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Bond algebra is an approach to duality in statistical mechanics that focuses on the local interaction
terms (bonds) in a Hamiltonian or a transfer matrix, which can form a von Neumann algebra. This
algebra encapsulates the structural and symmetry properties of the system, providing a general
framework to capture universal features of phase transitions and critical phenomena. In this paper,
I review the basic definition of this approach and its applications to dualities in both the quantum
and classical models. I will also use it to derive a duality between models that are modified versions
of the D = 3 classical vector Potts and Zp gauge models. This is a p−state generalization of the
well known duality between the D = 3 Ising model and the Z2 gauge model.

I. INTRODUCTION

Duality connects two different realizations of
essentially the same object and is pervasive in physics.
The oldest well-known example is probably the
electromagnetic duality of Maxwell’s equations in the
absence of sources. The duality has also been popular
in field theories such as Anti de Sitter–conformal field
theory (AdS–CFT) correspondence. In the context
of statistical physics, Kramers and Wannier[1] first
introduced the duality for the two-dimensional Ising
model on a square lattice between the high and low
temperature phases, and used it to determine the
exact critical temperature. This duality focused on the
partition functions of classical statistical models and
was referred to classical duality in this paper. Later,
it was generalized to models with general elementary
degrees of freedom and lattices with the aid of the
Fourier transformation[2, 3]. Another concept of
duality was developed at the same time for quantum
many-body problems concerned with connections
between two quantum Hamiltonians[4], which is referred
to as quantum duality here. It established a unitary
equivalence between two Hamiltonians by finding two
representations of the algebra of the elementary degrees
of freedom (e.g., two sets of spin operators on lattice
sites satisfying the same commutation relations). In
a broader sense, the quantum duality can include
duality mappings that change the elementary statistics.
For instance, spin 1/2 operators are mapped onto
spinless fermions by a transformation known as the
Jordan–Wigner transformation[5], which can also be
regarded as a duality. Such duality transformations
are valuable because they provide exact solvability in
one-dimensional systems.

In 2010, Cobanera et al. introduced a new approach
to both classical and quantum dualities in a unified
way[6, 7]. In contrast to the traditional approach, their
theory of dualities rests on the observation that the
bonds or interactions of a Hamiltonian or a transfer
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matrix are of more relevance to a duality transformation
than the elementary degrees of freedom. Those bonds,
or interactions, are organized into a bond algebra,
which is a Von Neumann algebra. The dualities are
then structure-preserving mappings (homomorphisms)
of bond algebras, typically local in the bonds. The
crucial difference with the traditional approach is that
the bond algebras are model-specific. By choosing
different decompositions of the bonds, one can achieve
different dualities for the same model. On the other hand,
different models may share the same bond algebra, so one
model’s duality can be transferred directly to another
model’s duality. This approach can be systematically
applied to more general models and is especially efficient
for lattice gauge theory, where the bond algebra can be
utilized to eliminate gauge constraints.
In this paper, I will summarize the bond algebra

approach to duality and use it to find some dualities
of statistical models. Section. II starts with the basic
definition and properties of the bond algebra. The rest of
the paper is devoted to this method to establish dualities.
Section. III investigate the quantum duality with the
example of lattice Zp gauge theory. It also illustrates
the idea of gauge-reducing duality by mapping the Zp

model to the vector Potts (VP) model without any local
gauge symmetry. Section. IV presents the dualities
of classical statistical models. In particular, I show
its connection with quantum duality and how the bond
algebra approach can transform a quantum duality into
a classical duality.

