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About this class

Goal To introduce a particularly useful family of
hypothesis spaces called Reproducing Kernel
Hilbert Spaces (RKHS) We will discuss several
perspectives on RKHS. In particular in this class
we investigate the fundamental definition of RKHS
as Hilbert spaces with bounded, continuous
evaluation functionals and the intimate connection
with symmetric positive definite kernels.
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Plan

Part I: RKHS are Hilbert spaces with bounded, continuous
evaluation functionals.
Part II: Reproducing Kernels
Part III: Mercer Theorem
Part IV: Feature Maps
Part V: Representer Theorem
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Regularization

The basic idea of regularization (originally introduced
independently of the learning problem) is to restore
well-posedness of ERM by constraining the hypothesis space
H.

Regularization
A possible way to do this is considering regularized empirical
risk minimization, that is we look for solutions minimizing a two
term functional

ERR(f )︸ ︷︷ ︸
empirical error

+λ R(f )︸︷︷︸
regularizer

the regularization parameter λ trade-offs the two terms.
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Tikhonov Regularization

Tikhonov regularization amounts to minimize

1
n

n∑
i=1

V (f (xi), yi) + λR(f ) λ > 0 (1)

V (f (x), y) is the loss function, that is the price we pay
when we predict f (x) in place of y
R(f ) is a regularizer– often R(f ) = ‖ · ‖H, the norm in the
function space H

The regularizer should encode some notion of smoothness of f .
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The "Ingredients" of Tikhonov Regularization

The scheme we just described is very general and by
choosing different loss functions V (f (x), y) we can recover
different algorithms
The main point we want to discuss is how to choose a
norm encoding some notion of smoothness/complexity of
the solution
Reproducing Kernel Hilbert Spaces allow us to do this in a
very powerful way
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Different Views on RKHS
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Part I: Evaluation Functionals
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Some Functional Analysis

A function space F is a space whose elements are functions
f , for example f : Rd → R.
A norm is a nonnegative function ‖ · ‖ such that ∀f ,g ∈ F and
α ∈ R

1 ‖f‖ ≥ 0 and ‖f‖ = 0 iff f = 0;
2 ‖f + g‖ ≤ ‖f‖+ ‖g‖;
3 ‖αf‖ = |α| ‖f‖.

A norm can be defined via a inner product ‖f‖ =
√
〈f , f 〉.

A Hilbert space is a complete inner product space.
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Examples

Continuous functions C[a,b] :
a norm can be established by defining

‖f‖ = max
a≤x≤b

|f (x)|

(not a Hilbert space!)
Square integrable functions L2[a,b]:
it is a Hilbert space where the norm is induced by the dot
product

〈f ,g〉 =

∫ b

a
f (x)g(x)dx
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Hypothesis Space: Desiderata

Hilbert Space.
Point-wise defined functions.
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RKHS

An evaluation functional over the Hilbert space of functions H is
a linear functional Ft : H → R that evaluates each function in
the space at the point t , or

Ft [f ] = f (t).

Definition
A Hilbert space H is a reproducing kernel Hilbert space
(RKHS) if the evaluation functionals are bounded and
continuous, i.e. if there exists a M s.t.

|Ft [f ]| = |f (t)| ≤ M‖f‖H ∀f ∈ H
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Evaluation functionals

Evaluation functionals are not always bounded.
Consider L2[a,b]:

Each element of the space is an equivalence class of
functions with the same integral

∫
|f (x)|2dx .

An integral remains the same if we change the function in
a countable set of points.
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Norms in RKHS and Smoothness

Choosing different kernels one can show that the norm in the
corresponding RKHS encodes different notions of smoothness.

Band limited functions. Consider the set of functions

H := {f ∈ L2(R) | F (ω) ∈ [−a,a],a <∞}

with the usual L2 inner product. the function at every point
is given by the convolution with a sinc function sin(ax)/ax .
The norm

‖f‖2H =

∫
f (x)2dx =

∫ a

a
|F (ω)|2dω

Where F (ω) = F{f}(ω) =
∫∞
−∞ f (t)e−iωt dt is the Fourier

tranform of f .
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Norms in RKHS and Smoothness

