MIT 9.520/6.860
 Statistical Learning Theory and Applications

Class 0: Mathcamp

Lorenzo Rosasco

Vector Spaces

Hilbert Spaces

Functionals and Operators (Matrices)

Linear Operators

Probability Theory

We like \mathbb{R}^{D} because we can

- add elements $v+w$
- multiply by numbers $3 v$
- take scalar products $v^{T} w=\sum_{j=1}^{D} v^{j} w^{j}$
- \ldots and norms $\|v\|=\sqrt{v^{T} v}=\sqrt{\sum_{j=1}^{D}\left(v^{j}\right)^{2}}$
- ... and distances $d(v, w)=\|v-w\|=\sum_{j=1}^{D}\left(v^{j}-w^{j}\right)^{2}$.

We want to do the same thing with $D=\infty \ldots$

Vector Space

- A vector space is a set V with binary operations

$$
+: V \times V \rightarrow V \quad \text { and } \quad \cdot: \mathbb{R} \times V \rightarrow V
$$

such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

$$
\begin{aligned}
& \text { 1. } v+w=w+v \\
& \text { 2. }(v+w)+x=v+(w+x) \\
& \text { 3. There exists } 0 \in V \text { such tha } \\
& \text { 4. For every } v \in V \text { there exists } \\
& \text { 5. } a(b v)=(a b) v \\
& \text { 6. } 1 v=v \\
& \text { 7. } \\
& \text { 8. } \\
& \text { 8 } a(v+b) v=a v+b v \\
& \text { (})=a v+a w
\end{aligned}
$$

$$
\text { 3. There exists } 0 \in V \text { such that } v+0=v \text { for all } v \in V
$$

$$
\text { 4. For every } v \in V \text { there exists }-v \in V \text { such that } v+(-v)=0
$$

- Example: \mathbb{R}^{n}, space of polynomials, space of functions.

Inner Product

- An inner product is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

$$
\begin{aligned}
& \text { 1. }\langle v, w\rangle=\langle w, v\rangle \\
& \text { 2. }\langle a v+b w, x\rangle=a\langle v, x\rangle+b\langle w, x\rangle \\
& \text { 3. }\langle v, v\rangle \geqslant 0 \text { and }\langle v, v\rangle=0 \text { if and only if } v=0 \text {. }
\end{aligned}
$$

- $v, w \in V$ are orthogonal if $\langle v, w\rangle=0$.
- Given $W \subseteq V$, we have $V=W \oplus W^{\perp}$, where $W^{\perp}=\{v \in V \mid\langle v, w\rangle=0$ for all $w \in W\}$.
- Cauchy-Schwarz inequality: $\langle v, w\rangle \leqslant\langle v, v\rangle^{1 / 2}\langle w, w\rangle^{1 / 2}$.

Norm

- A norm is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ such that for all $a \in \mathbb{R}$ and $v, w \in V$:

1. $\|v\| \geqslant 0$, and $\|v\|=0$ if and only if $v=0$
2. $\|a v\|=|a|\|v\|$
3. $\|v+w\| \leqslant\|v\|+\|w\|$

- Can define norm from inner product: $\|v\|=\langle v, v\rangle^{1 / 2}$.

Metric

- A metric is a function $d: V \times V \rightarrow \mathbb{R}$ such that for all $v, w, x \in V$:

1. $d(v, w) \geqslant 0$, and $d(v, w)=0$ if and only if $v=w$
2. $d(v, w)=d(w, v)$
3. $d(v, w) \leqslant d(v, x)+d(x, w)$

- Can define metric from norm: $d(v, w)=\|v-w\|$.

Basis

- $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V if every $v \in V$ can be uniquely decomposed as

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

for some $a_{1}, \ldots, a_{n} \in \mathbb{R}$.

- An orthonormal basis is a basis that is orthogonal $\left(\left\langle v_{i}, v_{j}\right\rangle=0\right.$ for $i \neq j$) and normalized ($\left\|v_{i}\right\|=1$).

Vector Spaces

Hilbert Spaces

Functionals and Operators (Matrices)

Linear Operators

Probability Theory

Hilbert Space, overview

- Goal: to understand Hilbert spaces (complete inner product spaces) and to make sense of the expression

$$
f=\sum_{i=1}^{\infty}\left\langle f, \phi_{i}\right\rangle \phi_{i}, \quad f \in \mathcal{H}
$$

- Need to talk about:

1. Cauchy sequence
2. Completeness
3. Density
4. Separability

Cauchy Sequence

- Recall: $\lim _{n \rightarrow \infty} x_{n}=x$ if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left\|x-x_{n}\right\|<\epsilon$ whenever $n \geqslant N$.
- $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left\|x_{m}-x_{n}\right\|<\epsilon$ whenever $m, n \geqslant N$.
- Every convergent sequence is a Cauchy sequence (why?)

Completeness

- A normed vector space V is complete if every Cauchy sequence converges.
- Examples:

1. \mathbb{Q} is not complete.
2. \mathbb{R} is complete (axiom).
3. \mathbb{R}^{n} is complete.
4. Every finite dimensional normed vector space (over \mathbb{R}) is complete.