II. BOND ALGEBRA BASICS

A. Definition

To define the bond algebra, consider a Hamiltonian
operator H, written as a sum of bond operators hΓ

H =
∑
Γ

λΓhΓ (1)

with c-number coupling constants λΓ. The index ” Γ ” is
completely general. It could stand for a particle index, or
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a site, a link, or some other subregions of a lattice Λ. A
bond algebra for the Hamiltonian H is defined as the von
Neumann algebra A{hΓ} generated by the bonds {hΓ}.
To be specific, it’s the sub-algebra of B(H) (the algebra
of bounded operators on Hilbert space H), generated by
the bonds, that satisfies the following conditions: (1) It
contains the identity operator, I ∈ A. (2) It is closed
under Hermitian conjugation, if O ∈ A, then O† ∈ A as
well. (3) It is equal to its bycommutant, A = A′′. The
commutant of a subset S is defined by

S ′ = {O ∈ B(H) | ∀R ∈ S,OR = RO}. (2)

Intuitively speaking, A{hΓ} is an algebra of operators
generated by taking all possible finite, complex, linear
combinations of powers and products of bonds, their
Hermitian conjugates, and the identity operator I,{
⊮, hΓ, h†Γ, hΓhΓ′ , h†Γ′hΓ′ , h†Γ′hΓ, h

†
Γ′h

†
Γ′ , hΓhΓ′hΓ′′ , . . .

}
.

(3)
A mapping of von Neumann algebras Φ : A1 → A2 is

an homomorphism if

Φ(I) = I, Φ
(
O†) = Φ(O)†

Φ (O1O2) = Φ (O1) Φ (O2) ,

Φ (O1 + λO2) = Φ (O1) + λΦ (O2) .

(4)

If Φ is one-to-one and onto, it’s called an isomorphism. A
theorem[8] guarantees that Φ can be implemented as an
isometry: Φ(O) = UOU† and U†U = I. For models
without gauge symmetry, the bond algebra approach
to dualities is that quantum dualities are isomorphisms
of bond algebras. Hence, the duality mapping Φ is an
isomorphism and U is a unitary. The gauge-reducing
dualities and classical dualities will be discussed later.

B. Quantum Ising chain

To illustrate these concepts, consider the quantum
Ising chain (one-dimensional transverse field Ising model)

HI[h, J ](σ) =
∑
i

(
hσx

i + Jσz
i σ

z
i+1

)
. (5)

HI features S = 1
2 spins located at each site i ∈ Z of a

chain, represented by Pauli matrices σx
i and σz

i . Take the
basic bonds inHI of Equation (15) to be

{
σz
i σ

z
i+1

}
, {σx

i }.
They generate a bond algebra AI that is characterized

by: (1)
(
σz
i σ

z
i+1

)2
= I = (σx

i )
2
; (2) Any bond σx

i

anti-commutes with two other bonds, σz
i−1σ

z
i and σz

i σ
z
i+1,

and commutes with all other bonds; (3) Any bond σz
i σ

z
i+1

anti-commutes with two other bonds, σx
i and σx

i+1, and
commutes with all other bonds. It’s easy to see that σx

i

and σz
i σ

z
i+1 play perfectly symmetrical roles, and so we

can set up the mapping

Φd

(
σz
i σ

z
i+1

)
= σx

i , Φd (σ
x
i ) = σz

i−1σ
z
i . (6)

and extends it to a unique isomorphism of the full bond
algebra AI . It follows that the quantum Ising chain is
self-dual

HI[h, J ]
Φd−−→ HI[J, h]. (7)

Therefore, its energy levels are symmetric in J and h
(EI(J, h) = EI(h, J)) and it displays a quantum phase
transition at the self-dual point h = J .

As pointed out before, this duality Φd can be applied to
Hamiltonians other than HI, as long as they are affiliated
to AI (whose bond algebra is a sub-algebra of AI ).
can apply Φd to Hamiltonians other than HI, as long
as they are affiliated to AI. For example, consider the
one-dimensional spin S = 1

2 XY-model,

HXY =
∑
i

(
Jxσ

x
i σ

x
i+1 + Jzσ

z
i σ

z
i+1

)
. (8)

The bonds σz
i σ

z
i+1 of HXY are already bonds of HI.

The σx
i σ

x
i+1 in HXY are the products of two bonds of

HI. Thus, it is possible to use the isomorphism of the
quantum Ising model to compute a dual form of the

XY-model. As σx
i σ

x
i+1

Φd−−→ σz
i−1σ

z
i σ

z
i σ

z
i+1, we find that

HXY
Φd−−→ HInn =

∑
i

(
Jxσ

z
i−1σ

z
i+1 + Jzσ

x
i

)
. (9)

HInn is trivially dual to two decoupled Ising chains. The
fact that, in d = 1, HXY and HInn share the same energy
spectra was first noted by Pfeuty[9].

