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About this class

Last time Bayesian formulation of RLS, for regression.
(Basically, a normal distribution.)

This time a more complicated probability model: the
Dirichlet Process.

And its application to clustering.
And also more Bayesian terminology.
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Plan

Dirichlet distribution + other basics
The Dirichlet process

Abstract definition
Stick Breaking
Chinese restaurant process

Clustering
Dirichlet process mixture model
Hierarchical Dirichlet process mixture model
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Gamma Function and Beta Distribution

The Gamma function

Γ(z) =

∫ ∞
0

xz−1e−xdx .

Extends factorial function to R+: Γ(z + 1) = zΓ(z).

Beta Distribution

P(x |α, β) =
Γ(α + β)

Γ(α)Γ(β)
x (α−1)(1− x)(β−1)

for x ∈ [0,1], α > 0, β > 0.
(Mean: α

α+β , variance: αβ
(α+β)2(α+β+1) .)
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Beta Distribution
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π ∼ Dir(4, 9, 7) π ∼ Dir(0.2, 0.2, 0.2)

Figure 2.1. Examples of beta and Dirichlet distributions. Top: Beta densities with large hyperpa-
rameters are unimodal (left), while small values favor biased binomial distributions (right). Bottom:
Dirichlet densities on K = 3 categories, visualized on the simplex Π2 = (π1, π2, 1−π1 −π2). We show a
uniform prior, an unbiased unimodal prior, a biased prior with larger precision α0, and a prior favoring
sparse multinomial distributions. Darker intensities indicate regions with higher probability.

For large parameters the distribution is unimodal. For small
parameters it favors biased binomial distributions.
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Dirichlet Distribution

Generalizes Beta distribution to the K-dimensional simplex SK .

SK = {x ∈ RK :
K∑

i=1

xi = 1, xi ≥ 0 ∀i}

Dirichlet distribution

P(x |α) = P(x1, . . . , xK ) =
Γ(
∑K

i=1 αi)∑K
i=1 Γ(αi)

K∏
i=1

(xi)
αi−1

where α = (α1, . . . , αK ), αi > 0 ∀i , x ∈ SK .
We write x ∼ Dir(α), i.e. x1, . . . , xK ∼ Dir(α1, . . . , αK ).
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Dirichlet Distribution

university-logo

Dirichlet Processes
Examples of Dirichlet distributions.

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 28 / 80
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Properties of the Dirichlet Distribution

Mean
E[xi ] =

αi∑K
j=1 αj

.

Variance

Var[xi ] =
αi(
∑

i 6=j αj)

(
∑K

j=1 αj)2(1 +
∑K

j=1 αj)
.

Covariance

Cov(xi , xj) =
αiαj

(
∑K

j=1 αj)2(1 +
∑K

j=1 αj)
.

Marginals: xi ∼ Beta(αi ,
∑

j 6=i αj)

Aggregation: (x1 + x2, . . . , xk ) ∼ Dir(α1 + α2, . . . , αK )
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Multinomial Distribution

If you throw n balls into k bins, the distribution of balls into bins
is given by the multinomial distribution.

Multinomial distribution
Let p = (p1, . . . ,pK ) be probabilities over K categories and
C = (C1, . . . ,CK ) be category counts. Ci is the number of
samples in the i th category, from n independent draws of a
categorical variable with category probabilities p. Then

P(C|n,p) =
n!∏K

i=1 Ci !

K∏
i=1

pCi
i .

For K = 2 this is the binomial distribution.
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An idea

Treat the Dirichlet distribution as a distribution on probabilities:
each sample θ ∼ Dir(α) defines a K -dimensional multinomial
distribution.

x ∼ Mult(θ), θ ∼ Dir(α)
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An idea

Treat the Dirichlet distribution as a distribution on probabilities:
each sample θ ∼ Dir(α) defines a K -dimensional multinomial
distribution.

x ∼ Mult(θ), θ ∼ Dir(α)

Posterior on θ:
θ|x ∼ Dir(α + x)
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Conjugate Priors

Say x ∼ F (θ) (the likelihood) and θ ∼ G(α) (the prior).