Hilbert Space

- A Hilbert space is a complete inner product space.
- Examples:

1. \mathbb{R}^{n}
2. Every finite dimensional inner product space.
3. $\ell_{2}=\left\{\left(a_{n}\right)_{n=1}^{\infty} \mid a_{n} \in \mathbb{R}, \sum_{n=1}^{\infty} a_{n}^{2}<\infty\right\}$
4. $L_{2}([0,1])=\left\{f:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} f(x)^{2} d x<\infty\right\}$

Density

- Y is dense in X if $\bar{Y}=X$.
- Examples:

1. \mathbb{Q} is dense in \mathbb{R}.
2. \mathbb{Q}^{n} is dense in \mathbb{R}^{n}.
3. Weierstrass approximation theorem: polynomials are dense in continuous functions (with the supremum norm, on compact domains).

Separability

- X is separable if it has a countable dense subset.
- Examples:

1. \mathbb{R} is separable.
2. \mathbb{R}^{n} is separable.
3. $\ell_{2}, L_{2}([0,1])$ are separable.

Orthonormal Basis

- A Hilbert space has a countable orthonormal basis if and only if it is separable.
- Can write:

$$
f=\sum_{i=1}^{\infty}\left\langle f, \phi_{i}\right\rangle \phi_{i} \text { for all } f \in \mathcal{H}
$$

- Examples:

1. Basis of ℓ_{2} is $(1,0, \ldots),,(0,1,0, \ldots),(0,0,1,0, \ldots), \ldots$
2. Basis of $L_{2}([0,1])$ is $1,2 \sin 2 \pi n x, 2 \cos 2 \pi n x$ for $n \in \mathbb{N}$

Vector Spaces

Hilbert Spaces

Functionals and Operators (Matrices)

Linear Operators

Probability Theory

Maps

Next we are going to review basic properties of maps on a Hilbert space.

- functionals: $\Psi: \mathcal{H} \rightarrow \mathbb{R}$
- linear operators $A: \mathcal{H} \rightarrow \mathcal{H}$, such that $A(a f+b g)=a A f+b A g$, with $a, b \in \mathbb{R}$ and $f, g \in \mathcal{H}$.

Representation of Continuous Functionals

Let \mathcal{H} be a Hilbert space and $g \in \mathcal{H}$, then

$$
\Psi_{g}(f)=\langle f, g\rangle, \quad f \in \mathcal{H}
$$

is a continuous linear functional.
Riesz representation theorem
The theorem states that every continuous linear functional Ψ can be written uniquely in the form,

$$
\Psi(f)=\langle f, g\rangle
$$

for some appropriate element $g \in \mathcal{H}$.

Matrix

- Every linear operator $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ can be represented by an $m \times n$ matrix A.
- If $A \in \mathbb{R}^{m \times n}$, the transpose of A is $A^{\top} \in \mathbb{R}^{n \times m}$ satisfying

$$
\langle A x, y\rangle_{\mathbb{R}^{m}}=(A x)^{\top} y=x^{\top} A^{\top} y=\left\langle x, A^{\top} y\right\rangle_{\mathbb{R}^{n}}
$$

for every $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$.

- A is symmetric if $A^{\top}=A$.

Eigenvalues and Eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^{n}$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $A v=\lambda v$.
- Symmetric matrices have real eigenvalues.
- Spectral Theorem: Let A be a symmetric $n \times n$ matrix. Then there is an orthonormal basis of \mathbb{R}^{n} consisting of the eigenvectors of A.
- Eigendecomposition: $A=V \wedge V^{\top}$, or equivalently,

$$
A=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\top}
$$

Singular Value Decomposition

- Every $A \in \mathbb{R}^{m \times n}$ can be written as

$$
A=U \Sigma V^{\top},
$$

where $U \in \mathbb{R}^{m \times m}$ is orthogonal, $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal, and $V \in \mathbb{R}^{n \times n}$ is orthogonal.

- Singular system:

$$
\begin{array}{rlrl}
A v_{i} & =\sigma_{i} u_{i} & A A^{\top} u_{i} & =\sigma_{i}^{2} u_{i} \\
A^{\top} u_{i} & =\sigma_{i} v_{i} & A^{\top} A v_{i} & =\sigma_{i}^{2} v_{i}
\end{array}
$$

Matrix Norm

- The spectral norm of $A \in \mathbb{R}^{m \times n}$ is

$$
\|A\|_{\text {spec }}=\sigma_{\max }(A)=\sqrt{\lambda_{\max }\left(A A^{\top}\right)}=\sqrt{\lambda_{\max }\left(A^{\top} A\right)}
$$

- The Frobenius norm of $A \in \mathbb{R}^{m \times n}$ is

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}=\sqrt{\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2}}
$$

Positive Definite Matrix

A real symmetric matrix $A \in \mathbb{R}^{m \times m}$ is positive definite if

$$
x^{T} A x>0, \quad \forall x \in \mathbb{R}^{m}
$$

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices $>$ is replaced by \geqslant.

