Manifold Regularization

Lorenzo Rosasco

9.520 Class 10

March 6, 2011

L. Rosasco Manifold Regularization

ヘロト 人間 とくほとくほとう

= 990

Goal To analyze the limits of learning from examples in high dimensional spaces. To introduce the semi-supervised setting and the use of unlabeled data to learn the intrinsic geometry of a problem. To define Riemannian Manifolds, Manifold Laplacians, Graph Laplacians. To introduce a new class of algorithms based on Manifold Regularization (LapRLS, LapSVM).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Why using unlabeled data?

- labeling is often an "expensive" process
- semi-supervised learning is the natural setting for human learning

・ 同 ト ・ ヨ ト ・ ヨ ト ・

ъ

u i.i.d. samples drawn on *X* from the marginal distribution p(x)

$$\{x_1, x_2, \ldots, x_u\},\$$

only *n* of which endowed with labels drawn from the conditional distributions p(y|x)

$$\{y_1, y_2, \ldots, y_n\}.$$

The extra u - n unlabeled samples give additional information about the marginal distribution p(x).

・ 同 ト ・ ヨ ト ・ ヨ ト …

The importance of unlabeled data

æ

Assume X is the *D*-dimensional hypercube $[0, 1]^D$. The worst case scenario corresponds to uniform marginal distribution p(x).

Local Methods

A prototype example of the effect of high dimentionality can be seen in nearest methods techniques. As *d* increases, local techniques (eg nearest neighbors) become rapidly ineffective.

・ 同 ト ・ ヨ ト ・ ヨ ト

Curse of dimensionality and k-NN

- It would seem that with a reasonably large set of training data, we could always approximate the conditional expectation by k-nearest-neighbor averaging.
- We should be able to find a fairly large set of observations close to any x ∈ [0, 1]^D and average them.
- This approach and our intuition break down in high dimensions.

< 回 > < 回 > < 回 > -

Suppose we send out a cubical neighborhood about one vertex to capture a fraction r of the observations. Since this corresponds to a fraction r of the unit volume, the expected edge length will be

$$e_D(r)=r^{\frac{1}{D}}.$$

Already in ten dimensions $e_{10}(0.01) = 0.63$, that is to capture 1% of the data, we must cover 63% of the range of each input variable!

No more "local" neighborhoods!

・ 同 ト ・ ヨ ト ・ ヨ ト

Distance vs volume in high dimensions

프 🖌 🛪 프 🕨

æ

Raw format of natural data is often high dimensional, but in many cases it is the outcome of some process involving only *few degrees of freedom*. Examples:

- Acoustic Phonetics ⇒ vocal tract can be modelled as a sequence of few tubes.
- Facial Expressions ⇒ tonus of several facial muscles control facial expression.
- Pose Variations ⇒ several joint angles control the combined pose of the elbow-wrist-finger system.

Smoothness assumption: *y*'s are "smooth" relative to natural degrees of freedom, **not** relative to the raw format.

・ロン ・聞 と ・ ヨ と ・ ヨ と

Manifold embedding

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Riemannian Manifolds

A d-dimensional manifold

$$\mathcal{M} = \bigcup_{\alpha} U_{\alpha}$$

is a mathematical object that generalizes domains in \mathbb{R}^d . Each one of the "patches" U_{α} which cover \mathcal{M} is endowed with a *system of coordinates*

$$\alpha: U_{\alpha} \to \mathbb{R}^d.$$

If two patches U_{α} and U_{β} , overlap, the *transition functions*

$$\beta \circ \alpha^{-1} : \alpha(U_{\alpha} \bigcap U_{\beta}) \to \mathbb{R}^{d}$$

must be smooth (eg. infinitely differentiable).