Conjugate prior

G is a conjugate prior for F if the posterior P(θ|x , α) is in the
same family as G. (E.g. if F is Gaussian then P(θ|x , α) should
also be Gaussian.)

So the Dirichlet distribution is a conjugate prior for the
multinomial.
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Plan

Dirichlet distribution + other basics
The Dirichlet process

Abstract definition
Stick Breaking
Chinese restaurant process

Clustering
Dirichlet process mixture model
Hierarchical Dirichlet process mixture model
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Parametric vs. nonparametric

Parametric: fix parameters independent of data.
Nonparametric: effective number of parameters can grow
with the data.

E.g. density estimation: fitting Gaussian vs. parzen windows.
E.g. Kernel methods are nonparametric.
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Dirichlet Process

Want: distribution on all K-dimensional simplices (for all K ).

Informal Description

X is a space, F is a probability distribution on X and F(X ) is
the set of all possible distributions on X .
A Dirichlet Process gives a distribution over F(X ). A sample
path from a DP is an element F ∈ F(X ). F can be seen as a
(random) probability distribution on X .
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Dirichlet Process

Want: distribution on all K-dimensional simplices (for all K ).

Formal Definition
Let X be a space and H be the base measure on X . F is a
sample from the Dirichlet Process DP(α,H) on X if its
finite-dimensional marginals have the Dirichlet distribution:

(F (B1), . . . ,F (BK )) ∼ Dir(αH(B1), . . . , αH(B2))

for all partitions B1, . . . ,BK of X (for any K ).
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Stick Breaking Construction

Explicit construction of a DP.

Let α > 0, (πi)
∞
i=1 such that

pi = βi

i−1∏
j=1

(1− βj) = βi(1−
i−1∑
j=1

pj)

where βi ∼ Beta(1, α), for all i .
Let H be a distribution on X and define

F =
∞∑

i=1

piδθi

where θi ∼ H, for all i .
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Stick Breaking Construction: Interpretation

Sec. 2.5. Dirichlet Processes 101
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Figure 2.22. Sequential stick–breaking construction of the infinite set of mixture weights π ∼ GEM(α)
corresponding to a measure G ∼ DP(α, H). Left: The first weight π1 ∼ Beta(1, α). Each subsequent
weight πk (red) is some random proportion βk (blue) of the remaining, unbroken “stick” of probability
mass. Right: The first K = 20 weights generated by four random stick–breaking constructions (two
with α = 1, two with α = 5). Note that the weights πk do not monotonically decrease.

discrete parameters {θk}∞k=1. For a given α and dataset size N , there are strong bounds
on the accuracy of particular finite truncations of this stick–breaking process [147],
which are often used in approximate computational methods [29, 147, 148, 289].

Several other stick–breaking processes have been proposed which sample the pro-
portions βk from different distributions [147, 148, 233]. For example, the two–parameter
Poisson–Dirichlet, or Pitman–Yor, process [234] can produce heavier–tailed weight dis-
tributions which better match power laws arising in natural language processing [117,
287]. As we show next, these stick–breaking processes sometimes lead to predictive
distributions with simple Pólya urn representations.

Prediction via Pólya Urns

Because Dirichlet processes produce discrete random measures G, there is a strictly
positive probability of multiple observations θ̄i ∼ G taking identical values. Given N
observations {θ̄i}N

i=1, suppose that they take K ≤ N distinct values {θk}K
k=1. The

posterior expectation of any set T ⊂ Θ (see eq. (2.172)) can then be written as

E
[
G(T ) | θ̄1, . . . , θ̄N , α, H

]
=

1

α + N

(

αH(T ) +
K∑

k=1

Nkδθk
(T )

)

(2.178)

Nk !

N∑

i=1

δ(θ̄i, θk) k = 1, . . . , K (2.179)

Note that Nk is defined to be the number of previous observations equaling θk, and
that K is a random variable [10, 28, 233]. Analyzing this expression, the predictive
distribution of the next observation θ̄N+1 ∼ G can be explicitly characterized.