C. Determination of dual variables

The traditional approach to dualities focuses on dual
variables that are the operator change of non-local
variables. To connect with it, the isomorphism of bond
algebras can be used to uniquely determine the problem’s
dual variables. However, duality mappings established
in the limit of infinite size are well defined only on finite
combinations of bonds, but have ill-defined actions on
infinite combinations of bonds[7]. The naive extension
of the action of duality mappings by homomorphism will
cause multi-valued problems. The practical solution is
to work with bond algebras of finite-size systems with
suitably chosen boundary conditions to restore the exact
duality. Take the quantum Ising model for example, let’s
consider its finite-size rendition

H∗
I [h, J ] = −J

N−1∑
j=1

σz
jσ

z
j+1 − h

N−1∑
j=1

σx
j . (10)

Notice that the transverse field h is not applied to site N .
This special arrangement makes it possible to formulate
an exact quantum duality.
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The exact self-duality isomorphism is constructed as

σx
i

Φd−−→ σz
r(i)−1σ

z
r(i), i = 1, 2, . . . , N − 1,

σz
i σ

z
i+1

Φd−−→ σx
r(i)−1, i = 1, 2, . . . , N − 1,

σx
N

Φd−−→ σz
1 ,

σz
1

Φd−−→ σx
N .

(11)

r(i) = N + 1 − i represents the inversion map. It’s
easy to check the first two lines of Eq.(11) preserve
the anti-commutation relations and give the self-duality:
Φd(H

∗
I [h, J ]) = H∗

I [J, h]. The bonds σx
N and σz

1 are also
added to the bond algebra A∗

I and the isomorphism Φd

is extended to act on them as in the last two lines of
Eq.(11). Those extra bonds guarantee that the individual
spins σz

i , i = 1, . . . , N are elements in the bond algebra,
since we can write

σz
i = σz

i σ
z
i−1 × σz

i−1σ
z
i−2 × · · · × σz

2σ
z
1 × σz

1 . (12)

Then the dual variables µx,y,z
i := Φd (σ

x,y,z
i ) are

µx
i = σz

r(i)−1σ
z
r(i), i = 1, 2, . . . , N − 1,

µx
N = σz

1 ,

µz
i =

N∏
m=i

σx
r(m).

(13)

This gives essentially the same results as the traditional
approach focusing on the elementary spin operators[4].
Notice that even the dual bonds are strictly local, the
dual variables (µz

i ) are usually non-local in space, which
are represented as products of a string of spin operators.

With the finite rendition, it’s also straightforward
to explicitly construct the unitary operator Ud that
implements the isomorphism Φd. One can refer to [7]
for such an expression.

D. Duality and quantum symmetry

The connection between dualities and symmetries
is most explicit for self-dual models. As argued,
self-dualities are usually unitarily implementable
transformations and preserve the form of the
Hamiltonian H. However, self-duality will change
the coupling parameters, so it’s not a symmetry of
H. Nevertheless, there is a close relation between
self-duality and symmetry. Suppose, for simplicity, that
we have a Hamiltonian H[λ1, λ2, · · · ], dependent upon a
set of couplings λν , that is self-dual under the exchange
λ1 ↔ λ2, that is

UdH [λ1, λ2, . . .]U†
d = H [λ2, λ1, . . .] , (14)

with Ud a unitary independent of the couplings. Ud

relates to symmetries of H in two ways. First,[
H [λ1, λ2, . . .] ,U2n

d

]
= 0, (15)

i.e. U2n
d are symmetries of H for any n = 1, 2 . . .. Second,

Eq.(14) shows that at the self-dual point λ1 = λ2, Ud

commutes withH. Hence, Ud emerges as a new symmetry
at the self-dual point.
Again, consider the isomorphism (6) of the quantum

