Meaning of Matrix Multiplication

1. In this problem we will show that multiplication by the matrix

\[
A = \begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}
\]

acts by rotating vectors 45° counterclockwise. As usual, we write the vector \(\mathbf{v} = xi + yj \) as a column vector \(\begin{pmatrix} x \\ y \end{pmatrix} \).

a) Show that the length of \(Av \) is the same as the length of \(v \).

b) Use the dot product to show the angle between \(v \) and \(Av \) is \(\pi/4 \) radians.

c) Use the cross product to show \(Av \) is \(\pi/4 \) radians counterclockwise from \(v \).

Answer:

a) \[
Av = \begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{x-y}{\sqrt{2}} \\ \frac{x+y}{\sqrt{2}} \end{pmatrix}.
\]

This has length \(\sqrt{\frac{(x-y)^2}{2} + \frac{(x+y)^2}{2}} = \sqrt{x^2 + y^2} \). That is, we have shown \(|Av| = |v| \) as required.

b) Using the expression for \(Av \) found in part (a) we compute the dot product

\[
Av \cdot v = \left\langle \frac{x-y}{\sqrt{2}}, \frac{x+y}{\sqrt{2}} \right\rangle \cdot (x, y) = \frac{(x^2 + y^2)}{\sqrt{2}}.
\]

By part (a) we know \(|Av| = |v| = \sqrt{x^2 + y^2} \). So the cosine of the angle between the two vectors is

\[
\frac{Av \cdot v}{|Av||v|} = \frac{1}{\sqrt{2}} = \cos(\pi/4).
\]

c) We compute the cross product

\[
\mathbf{v} \times Av = \begin{vmatrix}
i & j & k \\
x & y & 0 \\
(x-y)/\sqrt{2} & (x+y)/\sqrt{2} & 0
\end{vmatrix} = \frac{x^2 + y^2}{\sqrt{2}} \mathbf{k}.
\]

Since the coefficient of \(\mathbf{k} \) is positive the right hand rule tells us \(Av \) is counterclockwise from \(v \).