Capacity Definitions of Composite Channels with Receiver Side Information

Michelle Effros, Andrea Goldsmith and Yifan Liang

\[\text{effros@caltech.edu} \quad \{\text{andrea, yfl}\}@\text{wsl.stanford.edu} \]

Shannon Capacity Definition for General Channels and Limitations

- **Shannon Capacity for General Channels:**
 \[C = \max \{ I(X;Y) \} \]

- **Limitations of Shannon Capacity Definition:**
 - Choice of codebook
 - A single encoder/decoder under Shannon definition
 - Reasonable to assume a single encoder without CSIT
 - Choice of different decoders with CSIT?

Alternative Definition: Outage Capacity

- **Outage Capacity:**
 - Decode portion (1-q) of the time
 - In non-outage states, transmit rate \(R_t = \text{receive rate} \ R_r \)

Expected Capacity

- **Broadcast Channel Codes for Expected Capacity**
 - Channel states: virtual multiple receivers
 - BC strategy for slow fading channels [Shamai 2003]
 - Gilbert-Elliott channel, BSC with random crossover probability

- **Expected Capacity with Outage**
 \[C^* = \max \{ E[I(X;Y)] \} \]
 \[C^*_o = \max \{ E[I(X;Y)] \} \]

Example 1: Gilbert-Elliott Channel with Different Configurations

- **Case 3: Stationary and Nonergodic**
 - Initial state chosen according to \((\xi_0, \xi_1) \) in fixed states
 - Shannon Capacity \(C = C_{3,r} + h(p_r) \) binary entropy
 - Outage capacity \(C_{3,r} = C_{3,r} + h(p_r) \)
 - Expected capacity \(\max (h(p_r), \xi_0) \)
 - Loss incurred from lack of CSIT

Example 2: Binary Symmetric Channel with Random Crossover Probabilities

- **Random crossover probability \(p \) with distribution \(F(p) \), \(0 < p < 1/2 \), corresponding cdf \(\tilde{F}(p) \)
- Shannon capacity \(C = 1 - h(p) \), where \(h(p) = \inf \{ F(p) = 1 \} \)
- Outage capacity, \(C^*_o = \max \{ h(p) \} \)
- Expected capacity \(C^* = \max \{ h(p) \} \)

Future Work: Joint Source-Channel Coding

- New end-to-end performance metric: expected distortion
- Multi-resolution source code (SC) combined with BC channel code (CC): rates in BC region to min expected distortion
- Distortion with multi-resolution SC: Gaussian source
 - Successively refinable, bounds exist for general sources
 - Transmit over two parallel non-ergodic links [Effros et al 04]:
 - compare with multi-description SC and time-sharing CC

Non-ergodic sources

- Ergodic source/channel separation: simple interface H+C
- Source/Channel codes separable without loss for some notion of capacity and some end-to-end performance metric
- In case separation fails, choice of interface? Performance vs. complexity trade-off

Diagram:

- Channel diagram
- Encoder/Decoder blocks
- Shannon capacity definitions
- Outage capacity definitions
- Expected capacity definitions
- Example channel configurations
- Random crossover probabilities
- Numerical examples