Ising model (5). Due to the duality of (7), U2
d commutes

with HI. Indeed, it’s just the translational symmetry

U2
dσ

x
i U

†2
d = σx

i−1, U2
dσ

z
i σ

z
i+1U

†2
d = σz

i−1σ
z
i . (16)

III. QUANTUM DUALITY

A. Gauging-reducing dualities

Lattice gauge theories are models with local
symmetries that look like gauge symmetries. In
general, gauge symmetries are constraints pointing to a
fundamental redundancy. The state space of a model
with gauge symmetries is larger than physical, which
contains states that cannot be prepared or observed by
experimental means. The sector of physical states is
precisely that sector that is invariant under the action
of all the local gauge symmetries. It turns out that
bond-algebraic dualities are practical tools for removing
gauge symmetries. If one chooses the bond algebra of the
gauge model wisely, one can find mappings that preserve
all the algebraic relationships to models that do not have
any gauge symmetries.
To be specific, letHG be the Hamiltonian for the gauge

model, with gauge symmetries G, [HG, G] = 0, and let
HGR be the dual, completely gauge-reduced model. Then
the gauge-reducing duality maps

Φd (HG) = HGR Φd (GΓ) = I ∀Γ, (17)

thus rendering all the gauge symmetries trivial. Note Φd

will change the number of degrees of freedom and cannot
be implemented unitarily. Indeed, Φd is implemented as
an isometry (rectangular matrices) U2

d that preserves the
norm of gauge-invariant states, and projects other states
out.

Φd(O) = UdOU†
d (18)

with

UdU
†
d = I, U†

dUd = PGI, (19)

with PGI = P 2
GI = P †

GI is the orthogonal projector onto
the subspace of gauge invariant states that satisfy

GΓ|ψ⟩ = |ψ⟩ ∀Γ. (20)

B. Two-dimensional Zp gauge/vector Potts models

As an example of the gauge-reducing dualities, let’s
consider the d = 2 dimensional Zp gauge theory,

HG = −1

2

∑
r

(
V(r,1) + V(r,2) + λB(r,3) + h.c.

)
. (21)
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FIG. 1. (Left panel) Convention to denote vertices r =(
r1, r2

)
= r1e1 + r2e2 in a two-dimensional square lattice

with unit vectors e1 and e2, and (right panel) links, attached
to a vertex r, (r, v) with ν = 1, 2.

with

B(r,3) := U(r,1)U(r+e1,2)U
†
(r+e2,1)

U†
(r,2). (22)

The operators U(r, ν) and V (r, ν), where ν = 1, 2,
located at the links (see Figure 2) of a square lattice
(see Figure.1), commute on different links, and satisfy
the Weyl group algebra (Appendix.A). The (21) is a
generalization of the Ising gauge model and reduces to
it when p = 2. HG displays a Zp gauge symmetry as
realized by the local symmetry operators

Gr = V(r,1)V(r,2)V
†
(r−e1,1)

V †
(r−e2,2)

. (23)

We want to find a transformation to a dual
Hamiltonian that is free of gauge symmetries. The d = 2
dimensional quantum VP model

HVP = −1

2

∑
r

(
λVr + UrU

†
r+e1

+ UrU
†
r+e2

+ h.c.
)
.

(24)
turns out to be the desired model. HVP is a
generalization of the d = 2 transverse field Ising model in
terms of Weyl group algebra operators. The bond algebra
homomorphism is

B(r,3)
Φd−−→ Vr, V(r,1)

Φd−−→ Ur−e2U
†
r , V(r,2)

Φd−−→ U†
r−e1

Ur,
(25)

which completes the elimination of gauge symmetries,

Φd (Gr) = Ur−e2U
†
r × U†

r−e1
Ur

× U†
r−e2−e1

Ur−e1 × Ur−e1−e2U
†
r−e2

= I.

(26)

This homomorphism affords a simple and conceptually
clarifying proof that HVP encodes the observable,
gauge-invariant physics of HG.
For later convenience, here I propose a duality between

the generalized HG and HVP. The key is to include all
the powers of Weyl generators in HG and HVP,

H∗
G[µ, λ] = −

p−1∑
m=0

∑
r

(
µm

∑
ν=1,2

V m
(r,ν) + λmB

m
(r,3)

)
= H0

G[λ] +H1
G[µ].

