Network coding for security and robustness
Outline

- Network coding for detecting attacks
- Network management requirements for robustness
- Centralized versus distributed network management
Byzantine security

• Robustness against faulty/malicious components with arbitrary behavior, e.g.
 – dropping packets
 – misdirecting packets
 – sending spurious information

• Abstraction as Byzantine generals problem [LSP82]

• Byzantine robustness in networking [P88, MR97, KMM98, CL99]
Distributed randomized network coding can be extended to detect Byzantine behavior

- Small computational and communication overhead
 - small number of hash bits included with each packet, calculated as simple polynomial function of data

- Require only that a Byzantine attacker does not design and supply modified packets with complete knowledge of other nodes’ packets
Byzantine modification detection scheme

- Suppose each packet contains θ data symbols x_1, \ldots, x_θ and $\phi \leq \theta$ hash symbols y_1, \ldots, y_ϕ

- Consider the function $\pi(x_1, \ldots, x_k) = x_1^2 + \cdots + x_{k+1}^k$

- Set

$$y_i = \pi(x_{(i-1)k+1}, \ldots, x_{ik}) \quad \text{for} \quad i = 1, \ldots, \phi - 1$$

$$y_\phi = \pi(x_{(\phi-1)k+1}, \ldots, x_\theta)$$

where $k = \left\lceil \frac{\theta}{\phi} \right\rceil$ is a design parameter trading off overhead against detection probability
[HLKMEK04] If the receiver gets s genuine packets, then the detection probability is at least $1 - \left(\frac{k+1}{q} \right)^s$.

- E.g. With 2% overhead ($k = 50$), code length = 7, $s = 5$, the detection probability is 98.9%.
- with 1% overhead ($k = 100$), code length = 8, $s = 5$, the detection probability is 99.0%.
Let M be the matrix whose i^{th} row m_i represents the concatenation of the data and corresponding hash value for packet i.

Suppose the receiver tries to decode using

- s unmodified packets, represented as $C_a[M|I]$, where the i^{th} row of the coefficient matrix C_a is the vector of code coefficients of the i^{th} packet

- $r-s$ modified packets, represented by $[C_bM + V|C_b]$, where V is an arbitrary matrix
Analysis (cont’d)

• Let \(C = \begin{bmatrix} \frac{C_a}{C_b} \end{bmatrix} \)

• Decoding is equivalent to pre-multiplying the matrix
 \[
 \begin{bmatrix}
 \frac{C_a M}{C_b M + V} & \frac{C_a}{C_b} \\
 \end{bmatrix}
 \]
 with \(C^{-1} \), which gives
 \[
 \begin{bmatrix}
 M + C^{-1} \begin{bmatrix} 0 \\ V \end{bmatrix} & I \\
 \end{bmatrix}
 \]
• For any C_b and V, since receiver decodes only with a full rank set of packets, possible values of C_a are s.t. C is non-singular
We can show that

- for each of $\geq s$ packets, the attacker knows only that the decoded value will be one of $q^{\text{rank}(V)}$ possibilities

$$\left\{ m_i + \sum_{j=1}^{\text{rank}(V)} \gamma_{i,j}v_j \mid \gamma_{i,j} \in \mathbb{F}_q \right\}$$

- at most $k+1$ out of the q vectors in a set $\{u + \gamma v \mid \gamma \in \mathbb{F}_q\}$, where $u = (u_1, \ldots, u_{k+1})$ is a fixed length-$(k+1)$ vector and $v = (v_1, \ldots, v_{k+1})$ a fixed nonzero length-$(k+1)$ vector, can satisfy the property that the last element of the vector equals the hash of the first k elements.
Network mgt for link failure recovery [HMK02, HMK03]

- Structured schemes for link failure recovery, e.g. end-to-end path protection, loopback, generalized loopback
- Network coding admits any solution feasible on surviving links
- Network management information directs network’s response to different link failures
- Questions:
 - How to quantify fundamental amount of information needed
to direct recovery?

- How do different types of recovery schemes compare in management overhead?
A theoretical framework for network management

- Network management information can be quantified by the log of the number of different behaviors (codes) used [tbh]

- Allowing general network coding solutions gives fundamental limits on management information required
Classes of failure recovery schemes considered

- Receiver-based schemes: only receivers change behavior under different failure scenarios

- Network-wide schemes: any node may change behavior, includes receiver based schemes as a special case

- Linear schemes: linear operations at all nodes

- Nonlinear receiver-based schemes: nonlinear decoding at receivers
Need for network management

• A link h is called *integral* if there exists some subgraph of the network on which the set of source-receiver connections is feasible if and only if h has not failed.

• For any network connection problem with at least one integral link whose failure is recoverable, no single linear code can cover the no-failure scenario and all recoverable failures
Network management for single recoverable link, using network parameters

- r, number of source processes transmitted in network;

- m, the number of links in a minimum cut between the source nodes and receiver nodes;

- d, the number of receiver nodes;

- t_{min}, the minimum number of terminal links among all receivers.
Some bounds

- Tight lower bounds on no. of linear codes for general case:

 \[
 \begin{array}{|c|c|}
 \hline
 \text{receiver-based} & \frac{m}{m-r} \\
 \text{network-wide} & \frac{m+1}{m-r+1} \\
 \hline
 \end{array}
 \]

- Tight upper bounds on no. of linear codes for the single-receiver:

 \[
 \begin{array}{|c|c|c|}
 \hline
 \text{receiver-based} & r + 1 & \text{for } r = 1 \text{ or } m - 1 \\
 & r & \text{for } 2 \leq r \leq m - 2 \\
 \hline
 \text{network-wide} & r + 1 & \text{for } r = 1, \ r = 2 \equiv m - 1 \\
 & r & \text{for } 2 \leq r \leq m - 2, \ r = 3, \ r = m - 1 \geq 3 \\
 & r - 1 & \text{for } 4 \leq r \leq m - 2 \\
 \hline
 \end{array}
 \]
• Upper bound on no. of linear codes for multicast: \((r^2 + 2)(r + 1)^{d-2}\)

• Tight lower bounds for nonlinear receiver-based codes for multicast:

\[
\begin{cases}
 r & \text{for } 1 < r = t_{\min} - 1 \\
 1 & \text{for } r = 1 \text{ or } r \leq t_{\min} - 2
\end{cases}
\]