 The Riemannian Manifold inherits from its local system of coordinates, most geometrical notions available on R^d: metrics, angles, volumes, etc.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Manifold's charts

ヘロト 人間 とくほとくほとう

■ のへで

Since each point *x* over \mathcal{M} is equipped with a local system of coordinates in \mathbb{R}^d (its *tangent space*), all **differential operators** defined on functions over \mathbb{R}^d , can be extended to analogous operators on functions over \mathcal{M} .

Gradient:
$$\nabla f(\mathbf{x}) = (\frac{\partial}{\partial x_1} f(\mathbf{x}), \dots, \frac{\partial}{\partial x_d} f(\mathbf{x})) \Rightarrow \nabla_{\mathcal{M}} f(x)$$

Laplacian: $\Delta f(\mathbf{x}) = -\frac{\partial^2}{\partial x_1^2} f(\mathbf{x}) - \dots - \frac{\partial^2}{\partial x_d^2} f(\mathbf{x}) \Rightarrow \Delta_{\mathcal{M}} f(x)$

Given $f: \mathcal{M} \to \mathbb{R}$

- ∇_Mf(x) represents amplitude and direction of variation around x
- S(f) = ∫_M ||∇_Mf(x)||²dp(x) is a global measure of smoothness for f
- Stokes' theorem (generalization of integration by parts) links gradient and Laplacian

$$\mathcal{S}(f) = \int_{\mathcal{M}} \|
abla_{\mathcal{M}} f(x) \|^2 dp(x) = \int_{\mathcal{M}} f(x) riangle_{\mathcal{M}} f(x) dp(x)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

A new class of techniques which extend standard Tikhonov regularization over RKHS, introducing the additional regularizer $||f||_{l}^{2} = \int_{\mathcal{M}} f(x) \triangle_{\mathcal{M}} f(x) dp(x)$ to enforce smoothness of solutions relative to the underlying manifold

$$f^* = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n V(f(x_i), y_i) + \lambda_A \|f\|_K^2 + \lambda_I \int_{\mathcal{M}} f(x) \triangle_{\mathcal{M}} f(x) dp(x)$$

- λ_i controls the complexity of the solution in the intrinsic geometry of *M*.
- λ_A controls the complexity of the solution in the **ambient** space.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Other natural choices of $\|\cdot\|_{l}^{2}$ exist

 Iterated Laplacians ∫_M f △^s_M f and their linear combinations. These smoothness penalties are related to Sobolev spaces

$$\int f(x) \triangle_{\mathcal{M}}^{s} f(x) dp(x) \approx \sum_{\omega \in Z^{d}} \|\omega\|^{2s} |\hat{f}(\omega)|^{2s}$$

- Frobenius norm of the Hessian (the matrix of second derivatives of f) Hessian Eigenmaps; Donoho, Grimes 03
- Diffusion regularizers ∫_M fe^{t∆}(f). The semigroup of smoothing operators G = {e^{-t∆M} | t > 0} corresponds to the process of diffusion (Brownian motion) on the manifold.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

An empirical proxy of the manifold

We cannot compute the intrinsic smoothness penalty

$$\|f\|_{I}^{2} = \int_{\mathcal{M}} f(x) \triangle_{\mathcal{M}} f(x) dp(x)$$

because we don't know the marginal distribution or the manifold $\ensuremath{\mathcal{M}}$ and the embedding

$$\Phi:\mathcal{M}\to\mathbb{R}^D.$$

But we assume that the unlabeled samples are drawn i.i.d. from the uniform probability distribution over \mathcal{M} and then mapped into \mathbb{R}^D by Φ

< 回 > < 回 > < 回 > -

Our proxy of the manifold is a *weighted neighborhood graph* G = (V, E, W), with **vertices** *V* given by the points $\{x_1, x_2, \ldots, x_u\}$, **edges** *E* defined by one of the two following adjacency rules

- connect x_i to its k nearest neighborhoods
- connect x_i to ϵ -close points

and weights W_{ij} associated to two connected vertices

$$W_{ij} = e^{-rac{\|x_i - x_j\|^2}{\epsilon}}$$

Note: computational complexity $O(u^2)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Neighborhood graph (cont.)