(27)

and

H∗
VP[µ, λ] = −

p−1∑
m=0

∑
r

(
λmV

m
r + µm

∑
ν=1,2

(UrU
†
r+eν

)m

)
= H0

VP[µ] +H1
VP[λ]

(28)
The coefficients λm, µm are real and symmetric (λm =
λp−m, same for µm). Since H∗

G and H∗
VP are affiliated

to the bond algebra of HG and HVP, the isomorphism
(25) also provides a duality between H∗

G and H∗
VP:

Φd (H
∗
G[µ, λ]) = H∗

VP[µ, λ].

IV. CLASSICAL DUALITY

A. General ideas

The bond-algebraic approach to dualities in classical
statistical mechanics can be performed in two ways. The
first way exploits the well-known relationship between
the partition functions of classical problems in D =
d + 1 dimensions and quantum Hamiltonian problems
in d. Using the closely related Suzuki–Trotter–Lie
(STL) decomposition for quantum lattice models[10], this
quantum-classical mapping takes the general form

Z(K) = Tr e−H[λ] (29)

where Z(K) stands for the path integral/partition
function, and the classical, K, and quantum, λ,
couplings are typically connected by non-linear
functional relationships. Then the dualities between
the quantum Hamiltonian can be translated into the
corresponding dualities between the classical partition
functions.
The second way is to associate bond algebras to

partition functions of classical models through the
transfer matrix. For example, row-to-row transfer
matrices express the partition function as

Z = Tr (T1 . . . Ts)
N
, (30)

where N is an integer related to the number of sites
in one of the lattice directions, and T1, · · · , Ts contain
information about the directions transverse to the time
direction. The general arguments concerning the additive
bond structure of quantum Hamiltonians can be repeated
verbatim for transfer matrices, with the only difference
that transfer matrices display a multiplicative rather
than additive bond structure:

Ti =
∏
Γ

TiΓ (31)

The {TiΓ}Γ,i=1,...,s are now the bonds of interest, and
the bond algebra proceeds as before. The duality is an
isomorphism between the bond algebra A{TiΓ}Γ,i=1,...,s

and A
{
TD
iΓ

}
Γ,i=1,...,s

, generated by a set of dual bonds
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TD
iΓ

}
Γ,i=1,...,s

. The dual transfer matrices TD
i =

UdTiU†
d =

∏
Γ T

D
iΓ will define, through Eq.(30), a

partition function ZD that may look very different from
Z. However,

ZD = Tr
(
TD
1 · · ·TD

s

)N
= Tr

(
UdT1 · · ·TsU†

d

)N
= Z.

(32)
This relationship between partition functions is the
classical bond-algebraic duality.

B. Duality by quantum-classical mapping

In this section, I illustrate the first method (classical
duality through the STL decomposition) by considering
the duality between the D = 2 dimensional XY model
and theD = 2 solid on solid (SoS) model. Their partition
functions are

ZXY =
∑
{θr}

exp

[∑
r

∑
ν=1,2

K cos (θr+eν
− θr)

]
, θr ∈ R,

ZSS =
∑
{mr}

exp

[∑
r

∑
v=1,2

K (mr+eν
−mr)

2

]
, mr ∈ Z.

(33)

First, consider the D = 2 XY model whose
Hamiltonian is

HXY = −J
∑
r

∑
ν=1,2

cos (θr+eν
− θr) . (34)

It can be mapped to the d = 1 quantum rotor model[11]
specified by the Hamiltonian

Hrotor [λ] =
∑
i

(
1

2
Li

2 − λ cos (θi+1 − θi)

)
= HL +Hθ, Li = −i ∂

∂θi
.