Sobolev Space: consider f : [0,1]→ R with
f (0) = f (1) = 0. The norm

‖f‖2H =

∫
(f ′(x))2dx =

∫
ω2|F (ω)|2dω

Gaussian Space: the norm can be written as

‖f‖2H =
1

2πd

∫
|F (ω)|2exp

σ2ω2
2 dω

L. Rosasco RKHS



Norms in RKHS and Smoothness

Sobolev Space: consider f : [0,1]→ R with
f (0) = f (1) = 0. The norm

‖f‖2H =

∫
(f ′(x))2dx =

∫
ω2|F (ω)|2dω

Gaussian Space: the norm can be written as

‖f‖2H =
1

2πd

∫
|F (ω)|2exp

σ2ω2
2 dω

L. Rosasco RKHS



Norms in RKHS and Smoothness

Sobolev Space: consider f : [0,1]→ R with
f (0) = f (1) = 0. The norm

‖f‖2H =

∫
(f ′(x))2dx =

∫
ω2|F (ω)|2dω

Gaussian Space: the norm can be written as

‖f‖2H =
1

2πd

∫
|F (ω)|2exp

σ2ω2
2 dω

L. Rosasco RKHS



Linear RKHS

Our function space is 1-dimensional lines

f (x) = w x

where the RKHS norm is simply

‖f‖2H = 〈f , f 〉H = w2

so that our measure of complexity is the slope of the line.
We want to separate two classes using lines and see how the
magnitude of the slope corresponds to a measure of complexity.
We will look at three examples and see that each example
requires more "complicated functions, functions with greater
slopes, to separate the positive examples from negative
examples.
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Linear case (cont.)

here are three datasets: a linear function should be used to
separate the classes. Notice that as the class distinction
becomes finer, a larger slope is required to separate the
classes.
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Part II: Kernels
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Different Views on RKHS
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Representation of Continuous Functionals

Let H be a Hilbert space and g ∈ H, then

Φg(f ) = 〈f ,g〉 , f ∈ H

is a continuous linear functional.

Riesz representation theorem
The theorem states that every continuous linear functional Φ
can be written uniquely in the form,

Φ(f ) = 〈f ,g〉

for some appropriate element g ∈ H.
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Reproducing kernel (rk)

If H is a RKHS, then for each t ∈ X there exists, by the
Riesz representation theorem a function Kt in H (called
representer) with the reproducing property

Ft [f ] = 〈Kt , f 〉H = f (t).

Since Kt is a function in H, by the reproducing property, for
each x ∈ X

Kt (x) = 〈Kt ,Kx〉H

The reproducing kernel (rk) of H is

K (t , x) := Kt (x)
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Positive definite kernels

Let X be some set, for example a subset of Rd or Rd itself. A
kernel is a symmetric function K : X × X → R.

Definition
A kernel K (t , s) is positive definite (pd) if

n∑
i,j=1

cicjK (ti , tj) ≥ 0

for any n ∈ N and choice of t1, ..., tn ∈ X and c1, ..., cn ∈ R.
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RKHS and kernels

The following theorem relates pd kernels and RKHS

Theorem
a) For every RKHS there exist an associated reproducing
kernel which is symmetric and positive definite

b) Conversely every symmetric, positive definite kernel K on
X × X defines a unique RKHS on X with K as its reproducing
kernel
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Sketch of proof

a) We must prove that the rk K (t , x) = 〈Kt ,Kx〉H is symmetric
and pd.
• Symmetry follows from the symmetry property of dot products

〈Kt ,Kx〉H = 〈Kx ,Kt〉H

• K is pd because

n∑
i,j=1

cicjK (ti , tj) =
n∑

i,j=1

cicj〈Kti ,Ktj 〉H = ||
∑

cjKtj ||
2
H ≥ 0.
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Sketch of proof (cont.)

b) Conversely, given K one can construct the RKHS H as the
completion of the space of functions spanned by the set
{Kx |x ∈ X} with a inner product defined as follows.
The dot product of two functions f and g in span{Kx |x ∈ X}

f (x) =
s∑

i=1

αiKxi (x)

g(x) =
s′∑

i=1

βiKx ′i
(x)

is by definition

〈f ,g〉H =
s∑

i=1

s′∑
j=1

αiβjK (xi , x ′j ).
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Examples of pd kernels

Very common examples of symmetric pd kernels are
• Linear kernel

K (x , x ′) = x · x ′

• Gaussian kernel

K (x , x ′) = e−
‖x−x′‖2

σ2 , σ > 0

• Polynomial kernel

K (x , x ′) = (x · x ′ + 1)d , d ∈ N

For specific applications, designing an effective kernel is a
challenging problem.
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Examples of pd kernels

Kernel are a very general concept. We can have kernel on
vectors, string, matrices, graphs, probabilities...
Combinations of Kernels allow to do integrate different
kinds of data.
Often times Kernel are views and designed to be similarity
measure (in this case it make sense to have normalized
kernels)

d(x , x ′)2 =
∥∥Kx − K ′x

∥∥2
= 2(1− K (x , x ′)).
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