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About this class

Goal To discuss how a class of regularization methods
originally designed for solving ill-posed inverse
problems, give rise to regularized learning
algorithms. These algorithms are kernel methods
that can be easily implemented and have a
common derivation, but different computational
and theoretical properties.
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Plan

From ERM to Tikhonov regularization.
Linear ill-posed problems and stability.
Spectral Regularization and Filtering.
Example of Algorithms.
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Basic Notation

training set S = {(x1, y1), ..., (xn, yn)}.
X is the n by d input matrix.
Y = (y1, . . . , yn) is the output vector.
k denotes the kernel function , K the n by n kernel matrix
with entries Kij = k(xi , xj) and H the RKHS with kernel k .
RLS estimator solves

min
f∈H

1
n

n∑
i=1

(yi − f (xi))2 + λ ‖f‖2H .
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Representer Theorem

We have seen that RKHS allow us to write the RLS estimator in
the form

f λS (x) =
n∑

i=1

cik(x , xi)

with

(K + nλI)c = Y

where c = (c1, . . . , cn).
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The Role of Regularization

We observed that adding a penalization term can be interpreted
as way to to control smoothness and avoid overfitting

min
f∈H

1
n

n∑
i=1

(yi − f (xi))2 ⇒ min
f∈H

1
n

n∑
i=1

(yi − f (xi))2 + λ ‖f‖2H .
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Empirical risk minimization

Similarly we can prove that the solution of empirical risk
minimization

min
f∈H

1
n

n∑
i=1

(yi − f (xi))2

can be written as

fS(x) =
n∑

i=1

cik(x , xi)

where the coefficients satisfy

Kc = Y .
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The Role of Regularization

Now we can observe that adding a penalty has an effect from a
numerical point of view:

Kc = Y ⇒ (K + nλI)c = Y

it stabilizes a possibly ill-conditioned matrix inversion problem.

This is the point of view of regularization for (ill-posed) inverse
problems.
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Ill-posed Inverse Problems

Hadamard introduced the definition of ill-posedness. Ill-posed
problems are typically inverse problems.
If g ∈ G and f ∈ F , with G,F Hilbert spaces, a linear,
continuous operator L, consider the equation

g = Lf .

The direct problem is is to compute g given f ; the inverse
problem is to compute f given the data g.
The inverse problem of finding f is well-posed when

the solution exists,
is unique and
is stable, that is depends continuously on the initial data g.

Otherwise the problem is ill-posed.
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Linear System for ERM

In the finite dimensional case the main problem is numerical
stability.

For example, in the learning setting the kernel matrix can be
decomposed as K = QΣQT , with Σ = diag(σ1, . . . , σn),
σ1 ≥ σ2 ≥ ...σn ≥ 0 and q1, . . . ,qn are the corresponding
eigenvectors.
Then

c = K−1Y = QΣ−1QT Y =
n∑

i=1

1
σi
〈qi ,Y 〉qi .

In correspondence of small eigenvalues, small perturbations of
the data can cause large changes in the solution. The problem
is ill-conditioned.
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Regularization as a Filter

For Tikhonov regularization

c = (K + nλI)−1Y
= Q(Σ + nλI)−1QT Y

=
n∑

i=1

1
σi + nλ

〈qi ,Y 〉qi .

Regularization filters out the undesired components.
For σ � λn, then 1

σi+nλ ∼
1
σi

.
For σ � λn, then 1

σi+nλ ∼
1
λn .
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Matrix Function

Note that we can look at a scalar function Gλ(σ) as a function
on the kernel matrix.

Using the eigen-decomposition of K we can define

Gλ(K ) = QGλ(Σ)QT ,

meaning

Gλ(K )Y =
n∑

i=1

Gλ(σi)〈qi ,Y 〉qi .

For Tikhonov
Gλ(σ) =

1
σ + nλ

.
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Regularization in Inverse Problems

In the inverse problems literature many algorithms are
known besides Tikhonov regularization.

Each algorithm is defined by a suitable filter function Gλ.

This class of algorithms is known collectively as spectral
regularization.

Algorithms are not necessarily based on penalized
empirical risk minimization.
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Algorithms

Gradient Descent or Landweber Iteration or L2 Boosting
ν-method, accelerated Landweber.
Iterated Tikhonov
Truncated Singular Value Decomposition (TSVD) Principal
Component Regression (PCR)

The spectral filtering perspective leads to a unified framework.
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Properties of Spectral Filters

Not every scalar function defines a regularization scheme.

Roughly speaking a good filter function must have the following
properties:

as λ goes to 0, Gλ(σ)→ 1/σ so that

Gλ(K )→ K−1.

λ controls the magnitude of the (smaller) eigenvalues of
Gλ(K ).
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Spectral Regularization for Learning

We can define a class of Kernel Methods as follows.

Spectral Regularization

We look for estimators

f λS (X ) =
n∑

i=1

cik(x , xi)

where
c = Gλ(K )Y .
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Gradient Descent

Consider the (Landweber) iteration:

gradient descent

set c0 = 0
for i= 1, . . . , t − 1

c i = c i−1 + η(Y − Kc i−1)

If the largest eigenvalue of K is smaller than n the above
iteration converges if we choose the step-size η = 2/n.