The weights π partition a unit-length stick in an infinite set: the
i-th weight is a random proportion βi of the stick remaining after
sampling the first i − 1 weights.
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Stick Breaking Construction (cont.)

It is possible to prove (Sethuraman ’94) that the previous
construction returns a DP and conversely a Dirichlet process is
discrete almost surely.
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Chinese Restaurant Process

There is an infinite (countable) set of tables.
First customer sits at the first table.
Customer i sits at table j with probability

nj

α + i + 1
,

where nj is the number of customers at table j , and i sits at
the first open table with probability

α

α + i + 1
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The Role of the Strength Parameter

Note that E[βi ] = 1/(1 + α).

for small α, the first few components will have all the mass.
for large α, F approaches the distribution H assigning
uniform weights to the samples θi .
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Number of Clusters and Strength Parameter

It is possible to prove (Antoniak ’77??) that the number of
components with positive count grows as

α log n

as we increase the number of samples n.
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Another idea

Clustering with the K -dimensional Dirichlet: take each sample
θ ∼ Dir(α) to define a K -dimensional categorical (instead of
multinomial) distribution.

x ∼ G(φ), φ ∼ Cat(θ), θ ∼ Dir(α)

(G is a a distribution on observation space X , say, Gaussian.)

θi is the probability of x coming from the i th cluster.
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Another idea

Clustering with the K -dimensional Dirichlet: take each sample
θ ∼ Dir(α) to define a K -dimensional categorical (instead of
multinomial) distribution.
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(G is a a distribution on observation space X , say, Gaussian.)

θi is the probability of x coming from the i th cluster.
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Another idea

Clustering with the K -dimensional Dirichlet: take each sample
θ ∼ Dir(α) to define a K -dimensional categorical (instead of
multinomial) distribution.

x ∼ G(φ), φ ∼ Cat(θ), θ ∼ Dir(α)

(G is a a distribution on observation space X , say, Gaussian.)

θi is the probability of x coming from the i th cluster.
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Another idea

Clustering with the Dirichlet Process: take each sample
θ ∼ DP(α,H) to define a K -dimensional categorical (instead of
multinomial) distribution.

x ∼ G(φ), φ ∼ Cat(θ), θ ∼ DP(α,H)

(G is a a distribution on observation space X , say, Gaussian. H
can be uniform on {1, . . . ,K}.)
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Another idea

Clustering with the Dirichlet Process: take each sample
θ ∼ DP(α,H) to define a K -dimensional categorical (instead of
multinomial) distribution.

x ∼ G(φ), φ ∼ Cat(θ), θ ∼ DP(α,H)

(G is a a distribution on observation space X , say, Gaussian. H
can be uniform on {1, . . . ,K}.)
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Another idea

Clustering with the Dirichlet Process:

x ∼ G(φ), φ ∼ Cat(θ), θ ∼ DP(α,H)

This is the Dirichlet Process mixture model.
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Hierarchical Dirichlet Process

What if we want to model grouped data, each group
corresponding to a different DP mixture model?

Hierarchical Dirichlet Process
For each i ∈ {1, . . . ,n}, draw xi according to

xi ∼ G(φ), φ ∼ Cat(θ), θ ∼ DP(α,H0), α ∼ DP(γ,H).
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Hierarchical Dirichlet Process

What if we want to model grouped data, each group
corresponding to a different DP mixture model?

Hierarchical Dirichlet Process
For each i ∈ {1, . . . ,n}, draw xi according to

xi ∼ G(φ), φ ∼ Cat(θ), θ ∼ DP(α,H0), α ∼ DP(γ,H).
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Conclusions

Dirichlet distribution gives a distribution over the K -simplex.
Dirichlet is conjugate to the multinomial, which makes
inference in the Dirichlet/multinomial model easy.
Dirichlet process generalizes the Dirichlet distribution to
countably infinitely many components.

Every finite marginal of the DP is Dirichlet distributed.

Complexity of the DP is controlled by the strength
parameter α.
The posterior distribution cannot be found analytically.
Approximate inference is needed.
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APPENDIX
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Dirichlet Process (cont.)