(35)

Using STL decomposition, the partition function of the
quantum rotor model can be written as

Zrotor (λ) = Tr
(
e−Hrotor

)
=
∑
θ1

⟨θ1| e−Hrotor |θ1⟩

= lim
M→∞

∑
θ1,···θM

⟨θ1| e−HL/Me−H0/M |θM ⟩ ⟨θM | e−HL/Me−H0/M |θM−1⟩ · · · ⟨θ2| e−HL/Me−H0/M |θ1⟩

= lim
M→∞

∑
θ1,···θM

⟨θ1| e−HL/M |θM ⟩ e−Hθ(θM )/M ⟨θM | e−HL/M |θM−1⟩ e−Hθ(θM−1)/M · · · ⟨θ2| e−HL/M |θ1⟩ e−H0(θ1)/M .

(36)

|θj⟩ = |θj,1⟩ |θj,2⟩ · · · |θj,N ⟩ is the N -spin angle
eigenstate. From Eq.(36), one should apply periodic
boundary conditions (PBC) along the temporal direction:

|θM+1⟩ = |θ1⟩. By inserting a complete set of
angular momentum eigenstates |m⟩, the matrix element
of e−HL/M is calculated to be

⟨θj+1| e−HL/M |θj⟩ =
∑
m

⟨θj+1| e−HL/M |m⟩ ⟨m | θj⟩ =
∏
k

∑
mk

exp
[
imk (θj+1,k − θj,k)−

µ

2M
m2

k

]

=
∏
k

∑
mk

∫ +∞

−∞
exp

[
2πimkϕ+ i (θj+1,k − θj,k)ϕ− µ

2M
ϕ2dϕ

]
=
∏
k

∑
mk

√
2πM

µ
exp

[
− 1

2µ
(2πmk + θj+1,k − θj.k)

2
M

]

≈
∏
k

√
2πM

µ
exp

[
M

µ
cos (θj+1,k − θj,k)−

M

µ

]
= exp

[
−MN

µ
+
N

2
ln

(
2πM

µ

)
+
∑
k

M

µ
cos (θj+1,k − θj,k)

]
.

(37)

The second line uses the Poisson summation formula, and the third line uses the Villain approximation. Finally,
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Zrotor (λ) = A · lim
M→∞

∑
{θj,k}

exp

∑
jk

M

µ
cos (θj+1,k − θj,k) +

λ

M
cos (θj,k+1 − θj,k)

 = A · lim
M→∞

ZXY

(
M

µ
,
λ

M

)
→ A · ZXY

(√
λ
)
.

(38)

In the last line, δτ = 1/M is set to the natural ultraviolet
cut-off, the inverse of the Josephson plasma frequency
ℏ/

√
λ, without changing the universality class[11].

Next, consider the d = 1 quantum SoS model[7] with
states labeled by integers {|mi⟩}.

HqSS =
1

2

∑
i

(
−λ
(
Ri +R†

i

)
+ (Xi+1 −Xi)

2
)
, (39)

with

X|m⟩ = m|m⟩, R|m⟩ = |m− 1⟩, R†|m⟩ = |m+ 1⟩,
(40)

that satisfy

[
X,R†] = R†, [X,R] = −R, RR† = I. (41)

By a similar argument, one can connect this quantum
model to the partition function of the D = 2 classical

SoS model

ZqSS (λ) = Tr
(
e−HqSS

)
= B · ZSS

(
1

2
√
λ

)
(42)

At last, the isomorphism

Li
Φd−−→ (Xi+1 −Xi) , ei(θi+1−θi) Φd−−→ Ri+1 (43)

establishes a duality between between Hrotor and HqSS:
Φd (Hrotor[K]) = HqSS[K]. Combining those relations,
we finally get the duality between the classical XY model
and the SoS model:

ZXY (K)
Φd−−→ ZSS (K

∗) , K∗ =
1

2K
. (44)

The XY model’s high-temperature phase corresponds to
the SoS model’s low-temperature phase, and vice versa.

