Lighter Than Air Design Competition
Spring, 2002
Objective

• As a team
 Design & construct a lighter-than-air (LTA) vehicle that is
 • Stable
 • Controllable
 • Reliable
 • Able to carry a payload
 • Fast
 • Aesthetically pleasing and an elegant design
Race Course

Total race distance
87.8 m

15.2 m

28.7 m

start

finish

15.2 m
Judging Criteria

• Payload
 • Score = payload mass / time to complete race

• Reliability
 • Most successful course completions (trials + race day)

• Aesthetics
 • Most creative and elegant design
Constraints

• **Maximum vehicle mass = 1.75 kg**
 – includes structure + payload mass (not balloon mass)
 – vehicles will be weighed on race day
 – payload must be able to be detached from structure

• **Maximum of 5 balloons**

• **Use supplied materials**
 – exceptions via special request

• **No one can touch blimp or apply force on safety string during official run**
Standard Materials

- Balsa wood
- Large & small motor sizes
- Propellers
- Radio control electronics
- Servos
- String
- Epoxy, glue, tape, other adhesives
- Weather balloons (1 m diameter)
- Helium gas

- Details in book, additional details available later
Initial Steps

• Get acquainted, set ground rules, meeting times, choose team name

• Identify the key design parameters
 – Balloon layout
 – Number of motors
 – etc.

• Brainstorm and sketch concepts
 – No filtering or critiquing of designs at this point!

• Identify strengths and weaknesses

• Downselect to several likely contenders

• Review +/-’s in more detail and formally select final design
Product Design Matrix

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Importance</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weight</td>
<td>8</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>noise level</td>
<td>4</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Dates

• February 26: Start

• March 21: Preliminary Design Review (PDR)

• April 11: Design Portfolios Due in Gelb Lab 9:30am

• April 23: Completed Design Review (CDR)

• May 7: Trials in the gym

• May 14: Race Day

• May 15: Design Portfolios Due in class 9:30am
Objectives of the Preliminary Design Review

- Describe the design process to arrive at proposed vehicle layout
- Provide justification for the selected design
- Preliminary analysis of selected design’s performance
- Roadmap to arrive at finished product
- Bottom line: Convey technical ability and confidence that you will get the job done
 - e.g., to justify funding from a supporter
Preliminary Design Review Elements

• Introduction, Team name, Team members
• Discussion and analysis of proposed designs
• Selection of proposed design
• Schematic of selected design
 – approximate layout, balloons, propulsion, attitude control
• Analysis
 – He volume, mass estimates, drag & thrust estimates
 – Number and placement of motors & propellers
 – Number, size, and placement of batteries and electronics
 – Method of attitude control and maneuvering
 – Expected vehicle velocity and endurance
• Request and justification for additional materials (if necessary)
• Timeline for construction and testing
Presentation Logistics

• 10 teams, 80 minutes of class = 8 minutes / team
 – 5 minutes presentation, 2 minutes Q&A, 1 minute changeover

• Overhead transparency, Powerpoint, or Web-based
 – Powerpoint files must be emailed to Prof. Kuchar no later than 8:00am the day of the presentation, or brought to class on PC-formatted zip disk
 – Web URLs must be finalized and sent to Prof. Kuchar no later than 8:00am the day of the presentation
 – See 16.00 web site schedule for links to html templates

• Each team member expected to participate in one presentation
 – PDR or CDR

• Staff will use standard scoring sheets, with comments
Personal Design Portfolios

• Compilation of all your effort in the class
 – Notes, team meeting minutes, ideas, observations (dated!)
 – Sketches, brainstorming concepts, schematics, drawings
 – Analyses (aerodynamics, structures, control,…)
 – Prototype elements and tests
 – Final engineering drawings to scale
 – Photos of prototypes and the finished vehicle
 – Discussion of the entire design process and race day results

• Portfolio must be in some form of notebook

• Start your portfolio immediately
Objectives of the Completed Design Review

- Describe the detailed design of the vehicle
 - Layout and analysis
 - Major modifications since PDR

- Present & discuss at least one built prototype component or subsystem

- Bottom line: Convey that you can overcome any issues that remain and will have a working vehicle on trial day
Completed Design Review Elements

- Introduction, team name, team members + roles in project
- Introduction of the final design
- Scale drawing of final design (at least a dimensioned 3-view)
- Control system details
- Aerodynamic analysis
- Other analysis (structural, construction, major concerns, etc.)
- Timeline for construction and test
- Conclusion
Teamwork Issues

• Effective teams do not just happen -- they take work

• Open lines of communication are critical

• Methods for arriving at decisions should be clear and acceptable
 – Strive for consensus

• Everyone should have clear responsibilities
 – and follow through on them

• Note your contributions in your Personal Design Portfolio
Self / Peer Reviews

• Prof. Kuchar will periodically hand out and collect self/peer review forms
 – Intellectual contribution (ideas, discussions, analyses)
 – Hands-on contribution (drawing, construction, testing)

• Opportunity for you to assess your own effort relative to your peers
 – Confidential
 – Note significant team problems
 • uneven participation
 • unproductive team meetings
 • team member personality issues
LTA Design Hints

1. It is easy to make a blimp that floats

2. It is not easy to make a blimp go where you want it to

Stability:
 Able to maintain altitude and attitude without control inputs

Controllability:
 Able to dictate direction of movement and rotation
X-29: Unstable but Controllable

(not something to emulate for LTA race)
Coefficient of Drag vs. Reynolds Number for a sphere

\[\text{Re} = \frac{\rho \, v \, D}{\mu} \]