient of I_{S} or λ_{s}.

Epochs

Note that in this case the number of iteration is decoupled to the index of training set points and we can look at the data more than once, that is consider different epochs.

Non i.i.d. data, game theoretic view

If the data are not i.i.d. we can consider a setting when the data is a finite sequence that we will be disclosed to us in a sequential (possibly adversarial) fashion.

> Then we can see learning as a two players game where
> - at each step nature chooses a samples $\left(x_{i}, y_{i}\right)$
> - at each sten a learner chooses an estimator f_{i+1}.

> The goal of the learner is to perform as well as if he could view the whole sequence.

Non i.i.d. data, game theoretic view

If the data are not i.i.d. we can consider a setting when the data is a finite sequence that we will be disclosed to us in a sequential (possibly adversarial) fashion.
Then we can see learning as a two players game where

- at each step nature chooses a samples $\left(x_{i}, y_{i}\right)$
- at each step a learner chooses an estimator f_{i+1}.

The goal of the learner is to perform as well as if he could view the whole sequence.

- Different views on online learning
- From batch to online least squares
- Other loss functions
- Theory

We start considering a linear kernel so that

$$
I_{S}[f]=\frac{1}{n} \sum_{i=0}^{n-1}\left(y_{i}-x_{i}^{\top} w\right)=\|Y-X w\|^{2}
$$

Remember that in this case

(Note that if we regularize we have $\left(C_{n}+\lambda I\right)^{-1}$ in place of C_{n}^{-1}
notation: note the weird numbering of the training set!

We start considering a linear kernel so that

$$
I_{S}[f]=\frac{1}{n} \sum_{i=0}^{n-1}\left(y_{i}-x_{i}^{\top} w\right)=\|Y-X w\|^{2}
$$

Remember that in this case

$$
w_{n}=\left(X^{\top} X\right)^{-1} X^{\top} Y=C_{n}^{-1} \sum_{i=0}^{n-1} x_{i} y_{i} .
$$

(Note that if we regularize we have $\left(C_{n}+\lambda /\right)^{-1}$ in place of C_{n}^{-1}. notation: note the weird numbering of the training set!

A Recursive Least Squares Algorithm

Then we can consider

$$
w_{n+1}=w_{n}+C_{n+1}^{-1} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right]
$$

Proof

- $w_{n}=C_{n}^{-1}\left(\sum_{i=0}^{n-1} x_{i} y_{i}\right)$

A Recursive Least Squares Algorithm

Then we can consider

$$
w_{n+1}=w_{n}+C_{n+1}^{-1} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right]
$$

Proof

- $w_{n}=C_{n}^{-1}\left(\sum_{i=0}^{n-1} x_{i} y_{i}\right)$
- $w_{n+1}=C_{n+1}^{-1}\left(\sum_{i=0}^{n-1} x_{i} y_{i}+x_{n} y_{n}\right)$

A Recursive Least Squares Algorithm

Then we can consider

$$
w_{n+1}=w_{n}+C_{n+1}^{-1} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right]
$$

Proof

- $w_{n}=C_{n}^{-1}\left(\sum_{i=0}^{n-1} x_{i} y_{i}\right)$
- $w_{n+1}=C_{n+1}^{-1}\left(\sum_{i=0}^{n-1} x_{i} y_{i}+x_{n} y_{n}\right)$
- $w_{n+1}-w_{n}=C_{n+1}^{-1}\left(x_{n} y_{n}\right)+C_{n+1}^{-1}\left(C_{n}-C_{n+1}\right) C_{n}^{-1} \sum_{i=0}^{n-1} x_{i} y_{i}$

A Recursive Least Squares Algorithm

Then we can consider

$$
w_{n+1}=w_{n}+C_{n+1}^{-1} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right]
$$

Proof

- $w_{n}=C_{n}^{-1}\left(\sum_{i=0}^{n-1} x_{i} y_{i}\right)$
- $w_{n+1}=C_{n+1}^{-1}\left(\sum_{i=0}^{n-1} x_{i} y_{i}+x_{n} y_{n}\right)$
- $w_{n+1}-w_{n}=C_{n+1}^{-1}\left(x_{n} y_{n}\right)+C_{n+1}^{-1}\left(C_{n}-C_{n+1}\right) C_{n}^{-1} \sum_{i=0}^{n-1} x_{i} y_{i}$
- $C_{n+1}-C_{n}=x_{n} x_{n}^{T}$.

A Recursive Least Squares Algorithm (cont.)

We derived the algorithm

$$
w_{n+1}=w_{n}+C_{n+1}^{-1} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right] .
$$

The above approach

- is recursive;
- requires storing all the data;
- requires inverting a matrix $\left(C_{i}\right)_{i}$ at each step.

A Recursive Least Squares Algorithm (cont.)

The following matrix equality allows to alleviate the computational burden.

Matrix Inversion Lemma

$$
[A+B C D]^{-1}=A^{-1}-A^{-1} B\left[D A^{-1} B+C^{-1}\right]^{-1} D A^{-1}
$$

A Recursive Least Squares Algorithm (cont.)