C. Duality by transfer matrices

This section will use the transfer matrix method to
establish the duality between the D = 3 classical Zp

gauge and the VP model. Their (generalized) partition
functions are given by

ZG(K,L) = exp

[
p−1∑
m=0

∑
r

Km

∑
ν=1,2

cos
(
mΘ(r,ν

)
+ Lm cos

(
mΘ(r,3)

)]
, (45)

ZVP(K̄, L̄) = exp

[
p−1∑
m=0

∑
r

K̄m

∑
ν=1,2

cos (mθr −mθr+eν
) + L̄m cos (mθr+e3

−mθr)

]
. (46)

with

Θ(r,3) = θ(r,1)+θ(r+e1,2)−θ(r+e2,1)−θ(r,2), etc. (47)

The angle variables θ(r,1) (for ZG) or θr (for ZVP) are
defined on the links or sites on the D = 3 square lattice
(see Figure.1), and take p discrete values θ = 2πs/p, s =
0, · · · , p − 1. Both coefficients Km and Lm are real and
symmetric.

To determine the transfer matrix TG of ZG, we need
to partially fix the gauge of the model by considering
only configurations that satisfy the constraint θ(r, 3) = 0.
Since any other configuration can be obtained from one

satisfying this constraint by a gauge transformation, the
restriction has no physical consequence as long as we only
compute averages of gauge-invariant observables. Under
these conditions,

ZG(K,L) = ÑG Tr [TG(K,L)]
N3 ,

TG(K,L) = e−H1
G[µ]e−H0

G[λ].
(48)

with ÑG a counting factor introduced to compensate for
the gauge-fixing condition, and N3 is the number of sites
in the third lattice direction. H0

G[λ], H
1
G[µ] are given

in Eq.(27). The coupling constants are related by the
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discrete Fourier transform (see Eq.(A7))

e
∑p−1

s=0 Ks cos(mθs) =
1

p

p−1∑
s=0

cos (mθs) e
∑p−1

l=0 µl cos(lθs),

Lm = λm.
(49)

Similarly, the classical VP partition function can be
written as

ZVP(K̄, L̄) = Tr
[
TVP(K̄, L̄)

]N3
,

TVP(K̄, L̄) = e−H1
VP[λ̄]e−H0

VP[µ̄].
(50)

with H0
VP[µ̄], H

1
VP[λ̄] given in Eq.(28), and the coupling

constants are related by

e
∑p−1

s=0 L̄s cos(mθs) =
1

p

p−1∑
s=0

cos (mθs) e
∑p−1

l=0 λ̄l cos(lθs),

K̄m = µ̄m.

(51)

In both cases, H0 describes the interaction within a
lattice plane with constant r3, while H0 describes the
interaction between neighboring lattice planes.

According to the discussion at the end of Section.III B,
there exists an isomorphism Φd that provides a duality
between H∗

G and H∗
VP. Section.IIIA shows that Φd can

be implemented as an isometry Ud satisfying (18) and
(19). Hence,

ZG(K,L) = ÑG Tr [TG(K,L)]
N3

= NG Tr

[(
e−H1

G[µ]e−H0
G[λ]
)N3

PGI

]
= NG Tr

[(
Ude

−H1
G[µ]U†

dUde
−H0

G[λ]U†
d

)N3
]

= NG Tr

[(
e−H0

VP[µ]e−H1
VP[λ]

)N3
]

= NG Tr [TVP(K
∗, L∗)]

N3 = NGZVP(K
∗, L∗).

(52)
And the dual couplings defined by the discrete Fourier
transform

e
∑p−1

s=0 K∗
s cos(mθs) =

1

p

p−1∑
s=0

cos (mθs) e
∑p−1

l=0 Kl cos(lθs)

(53)
similarly for L. In particular, one can set L = K since
they transform under the duality in the same way.

This duality can be simplified in some special cases,
such as p = 2, 3, 4. Indeed, the summation over m in
(IVC) can be dropped, and only the m = 1 term will
survive. To see this, the K0 term only contributes to an
overall constant, irrelevant to the statistical properties.
Due to the symmetry K1 = Kp−1 and cos(θr) = cos((p−
1)θr), these two terms can be combined into theK1 term.
At last, when p = 4, one can show that if K2 = 0, then
K∗

2 = 0 as well by the formula (53). Therefore, we can

consistently only keep the K1 term in both partition
functions, which reduce to the conventional partition
functions of the classical Zp gauge and the VP model[7].
To be more explicit, consider the case p = 2. Then,
(IVC) simplifies to