<ロト <回 > < 注 > < 注 > 、

æ

The graph Laplacian over the weighted neighborhood graph (G, E, W) is the matrix

$$\mathbf{L}_{ij} = \mathbf{D}_{ii} - \mathbf{W}_{ij}, \qquad \mathbf{D}_{ii} = \sum_{j} \mathbf{W}_{ij}.$$

L is the discrete counterpart of the manifold Laplacian $riangle_{\mathcal{M}}$

$$\mathbf{f}^T \mathbf{L} \mathbf{f} = \sum_{i,j=1}^n \mathbf{W}_{ij} (\mathbf{f}_i - \mathbf{f}_j)^2 \approx \int_{\mathcal{M}} \|\nabla f(x)\|^2 dp(x).$$

Analogous properties of the *eigensystem*: nonnegative spectrum, null space Looking for rigorous convergence results

1

Operator \mathcal{L} : "out-of-sample extension" of the graph Laplacian L

$$\mathcal{L}(f)(x) = \sum_{i} (f(x) - f(x_i)) e^{-rac{\|x-x_i\|^2}{\epsilon}} \quad x \in X, \;\; f: X o \mathbb{R}$$

Theorem: Let the *u* data points $\{x_1, \ldots, x_u\}$ be sampled from the uniform distribution over the embedded *d*-dimensional manifold \mathcal{M} . Put $\epsilon = u^{-\alpha}$, with $0 < \alpha < \frac{1}{2+d}$. Then for all $f \in C^{\infty}$ and $x \in X$, there is a constant C, s.t. in probability,

$$\lim_{u\to\infty} C\frac{\epsilon^{-\frac{d+2}{2}}}{u}\mathcal{L}(f)(x) = \triangle_{\mathcal{M}}f(x).$$

(四) (日) (日)

Replacing the unknown manifold Laplacian with the graph Laplacian $||f||_{I}^{2} = \frac{1}{u^{2}} \mathbf{f}^{T} \mathbf{L} \mathbf{f}$, where \mathbf{f} is the vector $[f(x_{1}), \dots, f(x_{u})]$, we get the minimization problem

$$f^* = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n V(f(x_i), y_i) + \lambda_A \|f\|_K^2 + \frac{\lambda_I}{u^2} \mathbf{f}^T \mathbf{L} \mathbf{f}$$

- $\lambda_I = 0$: standard regularization (RLS and SVM)
- $\lambda_A \rightarrow 0$: out-of-sample extension for Graph Regularization
- *n* = 0: unsupervised learning, Spectral Clustering

(個) (日) (日) (日)

Using the same type of reasoning of standard regularization networks, a Representer Theorem can be proved for the solutions of Manifold Regularization algorithms. The expansion range over all the **supervised and unsupervised** data points

$$f(x) = \sum_{j=1}^{u} c_j K(x, x_j).$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Generalizes the usual RLS algorithm to the semi-supervised setting.

Set $V(w, y) = (w - y)^2$ in the general functional.

By the representer theorem, the minimization problem can be restated as follows

$$\mathbf{c}^* = \arg\min_{\mathbf{c}\in\mathbb{R}^u}\frac{1}{n}(\mathbf{y} - \mathbf{J}\mathbf{K}\mathbf{c})^T(\mathbf{y} - \mathbf{J}\mathbf{K}\mathbf{c}) + \lambda_A \mathbf{c}^T \mathbf{K}\mathbf{c} + \frac{\lambda_I}{u^2} \mathbf{c}^T \mathbf{K}\mathbf{L}\mathbf{K}\mathbf{c},$$

where **y** is the *u*-dimensional vector $(y_1, \ldots, y_n, 0, \ldots, 0)$, and **J** is the $u \times u$ matrix $diag(1, \ldots, 1, 0, \ldots, 0)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

LapRLS (cont.)