The above iteration can be seen as the minimization of the
empirical risk

1
n
‖Y − Kc‖22

via gradient descent.

L. Rosasco Regularization via Spectral Filtering



Gradient Descent as Spectral Filtering

Note that c0 = 0, c1 = ηY ,

c2 = ηY + η(I − ηK )Y

c3 = ηY + η(I − ηK )Y + η(Y − K (ηY + η(I − ηK )Y ))

= ηY + η(I − ηK )Y + η(I − 2ηK + η2K 2)Y

One can prove by induction that the solution at the t−th
iteration is given by

c = η

t−1∑
i=0

(I − ηK )iY .

The filter function is

Gλ(σ) = η

t−1∑
i=0

(I − ησ)i .
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Landweber iteration

Note that
∑

i≥0 x i = 1/(1− x), also holds replacing x with the a
matrix. If we consider the kernel matrix (or rather I − ηK ) we get

K−1 = η

∞∑
i=0

(I − ηK )i ∼ η
t−1∑
i=0

(I − ηK )i .

The filter function of Landweber iteration corresponds to a
truncated power expansion of K−1.
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Early Stopping

The regularization parameter is the number of iteration.
Roughly speaking t ∼ 1/λ.

Large values of t correspond to minimization of the
empirical risk and tend to overfit.
Small values of t tends to oversmooth, recall we start from
c = 0.

Early stopping of the iteration has a regularization effect.
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Gradient Descent at Work
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Connection to L2 Boosting

Landweber iteration (or gradient descent) has been
rediscovered in statistics with name of L2 Boosting.

Boosting

Then name Boosting denotes a large class of methods
building estimators as linear (convex) combinations of
weak learners.
Many boosting algorithms can be seen as gradient descent
minimization of the empirical risk on the linear span of
some basis function.

For Landweber iteration the weak learners are
k(xi , ·), i = 1, . . . ,n.
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ν-method

One can consider an accelerated gradient descent where the
The method is implemented by the following iteration.

gradient descent
set c0 = 0
ω1 = (4ν + 2)/(4ν + 1)
c1 = c0 + ω1

n (Y − Kc0)
for i= 2, . . . , t − 1

ci = ci−1 + ui(ci−1 − ci−2) + ωi
n (Y − Kci−1)

ui = (i−1)(2i−3)(2i+2ν−1)
(i+2ν−1)(2i+4ν−1)(2i+2ν−3)

ωi = 4 (2i+2ν−1)(i+ν−1)
(i+2ν−1)(2i+4ν−1)

We need
√

t iterations to get the same solution that gradient
descent would get after t iterations.
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Truncated Singular Value Decomposition

This method is one of the oldest regularization techniques and
is also called spectral cut-off.

TSVD

Given the eigen-decomposition K = QΣQt , a regularized
inverse of the kernel matrix is built discarding all the
eigenvalues before the prescribed threshold λn.

It is described by the filter function Gλ(σ) = 1/σ if σ ≥ λ/n
and 0 otherwise.
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Dimensionality Reduction and Generalization

Interestingly enough, one can show that TSVD is equivalent to
the following procedure:

(unsupervised) projection of the data using (kernel) PCA.
Empirical risk minimization on projected data without any
regularization.

The only free parameter is the number of components we retain
for the projection.
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Dimensionality Reduction and Generalization (cont.)

Projection Regularizes!

Doing KPCA and then RLS is redundant.

If data are centered Spectral regularization (also Tikhonov) can
see as filtered projection on the principal components.
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Comments on Complexity and Parameter Choice

Iterative methods perform matrix vector multiplication
O(n2) at each iteration and the regularization parameter is
the number of iteration itself.
There is not a closed form for leave one out error.
Parameter tuning is different from method to method.

Compared to RLS in iterative and projected methods the
regularization parameter is naturally discrete.
TSVD has a natural range for the search of the
regularization parameter.
For TSVD the regularization parameter can be interpreted
in terms of dimensionality reduction.
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Filtering, Regularizartion and Learning

The idea of using regularization from inverse problems in
statistics (see Wahba) and machine learning (see Poggio and
Girosi) is now well known.

Ideas coming from inverse problems regarded mostly the use
of Tikhonov regularization.

The notion of filter function was studied in machine learning
and gave a connection between function approximation in
signal processing and approximation theory. The work of
Poggio and Girosi enlighted the relation between neural
network, radial basis function and regularization.

Filtering was typically used to define a penalty for Tikhonov
regularization, in the following it is used to define algorithms
different though similar to Tikhonov regularization.
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Final remarks

Many different principles lead to regularization: penalized
minimization, iterative optimization, projection. The
common intuition is that they enforce stability of the
solution.
All the methods are implicitly based on the use of square
loss. For other loss function different notion of stability can
be used.
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Appendices

Appendix 1: Other examples of Filters: accelerated
Landweber and Iterated Tikhonov.
Appendix 2: TSVD and PCA.
Appendix 3: Some thoughts about Generalization of
Spectral Methods.
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Appendix 1 :ν-method

The so called ν-method or accelerated Landweber iteration can
be thought as an accelerated version of gradient descent.

