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RD

We like RD because we can

I add elements v + w

I multiply by numbers 3v

I take scalar products vTw =
∑D

j=1 v
jw j

I . . . and norms ‖v‖ =
√
vT v =

√∑D
j=1(v

j)2

I . . . and distances d(v ,w) = ‖v − w‖ =
∑D

j=1(v
j − w j)2.

We want to do the same thing with D = ∞. . .



Vector Space

I A vector space is a set V with binary operations

+: V × V → V and · : R× V → V

such that for all a, b ∈ R and v ,w , x ∈ V :

1. v + w = w + v
2. (v + w) + x = v + (w + x)
3. There exists 0 ∈ V such that v + 0 = v for all v ∈ V
4. For every v ∈ V there exists −v ∈ V such that v + (−v) = 0
5. a(bv) = (ab)v
6. 1v = v
7. (a + b)v = av + bv
8. a(v + w) = av + aw

I Example: Rn, space of polynomials, space of functions.



Inner Product

I An inner product is a function 〈·, ·〉 : V × V → R such that
for all a, b ∈ R and v ,w , x ∈ V :

1. 〈v ,w〉 = 〈w , v〉
2. 〈av + bw , x〉 = a〈v , x〉+ b〈w , x〉
3. 〈v , v〉 > 0 and 〈v , v〉 = 0 if and only if v = 0.

I v ,w ∈ V are orthogonal if 〈v ,w〉 = 0.

I Given W ⊆ V , we have V = W ⊕W⊥, where
W⊥ = { v ∈ V | 〈v ,w〉 = 0 for all w ∈W }.

I Cauchy-Schwarz inequality: 〈v ,w〉 6 〈v , v〉1/2〈w ,w〉1/2.



Norm

I A norm is a function ‖ · ‖ : V → R such that for all a ∈ R and
v ,w ∈ V :

1. ‖v‖ > 0, and ‖v‖ = 0 if and only if v = 0

2. ‖av‖ = |a| ‖v‖
3. ‖v + w‖ 6 ‖v‖+ ‖w‖

I Can define norm from inner product: ‖v‖ = 〈v , v〉1/2.



Metric

I A metric is a function d : V × V → R such that for all
v ,w , x ∈ V :

1. d(v ,w) > 0, and d(v ,w) = 0 if and only if v = w

2. d(v ,w) = d(w , v)

3. d(v ,w) 6 d(v , x) + d(x ,w)

I Can define metric from norm: d(v ,w) = ‖v − w‖.



Basis

I B = {v1, . . . , vn} is a basis of V if every v ∈ V can be
uniquely decomposed as

v = a1v1 + · · ·+ anvn

for some a1, . . . , an ∈ R.

I An orthonormal basis is a basis that is orthogonal (〈vi , vj〉 = 0
for i 6= j) and normalized (‖vi‖ = 1).



Vector Spaces

Hilbert Spaces

Functionals and Operators (Matrices)

Linear Operators

Probability Theory



Hilbert Space, overview

I Goal: to understand Hilbert spaces (complete inner product
spaces) and to make sense of the expression

f =

∞∑
i=1

〈f ,φi 〉φi , f ∈ H

I Need to talk about:

1. Cauchy sequence

2. Completeness

3. Density

4. Separability



Cauchy Sequence

I Recall: limn→∞ xn = x if for every ε > 0 there exists N ∈ N
such that ‖x − xn‖ < ε whenever n > N.

I (xn)n∈N is a Cauchy sequence if for every ε > 0 there exists
N ∈ N such that ‖xm − xn‖ < ε whenever m, n > N.

I Every convergent sequence is a Cauchy sequence (why?)



Completeness

I A normed vector space V is complete if every Cauchy
sequence converges.

I Examples:

1. Q is not complete.

2. R is complete (axiom).

3. Rn is complete.

4. Every finite dimensional normed vector space (over R) is
complete.



Hilbert Space

I A Hilbert space is a complete inner product space.

I Examples:

1. Rn

2. Every finite dimensional inner product space.

3. `2 = {(an)
∞
n=1 | an ∈ R,

∑∞
n=1 a

2
n <∞}

4. L2([0, 1]) = {f : [0, 1]→ R |
∫1
0 f (x)

2 dx <∞}



Density

I Y is dense in X if Y = X .

I Examples:

1. Q is dense in R.

2. Qn is dense in Rn.

3. Weierstrass approximation theorem: polynomials are dense in
continuous functions (with the supremum norm, on compact
domains).



Separability

I X is separable if it has a countable dense subset.

I Examples:

1. R is separable.

2. Rn is separable.

3. `2, L2([0, 1]) are separable.



Orthonormal Basis

I A Hilbert space has a countable orthonormal basis if and only
if it is separable.

I Can write:

f =

∞∑
i=1

〈f ,φi 〉φi for all f ∈ H.

I Examples:

1. Basis of `2 is (1, 0, . . . , ), (0, 1, 0, . . . ), (0, 0, 1, 0, . . . ), . . .

2. Basis of L2([0, 1]) is 1, 2 sin 2πnx , 2 cos 2πnx for n ∈ N
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Maps

Next we are going to review basic properties of maps on a Hilbert
space.

I functionals: Ψ : H→ R
I linear operators A : H→ H, such that

A(af + bg) = aAf + bAg , with a, b ∈ R and f , g ∈ H.



Representation of Continuous Functionals

Let H be a Hilbert space and g ∈ H, then

Ψg (f ) = 〈f , g〉 , f ∈ H

is a continuous linear functional.

Riesz representation theorem

The theorem states that every continuous linear functional Ψ can
be written uniquely in the form,

Ψ(f ) = 〈f , g〉

for some appropriate element g ∈ H.