Vector Spaces

Hilbert Spaces

Functionals and Operators (Matrices)

Linear Operators

Probability Theory

Linear Operator

- An operator $L: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is linear if it preserves the linear structure.
- A linear operator $L: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is bounded if there exists $C>0$ such that

$$
\|L f\|_{\mathcal{H}_{2}} \leqslant C\|f\|_{\mathcal{H}_{1}} \text { for all } f \in \mathcal{H}_{1} .
$$

- A linear operator is continuous if and only if it is bounded.

Adjoint and Compactness

- The adjoint of a bounded linear operator $L: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a bounded linear operator $L^{*}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ satisfying

$$
\langle L f, g\rangle_{\mathcal{H}_{2}}=\left\langle f, L^{*} g\right\rangle_{\mathcal{H}_{1}} \text { for all } f \in \mathcal{H}_{1}, g \in \mathcal{H}_{2} .
$$

- L is self-adjoint if $L^{*}=L$. Self-adjoint operators have real eigenvalues.
- A bounded linear operator $L: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is compact if the image of the unit ball in \mathcal{H}_{1} has compact closure in \mathcal{H}_{2}.

Spectral Theorem for Compact Self-Adjoint Operator

- Let $L: \mathcal{H} \rightarrow \mathcal{H}$ be a compact self-adjoint operator. Then there exists an orthonormal basis of \mathcal{H} consisting of the eigenfunctions of L,

$$
L \phi_{i}=\lambda_{i} \phi_{i}
$$

and the only possible limit point of λ_{i} as $i \rightarrow \infty$ is 0 .

- Eigendecomposition:

$$
L=\sum_{i=1}^{\infty} \lambda_{i}\left\langle\phi_{i}, \cdot\right\rangle \phi_{i}
$$

Probability Space

A triple (Ω, \mathcal{A}, P), where Ω is a set,
\mathcal{A} a Sigma Algebra, i.e. a family of subsets of Ω s.t.

- $X, \emptyset \in \mathcal{A}$,
- $A \in \mathcal{A} \Rightarrow \Omega \backslash A \in \mathcal{A}$,
- $A_{i} \in \mathcal{A}, i=1,2 \cdots \Rightarrow \cup_{i=1}^{\infty} A_{i} \in \mathcal{A}$.
P a probability measure, i.e a function $P: \mathcal{A} \rightarrow[0,1]$
- $P(X)=1$ (hence and $P(\emptyset)=0$),
- Sigma additivity: If $A_{i} \in \mathcal{A}, i=1,2 \ldots$ are disjoint, then

$$
P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Real Random Variables (RV)

A measurable function $X: \Omega \rightarrow \mathbb{R}$, i.e. mapping elements of the sigma algebra in open subsets of \mathbb{R}.

- Law of a random variable: probability measure on \mathbb{R} defined as

$$
\rho(I)=P\left(X^{-1}(I)\right)
$$

for all open subsets $I \subset \mathbb{R}$.

- Probability density function of a probability measure ρ on X : a function $p: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\int_{I} d \rho(x)=\int_{I} p(x) d x
$$

for open subsets $I \subset \mathbb{R}$.

Convergence of Random Variables

$X_{i}, i=1,2, \ldots$, a sequence of random variables.

- Convergence in probability:

$$
\forall \epsilon \in(0, \infty), \quad \lim _{i \rightarrow \infty} \mathbb{P}\left(\left|X_{i}-X\right|>\epsilon\right)=0
$$

- Almost Sure Convergence:

$$
\mathbb{P}\left(\lim _{i \rightarrow \infty} X_{i}=X\right)=1
$$

Law of Large Numbers

$X_{i}, i=1,2, \ldots$, sequence of independent copies of a random variable X

Weak Law of Large Numbers:

$$
\forall \epsilon \in(0, \infty), \quad \lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mathbb{E}[X]\right|>\epsilon\right)=0
$$

Strong Law of Large Numbers:

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}=\mathbb{E}[X]\right)=1
$$

Concentration Inequalities

X, be a random variable $\forall \epsilon \in(0, \infty)$

- Markov's inequality: if $X>0$

$$
\mathbb{P}(X \geqslant \epsilon) \leqslant \frac{\mathbb{E}[X]}{\epsilon}
$$

- Chebysev's inequality: If $\operatorname{Var}[X]<\infty$

$$
\mathbb{P}(|X-\mathbb{E}[X]| \geqslant \epsilon) \leqslant \frac{\mathbb{V a r}[X]}{\epsilon^{2}}
$$

Concentration Inequalities for Sums

X_{1}, \ldots, X_{n} identical independent random variables with expectation $\mathbb{E}[X]$.

Chebysev's inequality can be applied to $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ to get

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mathbb{E}[X]\right| \geqslant \epsilon\right) \leqslant \frac{\mathbb{V a r}[X]}{\epsilon^{2} n}
$$

A stronger results holds if $\left|X_{i}\right|<c$.

- Höeffding's inequality:

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mathbb{E}[X]\right| \geqslant \epsilon\right) \leqslant 2 e^{-\frac{\epsilon^{2} n}{2 c^{2}}}
$$