The filter function is Gt (σ) = pt (σ) with pt a polynomial of
degree t − 1.

The regularization parameter (think of 1/λ) is
√

t (rather than t):
fewer iterations are needed to attain a solution.
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ν-method (cont.)

The method is implemented by the following iteration.

gradient descent
set c0 = 0
ω1 = (4ν + 2)/(4ν + 1)
c1 = c0 + ω1

n (Y − Kc0)
for i= 2, . . . , t − 1

ci = ci−1 + ui(ci−1 − ci−2) + ωi
n (Y − Kci−1)

ui = (i−1)(2i−3)(2i+2ν−1)
(i+2ν−1)(2i+4ν−1)(2i+2ν−3)

ωi = 4 (2i+2ν−1)(i+ν−1)
(i+2ν−1)(2i+4ν−1)
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Iterated Tikhonov

The following method can be seen a combination of Tikhonov
regularization and gradient descent.

gradient descent
set c0 = 0
for i= 0, . . . , t − 1

(K + nλI)ci = Y + nλci−1

The filter function is:

Gλ(σ) =
(σ + λ)t − λt

σ(σ + λ)t .
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Iterated Tikhonov (cont.)

Both the number of iteration and λ can be seen as
regularization parameters.

It can be used to enforce more smoothness on the solution.

Tikhonov regularization suffers from a saturation effect: it
cannot exploit the regularity of the solution beyond a certain
critical value.
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Appendix 2: TSVD and Connection to PCA

Principal component Analysis is a well known dimensionality
reduction technique often used as preprocessing in learning.

PCA

Assuming centered data, X T X is the covariance matrix
and its eigenvectors (V j)d

j=1 are the principal components.

PCA amounts to map each example xi in

x̃i = (xT
i V 1, . . . , xT

i V m)

where m < min{n,d}.

notation: xT
i is the transpose of the first row (example) of X .
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PCA (cont.)

The above algorithm can be written using only the linear kernel
matrix XX T and its eigenvectors (U i)n

i=1.

The eigenvalues of XX T and X T X are the same and

V j =
1
√
σi

X T U j .

Then

x̃i = (
1
√
σi

n∑
j=1

U1
j xT

i xj), . . . ,
1
√
σn

n∑
j=1

Um
j xT

i xj).

Note that xT
i xj = k(xi , xj).
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Kernel PCA

We can perform a non linear principal component analysis,
namely KPCA, by choosing non linear kernel functions.

Using K = QΣQT we can rewrite the projection in vector
notation.

If we let ΣM = diag(σ1, · · · , σm,0, · · · ,0) then the projected
data matrix X̃ is

X̃ = KQΣ
−1/2
m
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Principal Component Regression

ERM on the projected data

min
β∈Rm

∥∥∥Y − βX̃
∥∥∥2

n
,

is equivalent to perform truncated singular values
decomposition on the original problem.

Representer Theorem tells us that

βT x̃i =
n∑

j=1

x̃T
j x̃icj

with
c = (X̃ X̃ T )−1Y .
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Dimensionality Reduction and Generalization

Using X̃ = KQΣ
−1/2
m we get

X̃ X̃ T = QΣQT QΣ
−1/2
m Σ

−1/2
m QT QΣQT = QΣmQT .

so that
c = QΣ−1

m QT Y = Gλ(K )Y ,

where Gλ is the filter function of TSVD.

The two procedure are equivalent. The regularization
parameter is the eigenvalue threshold in one case and the
number of components kept in the other case.
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Appendix 3: Why Should These Methods Learn?

we have seen that

Gλ(K)→ K−1 if λ→ 0

anyway usually, we DON’T want to solve

Kc = Y

since it would simply correspond to an over-fitting solution

stability vs generalization

how can we show that stability ensures generalization?
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Population Case

It is useful to consider what happens if we know the true
distribution.

integral operator

for n large enough

1
n

K ∼ Lk f (s) =

∫
X

k(x , s)f (x)p(x)dx

the ideal problem
for n large enough we have

Kc = Y ∼ Lk f = Lk fρ

where fρ is the regression (target) function defined by
fρ(x) =

∫
Y yp(y |x)dy

L. Rosasco Regularization via Spectral Filtering



Regularization in the Population Case

it can be shown that which is the least squares problem
associated to Lk f = Lk fρ.

tikhonov regularization in this case is simply

or equivalently
f λ = (Lk f + λI)−1Lk fρ
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Fourier Decomposition of the Regression Function

fourier decomposition of fρ and f λ

if we diagonalize Lk to get the eigensystem (ti , φi)i we can write

fρ =
∑

i

〈fρ, φi〉φi

perturbations affect high order components.
tikhonov regularization can be written as

f λ =
∑

i

ti
ti + λ

〈fρ, φi〉φi

sampling IS a perturbation
stabilizing the problem with respect to random discretization
(sampling) we can recover fρ
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