The following matrix equality allows to alleviate the computational burden.

Matrix Inversion Lemma

$$
[A+B C D]^{-1}=A^{-1}-A^{-1} B\left[D A^{-1} B+C^{-1}\right]^{-1} D A^{-1}
$$

Then

$$
C_{n+1}^{-1}=C_{n}^{-1}-\frac{C_{n}^{-1} x_{n} x_{n}^{T} C_{n}^{-1}}{1+x_{n}^{T} C_{n}^{-1} x_{n}}
$$

A Recursive Least Squares Algorithm (cont.)

Moreover

$$
C_{n+1}^{-1} x_{n}=C_{n}^{-1} x_{n}-\frac{C_{n}^{-1} x_{n} x_{n}^{T} C_{n}^{-1}}{1+x_{n}^{T} C_{n}^{-1} x_{n}} x_{n}=\frac{C_{n}^{-1}}{1+x_{n}^{T} C_{n}^{-1} x_{n}} x_{n},
$$

we can derive the algorithm

Since the above iteration is equivalent to empirical risk minimization (ERM) the conditions ensuring its convergence as $n \rightarrow \infty$ - are the same as those for ERM.

A Recursive Least Squares Algorithm (cont.)

Moreover

$$
C_{n+1}^{-1} x_{n}=C_{n}^{-1} x_{n}-\frac{C_{n}^{-1} x_{n} x_{n}^{T} C_{n}^{-1}}{1+x_{n}^{T} C_{n}^{-1} x_{n}} x_{n}=\frac{C_{n}^{-1}}{1+x_{n}^{T} C_{n}^{-1} x_{n}} x_{n},
$$

we can derive the algorithm

$$
w_{n+1}=w_{n}+\frac{C_{n}^{-1}}{1+x_{n}^{T} C_{n}^{-1} x_{n}} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right] .
$$

Since the above iteration is equivalent to empirical risk
minimization (ERM) the conditions ensuring its convergence as $n \rightarrow \infty$ - are the same as those for ERM.

A Recursive Least Squares Algorithm (cont.)

Moreover

$$
C_{n+1}^{-1} x_{n}=C_{n}^{-1} x_{n}-\frac{C_{n}^{-1} x_{n} x_{n}^{T} C_{n}^{-1}}{1+x_{n}^{T} C_{n}^{-1} x_{n}} x_{n}=\frac{C_{n}^{-1}}{1+x_{n}^{T} C_{n}^{-1} x_{n}} x_{n},
$$

we can derive the algorithm

$$
w_{n+1}=w_{n}+\frac{C_{n}^{-1}}{1+x_{n}^{T} C_{n}^{-1} x_{n}} x_{n}\left[y_{n}-x_{n}^{\top} w_{n}\right] .
$$

Since the above iteration is equivalent to empirical risk minimization (ERM) the conditions ensuring its convergence as $n \rightarrow \infty-$ are the same as those for ERM.

A Recursive Least Squares Algorithm (cont.)

The algorithm

$$
w_{n+1}=w_{n-1}+\frac{C_{n}^{-1}}{1+x_{n}^{T} C_{n}^{-1} x_{n}} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right]
$$

is of the form
let $f_{0}=$ init
for $n=1, \ldots$.
$f_{n+1}=\mathcal{A}\left(f_{n}, S_{n},\left(x_{n}, y_{n}\right)\right)$.
The above approach

- is recursive;
- requires storinc all the data;
- updates the inverse just via matrix/vector multiplication.

A Recursive Least Squares Algorithm (cont.)

The algorithm

$$
w_{n+1}=w_{n-1}+\frac{C_{n}^{-1}}{1+x_{n}^{T} C_{n}^{-1} x_{n}} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right]
$$

is of the form
let $f_{0}=$ init
for $n=1, \ldots$
$f_{n+1}=\mathcal{A}\left(f_{n}, S_{n},\left(x_{n}, y_{n}\right)\right)$.
The above approach

- is recursive;
- requires storing all the data;
- updates the inverse just via matrix/vector multiplication.

Recursive Least Squares (cont.)

How about the memory requirement?
The main constraint comes from the matrix storing/inversion

We can consider

$w_{n+1}=w_{n}+\gamma_{n} x_{n}\left[y_{n}-x_{n}^{\top} w_{n}\right]$
where γ_{t} is a decreasing sequence.

How about the memory requirement?
The main constraint comes from the matrix storing/inversion

$$
w_{n+1}=w_{n}+\frac{C_{n}^{-1}}{1+x_{n}^{T} C_{n}^{-1} x_{n}} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right] .
$$

We can consider
$w_{n+1}=w_{n}+\gamma_{n} x_{n}\left[y_{n}-x_{n}^{\top} w_{n}\right]$
where γ_{t} is a decreasing sequence.

Recursive Least Squares (cont.)