The functional is differentiable, strictly convex and coercive. The derivative of the object function vanishes at the minimizer \mathbf{c}^*

$$\frac{1}{n}\mathbf{KJ}(\mathbf{y} - \mathbf{JKc}^*) + (\lambda_A \mathbf{K} + \frac{\lambda_I n}{u^2}\mathbf{KLK})\mathbf{c}^* = 0.$$

From the relation above and noticing that due to the positivity of λ_A , the matrix **M** defined below, is invertible, we get

$$\mathbf{C}^* = \mathbf{M}^{-1}\mathbf{y},$$

where

$$\mathbf{M} = \mathbf{J}\mathbf{K} + \lambda_A n \mathbf{I} + \frac{\lambda_I n^2}{u^2} \mathbf{L}\mathbf{K}.$$

(雪) (ヨ) (ヨ)

Generalizes the usual SVM algorithm to the semi-supervised setting.

Set $V(w, y) = (1 - yw)_+$ in the general functional above. Applying the representer theorem, introducing *slack variables* and adding the unpenalized *bias term b*, we easily get the primal problem

$$\mathbf{c}^* = \arg\min_{\mathbf{c}\in\mathbb{R}^{u},\xi\in\mathbb{R}^{n}} \quad \frac{1}{n}\sum_{i=1}^{n}\xi_i + \lambda_A \mathbf{c}^T \mathbf{K} \mathbf{c} + \frac{\lambda_i}{u^2} \mathbf{c}^T \mathbf{K} \mathbf{L} \mathbf{K} \mathbf{c}$$

subject to : $y_i(\sum_{j=1}^{u} c_j K(x_i, x_j) + b) \ge 1 - \xi_i \quad i = 1, \dots, n$
 $\xi_i \ge 0 \qquad \qquad i = 1, \dots, n$

イロト イポト イヨト イヨト 三日

Substituting in our expression for **c**, we are left with the following "dual" program:

$$\alpha^* = \arg \max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \alpha^T \mathbf{Q} \alpha$$

subject to :
$$\sum_{i=1}^n y_i \alpha_i = 0$$
$$0 \le \alpha_i \le \frac{1}{n} \qquad i = 1, \dots, n$$

Here, vQ is the matrix defined by

$$\mathbf{Q} = \mathbf{Y}\mathbf{J}\mathbf{K} \left(2\lambda_{\mathcal{A}}\mathbf{I} + 2\frac{\lambda_{I}}{u^{2}}\mathbf{L}\mathbf{K} \right)^{-1}\mathbf{J}^{\mathcal{T}}\mathbf{Y}.$$

One can use a standard SVM solver with the matrix Q above, hence compute c solving a linear system.

・ 回 と ・ ヨ と ・ ヨ と

Numerical experiments

http://manifold.cs.uchicago.edu/manifold_regularization

- Two Moons Dataset
- Handwritten Digit Recognition
- Spoken Letter Recognition

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Ideas similar to those described in this class can be used in other learning tasks. The spectral properties of the (graph-) Laplacian turns out to be useful:

If M is *compact*, the operator $\triangle_{\mathcal{M}}$ has a *countable* sequence of eigenvectors ϕ_k (with *non-negative* eigenvalues λ_k), which is a complete system of $L_2(\mathcal{M})$. If M is *connected*, the constant function is the only eigenvector corresponding to null eigenvalue.

The Laplacian allows to exploit some geometric features of the manifold.

- **Dimensionality reduction**. If we project the data on the eigenvectors of the graph Laplacian we obtain the so called Laplacian eigenmap algorithm. It can be shown that such a feature map preserves local distances.
- **Spectral clustering**. The smallest non-null eigenvalue of the Laplacian is the value of the minimum cut on the graph and the associated eigenvector is the cut.

・ 回 ト ・ ヨ ト ・ ヨ ト