A partition of X is a collection of subsets B1, . . . ,BN is such
that, if Bi ∩ Bj = ∅, ∀i 6= j and ∪N

i=1Bi = X .

Definition (Existence Theorem)
Let α > 0 and H a probability distribution on X .
One can prove that there exists a unique distribution DP(α,H)
on F(X ) such that, if F ∼ DP(α,H) and B1, . . . ,BN is a
partition of X then

(F (B1), . . . ,F (BN)) ∼ Dir(αH(B1), . . . , αH(BN)).

The above result is proved (Ferguson ’73) using Kolmogorov’s
Consistency theorem (Kolmogorov ’33).
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Dirichlet Processes Illustrated
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Figure 2.21. Dirichlet processes induce Dirichlet distributions on every finite, measurable partition.
Left: An example base measure H on a bounded, two–dimensional space Θ (darker regions have higher
probability). Center: A partition with K = 3 cells. The weight that a random measure G ∼ DP(α, H)
assigns to these cells follows a Dirichlet distribution (see eq. (2.166)). We shade each cell Tk according
to its mean E[G(Tk)] = H(Tk). Right: Another partition with K = 5 cells. The consistency of G

implies, for example, that (G(T1) + G(T2)) and G( eT1) follow identical beta distributions.

Proposition 2.5.1. Let G ∼ DP(α, H) be a random measure distributed according to
a Dirichlet process. Given N independent observations θ̄i ∼ G, the posterior measure
also follows a Dirichlet process:

p
(
G | θ̄1, . . . , θ̄N , α, H

)
= DP

(
α + N,

1

α + N

(
αH +

N∑

i=1

δθ̄i

))
(2.169)

Proof. As shown by Ferguson [83], this result follows directly from the conjugate form
of finite Dirichlet posterior distributions (see eq. (2.45)). See Sethuraman [254] for an
alternative proof.

There are interesting similarities between eq. (2.169) and the general form of conjugate
priors for exponential families (see Prop. 2.1.4). The Dirichlet process effectively defines
a conjugate prior for distributions on arbitrary measurable spaces. In some contexts,
the concentration parameter α can then be seen as expressing confidence in the base
measure H via the size of a pseudo–dataset (see [113] for further discussion).

Neutral and Tailfree Processes

The conjugacy of Prop. 2.5.1, which leads to tractable computational methods discussed
later, provides one practical motivation for the Dirichlet process. In this section, we
show that Dirichlet processes are also characterized by certain conditional independen-
cies. These properties reveal both strengths and weaknesses of the Dirichlet process,
and have motivated several other families of stochastic processes.

Let G be a random probability measure on a parameter space Θ. The distribution
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Properties of Dirichlet Processes

Hereafter F ∼ DP(α,H) and A is a measurable set in X .
Expectation: E[F (A)] = αH(A).

Variance: V[F (A)] = H(A)(1−H(A))
α+1
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Properties of Dirichlet Processes (cont.)

Posterior and Conjugacy: let x ∼ F and consider a fixed
partition B1, . . . ,BN , then

P(F (B1), . . . ,F (BN)|x ∈ Bk ) =

Dir(αH(B1), . . . , αH(Bk ) + 1, . . . , αH(BN)).

It is possible to prove that if S = (x1, . . . , xn) ∼ F , and
F ∼ DP(α,H), then

P(F |S, α,H) = DP

(
α + n,

1
n + α

(
αH +

n∑
i=1

δxi

))
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A Qualitative Reasoning

From the form of the posterior we have that

E(F (A)|S, α,H) =
1

n + α

(
αH(A) +

n∑
i=1

δxi (A)

)
.

If α <∞ and n→∞ one can argue that

E(F (A)|S, α,H) =
∞∑

i=1

πiδxi (A)

where (πi)
∞
i=1 is the sequence corresponding to the limit

limn→∞Ci/n of the empirical frequencies of the observations
(xi)
∞
i=1.

If the posterior concentrates about its mean the above
reasoning suggests that the obtained distribution is discrete.
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