How about the memory requirement?
The main constraint comes from the matrix storing/inversion

$$
w_{n+1}=w_{n}+\frac{C_{n}^{-1}}{1+x_{n}^{T} C_{n}^{-1} x_{n}} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right] .
$$

We can consider

$$
w_{n+1}=w_{n}+\gamma_{n} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right]
$$

where γ_{t} is a decreasing sequence.

Online Least Squares

The algorithm

$$
w_{n+1}=w_{n}+\gamma_{n} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right] .
$$

- is recursive;
- does not requires storing the data;
- does not require updating the inverse, but only vector/vector multiplication $-O(1)$.

Convergence of Online Least Squares (cont.)

When we consider

$$
w_{n+1}=w_{n}+\gamma_{n} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right]
$$

we are no longer guaranteed convergence.
In other words:
how shall we choose γ_{n} ?

Batch vs Online Gradient Descent

Some ideas from the comparison with batch least squares.

$$
w_{n+1}=w_{n}+\gamma_{n} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right] .
$$

Note that

$$
\nabla\left(y_{n}-x_{n}^{T} w\right)^{2}=x_{n}\left[y_{n}-x_{n}^{T} w\right] .
$$

The batch gradient algorithm would be

since

Batch vs Online Gradient Descent

Some ideas from the comparison with batch least squares.

$$
w_{n+1}=w_{n}+\gamma_{n} x_{n}\left[y_{n}-x_{n}^{T} w_{n}\right] .
$$

Note that

$$
\nabla\left(y_{n}-x_{n}^{T} w\right)^{2}=x_{n}\left[y_{n}-x_{n}^{T} w\right] .
$$

The batch gradient algorithm would be

$$
w_{n+1}=w_{n}+\gamma_{n} \frac{1}{t} \sum_{t=0}^{t-1} x_{t}\left[y_{t}-x_{t}^{T} w_{n}\right]
$$

since

$$
\nabla I(w)=\nabla \frac{1}{t} \sum^{t-1}\left(y_{t}-x_{t}^{T} w\right)^{2}=\frac{1}{t} \sum^{t-1} x_{t}\left(y_{t}-x_{t}^{T} w\right)
$$

Convergence of Recursive Least Squares (cont.)

- If γ_{n} decreases too fast the iterate will get stuck away from the real solution.
- In general the convergence of the online iteratatoin is slower than the recursive least squares since we use a simpler step-size.

Polyak Averging

If we choose $\gamma_{n}=n^{-\alpha}$, with $\alpha \in(1 / 2,1)$ and use, at each step, the solution obtained averaging all previous solutions (namely Polyak averaging), then convergence is ensured and is almost the same as recursive least squares.

Extensions

- Other Loss functions
- Other Kernels.

Other Loss functions

The same ideas can be extended to other convex differentiable loss functions, considering

$$
w_{n+1}=w_{n}+\gamma_{n} \nabla V\left(y_{n}, x_{n}^{\top} w_{n}\right) .
$$

If the loss is convex but not differentiable then more sophisticated methods must be used, e.g. proximal methods, subgradient methods.

Non linear Kernels

If we use different kernels $f(x)=\Phi(x)^{\top} w=\sum_{i=0}^{n-1} c^{i} K\left(x, x_{i}\right)$ then we can consider the iteration

$$
\begin{aligned}
& c_{n+1}^{i}=c_{n}^{i}, \quad i=1, \ldots, n \\
& \left.c_{n+1}^{n+1}=\gamma_{n}\left[y_{n}-c_{n}^{T} K_{n}\left(x_{n}\right)\right]\right),
\end{aligned}
$$

where $K_{n}(x)=K\left(x, x_{0}\right), \ldots, K\left(x, x_{n-1}\right)$ and $c_{n}=\left(c_{n}^{1}, \ldots, c_{n}^{n}\right)$.

Proof

- $f_{n}(x)=w_{n}^{T} \Phi(x)=K_{n}(x)^{T} c_{n}$.
- Then

$$
w_{n+1}=w_{n}+\gamma_{n} \Phi\left(x_{n}\right)\left[y_{n}-\Phi\left(x_{n}\right)^{T} w_{n}\right]
$$

gives

$$
f_{n+1}(x)=f_{n}(x)+\gamma_{n}\left[y_{n}-K_{n}\left(x_{n}\right)^{T} c_{n}\right] K\left(x, x_{n}\right)
$$

that can be written as

$$
K_{n+1}(x)^{T} c_{n+1}=K_{n}(x)^{T} c_{n}+\gamma_{n}\left[y_{n}-K_{n}\left(x_{n}\right)^{T} c_{n}\right] K\left(x, x_{n}\right)
$$

QED

$$
\begin{aligned}
& c_{n+1}^{i}=c_{n}^{i}, \quad i=1, \ldots, n \\
& \left.c_{n+1}^{n+1}=\gamma_{n}\left[y_{n}-c_{n}^{T} K_{n}\left(x_{n}\right)\right]\right) .
\end{aligned}
$$

The above approach

- is recursive;
- requires storing all the data;
- does not require updating the inverse, but only vector/vector multiplication - $O(n)$.