Matrix

I Every linear operator L : Rm → Rn can be represented by an
m × n matrix A.

I If A ∈ Rm×n, the transpose of A is A> ∈ Rn×m satisfying

〈Ax , y〉Rm = (Ax)>y = x>A>y = 〈x ,A>y〉Rn

for every x ∈ Rn and y ∈ Rm.

I A is symmetric if A> = A.



Eigenvalues and Eigenvectors

I Let A ∈ Rn×n. A nonzero vector v ∈ Rn is an eigenvector of
A with corresponding eigenvalue λ ∈ R if Av = λv .

I Symmetric matrices have real eigenvalues.

I Spectral Theorem: Let A be a symmetric n × n matrix.
Then there is an orthonormal basis of Rn consisting of the
eigenvectors of A.

I Eigendecomposition: A = VΛV>, or equivalently,

A =

n∑
i=1

λiviv
>
i .



Singular Value Decomposition

I Every A ∈ Rm×n can be written as

A = UΣV>,

where U ∈ Rm×m is orthogonal, Σ ∈ Rm×n is diagonal, and
V ∈ Rn×n is orthogonal.

I Singular system:

Avi = σiui AA>ui = σ
2
i ui

A>ui = σivi A>Avi = σ
2
i vi



Matrix Norm

I The spectral norm of A ∈ Rm×n is

‖A‖spec = σmax(A) =
√
λmax(AA>) =

√
λmax(A>A).

I The Frobenius norm of A ∈ Rm×n is

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2ij =

√√√√min{m,n}∑
i=1

σ2i .



Positive Definite Matrix

A real symmetric matrix A ∈ Rm×m is positive definite if

xTAx > 0, ∀x ∈ Rm.

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices > is replaced by >.
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Linear Operator

I An operator L : H1 → H2 is linear if it preserves the linear
structure.

I A linear operator L : H1 → H2 is bounded if there exists
C > 0 such that

‖Lf ‖H2 6 C‖f ‖H1 for all f ∈ H1.

I A linear operator is continuous if and only if it is bounded.



Adjoint and Compactness

I The adjoint of a bounded linear operator L : H1 → H2 is a
bounded linear operator L∗ : H2 → H1 satisfying

〈Lf , g〉H2 = 〈f , L∗g〉H1 for all f ∈ H1, g ∈ H2.

I L is self-adjoint if L∗ = L. Self-adjoint operators have real
eigenvalues.

I A bounded linear operator L : H1 → H2 is compact if the
image of the unit ball in H1 has compact closure in H2.



Spectral Theorem for Compact Self-Adjoint Operator

I Let L : H→ H be a compact self-adjoint operator. Then
there exists an orthonormal basis of H consisting of the
eigenfunctions of L,

Lφi = λiφi

and the only possible limit point of λi as i →∞ is 0.

I Eigendecomposition:

L =

∞∑
i=1

λi 〈φi , ·〉φi .



Probability Space

A triple (Ω,A,P), where Ω is a set,

A a Sigma Algebra, i.e. a family of subsets of Ω s.t.

I X, ∅ ∈ A,

I A ∈ A⇒ Ω\A ∈ A,

I Ai ∈ A, i = 1, 2 · · · ⇒ ∪∞i=1Ai ∈ A.

P a probability measure, i.e a function P : A→ [0, 1]

I P(X) = 1 (hence and P(∅) = 0),

I Sigma additivity: If Ai ∈ A, i = 1, 2 . . . are disjoint, then

P (∪∞i=1Ai ) =

∞∑
i=1

P(Ai )



Real Random Variables (RV)

A measurable function X : Ω→ R, i.e. mapping elements of the
sigma algebra in open subsets of R.

I Law of a random variable: probability measure on R defined as

ρ(I ) = P(X−1(I ))

for all open subsets I ⊂ R.

I Probability density function of a probability measure ρ on X :
a function p : R→ R such that∫

I
dρ(x) =

∫
I
p(x)dx

for open subsets I ⊂ R.



Convergence of Random Variables

Xi , i = 1, 2, . . . , a sequence of random variables.

I Convergence in probability:

∀ε ∈ (0,∞), lim
i→∞P (|Xi − X | > ε) = 0.

I Almost Sure Convergence:

P
(

lim
i→∞Xi = X

)
= 1.



Law of Large Numbers

Xi , i = 1, 2, . . . , sequence of independent copies of a random
variable X

Weak Law of Large Numbers:

∀ε ∈ (0,∞), lim
n→∞P

(∣∣∣∣∣1n
n∑

i=1

Xi − E[X ]

∣∣∣∣∣ > ε
)

= 0.

Strong Law of Large Numbers:

P

(
lim
n→∞ 1

n

n∑
i=1

Xi = E[X ]

)
= 1.



Concentration Inequalities

X , be a random variable ∀ε ∈ (0,∞)

I Markov’s inequality: if X > 0

P (X > ε) 6
E[X ]

ε

I Chebysev’s inequality: If Var [X ] <∞
P (|X − E[X ]| > ε) 6

Var [X ]

ε2



Concentration Inequalities for Sums

X1, . . . ,Xn identical independent random variables with
expectation E[X ].

Chebysev’s inequality can be applied to 1
n

∑n
i=1 Xi to get

P

(∣∣∣∣∣1n
n∑

i=1

Xi − E[X ]

∣∣∣∣∣ > ε
)

6
Var [X ]

ε2n

A stronger results holds if |Xi | < c .

I Höeffding’s inequality:

P

(∣∣∣∣∣1n
n∑

i=1

Xi − E[X ]

∣∣∣∣∣ > ε
)

6 2e−
ε2n
2c2
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