ZG(K) = exp

[
K
∑
r

∑
µ

cos
(
mΘ(r,ν

)]

=
∑

{σ(r,µ)}
exp

[
K
∑
r

∑
µ>ν

σ(r,µ)σ(r+eµ,ν)σ(r+eν ,µ)σ(r,ν)

]
,

ZVP(K̄) = exp

[
K̄
∑
r

∑
µ

cos
(
mθr −mθr+eµ

)]

= exp

[
K̄
∑
r

∑
µ

σrσr+eµ

]
(54)

Thus, the duality reduces to the well known duality
between the D = 3 Ising model and Z2 gauge model.
One can regard the duality in (52) as its generalization
in the elementary degrees of freedom from the Pauli
group to the Heisenberg-Weyl group. To the best of
my knowledge, this derivation from the bond algebraic
approach is first explicitly laid out in this paper.

V. CONCLUSION

I have discussed briefly the bond algebraic approach
to both the quantum and classical dualities in this
paper. Since the bond algebra is model specific, it
can provide more varieties of duality even for the same
model. It’s also efficient in eliminating the gauge
constraints and reduce the model to a gauge symmetry
free model. This approach also have more applications
than what’s covered in this paper. For example, it
can be applied to study the duality in quantum field
theory, which has a continuous degrees of freedom. The
self-dual field theories that display the phenomenon
of dimensional reduction are of prime interest in the
theory of topological quantum order. Besides, as
mentioned before, the fermionization techniques such as
the Jordan–Wigner transformation can also be analyzed
through the prism of bond algebras, which illustrates
that it is not at all necessary to consider non-local
transformations. For further information about the
bond algebraic approach, one can refer to the paper by
Cobanera et al.[6, 7].

Appendix A: Weyl group algebra

In this appendix, I review some basic facts about
the Weyl group algebra[12]. It’s a finite group with
generators U and V characterized by the relationships

V U = ωUV, V p = 1 = Up, (A1)



8

where ω = e2πi/p is a p th root of unity. Eq.(A1)
completely determines the finite-dimensional irreducible
representations of U and V . A p-dimensional unitary
matrix representation is given by

V =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
1 0 0 · · · 0

 , U = diag
(
1, ω, ω2, . . . , ωp−1

)
.

(A2)
The matrix V is called the fundamental circulant matrix
and the matrix U is the phase matrix.
The Weyl group algebra admits a unitary

automorphism Φd as a discrete Fourier transform.
A direct calculation reveals that the unitary and
symmetric Fourier matrix F †

mn = ωmn/
√
p maps

Φ(U) = V † = FUF†, Φ(V ) = U = FVF†. (A3)

Any circulant matrix can be expanded in terms of the
powers of V , such that

e
∑p−1

m=0 amV m

=

p−1∑
m=0

bmV
m. (A4)

In physical applications, the am are
Hermitian-symmetric, ap−m = a∗m (to guarantee

that
∑p−1

m=0 amV
m is a Hermitian operator), and the

bm are real and positive. Thus, it is convenient to
assume that both sets of coefficients are real and satisfy
ap−m = am, bp−m = bm. Then by using F to diagonalize
V , FV F † = U , and that Tr

(
Um†Un

)
/p = δm,n, one

can show that

bm =
1

p

p−1∑
s=0

cos

(
2πms

p

)
e
∑p−1

l=0 al cos(2πls/p),

am =
1

p

p−1∑
s=0

cos

(
2πms

p

)
ln

(
p−1∑
l=0

bl cos

(
2πls

p

))
.

(A5)

Since bm is periodic and symmetric, it can be expanded
as

bm = e
∑p−1

s=0 cs cos(mθs), θs = 2πs/p. (A6)

then the relationship (A4) and (A5) becomes the discrete
Fourier transform

e
∑p−1

m=0 amV m

=

p−1∑
m=0

e
∑p−1

s=0 cs cos(mθs)V m,

e
∑p−1

s=0 cs cos(mθs) =
1

p

p−1∑
s=0

cos (mθs) e
∑p−1

l=0 al cos(lθs).

(A7)
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