Language Evolution, Coalescent Processes, and the Consensus Problem on a Social Network

Hariharan Narayanan ∗ and Partha Niyogi ∗

* The University of Chicago, Chicago, IL 60637

Submitted to Proceedings of the National Academy of Sciences of the United States of America

In recent times, there has been an increased interest in theories of language evolution that have an applicability to the study of dialect formation, linguistic change, creolization, the origin of language, and animal and robot communication systems in general. One particular question that has attracted some interest has the following general form: how might a group of linguistic agents arrive at a shared communication system purely through local patterns of interaction and without any global agency enforcing uniformity? In this paper, we consider a natural model of language evolution on a social network, prove several theoretical properties, and establish connections to related phenomena in biology, social sciences, and physics.

Introduction

In recent times, there has been an increased interest in theories of language evolution that have an applicability to the study of dialect formation, linguistic change, creolization, the origin of language, and animal and robot communication systems in general. (see [14, 22, 11] and references therein). One particular question that has attracted some interest has the following general form: how might a group of linguistic agents arrive at a shared communication system purely through local patterns of interaction and without any global agency enforcing uniformity? The linguistic agents in question might be humans, animals, or machines in a multi-agent society. For an example of interesting simulations that suggest how a shared vocabulary might emerge in a population, see Liberman (2005) (other simulations are also provided by [27, 8, 2, 1, 28] among others). In this paper, we consider a generalization of Liberman’s model, prove several theoretical properties, and establish connections to related phenomena in biology, social sciences, and physics.

Our model is as follows. For simplicity, we consider how a common word for a particular concept might emerge through local interactions even though the agents had different initial beliefs about the word for this concept. For example agents might use the phonological forms “dog”, “kukur”, “farama” etc. to describe the concept of a canine animal. Thus we imagine a situation where every time an event in the world occurs that requires the agents to use a word to describe this event, they may start out by using different words based on their initial belief about the word for this event or object. By observing the linguistic behavior of their neighbors agents might update their beliefs. The question is - will they eventually arrive at a common word and if so how fast.

Model.

1. Let \(W \) be a set of words (phonological forms, codes, signals, etc.) that may be used to denote a certain concept (meaning or message).
2. Let each agent hold a belief that is a probability measure on \(W \). At time \(t \), we denote the belief of agent \(i \) to be \(b_i(t) \).
3. Agents are on a communication network which we model as a weighted directed graph where vertices correspond to agents. We further assume that the weight of each directed edge is positive and that there exists a directed path from any node to any other. An agent (say \(i \)) can only observe the linguistic actions of its out-neighbors, i.e., nodes to which a directed edge points from \(i \). We denote weight of the edge from \(i \) to \(j \) by \(A_{ij} \).

4. The update protocol for the \(b_i(t) \) as a function of time is as follows:
 a. At each time \(t \), each agent \(i \) chooses a word \(w = w_i(t) \in W \) (randomly from its current belief \(b_i(t) \)) and produces it. Let \(X_i(t) \) denote the probability measure concentrated at \(w_i(t) \). Since \(w_i(t) \) is a random word \(X_i(t) \) is correspondingly a random measure.
 b. At every point in time, each agent can observe the words that their neighbors produce but they have no access to the private beliefs of these same neighbors.
 c. Let \(P \) be the matrix whose \(ij \)th entry satisfies
 \[
 P_{ij} = \frac{A_{ij}}{\sum_{k=1}^{n} A_{ij}}.
 \]
 At every time step, every agent updates its belief by a weighted combination of its current belief and the words it has just heard, i.e.,
 \[
 b_i(t+1) = (1 - \alpha) b_i(t) + \alpha \sum_{j=1}^{n} P_{ij} X_j(t),
 \]
 where \(\alpha \) is a fixed real number in the interval \((0, 1)\).

At a time \(t \), let the beliefs of the agents be represented by a vector
\[
\mathbf{b}(t) := (b_1(t), \ldots, b_n(t))^T.
\]
Similarly, let the point measures on words \(X_i(t) \) be organized into a vector
\[
\mathbf{X}(t) := (X_1(t), \ldots, X_n(t))^T.
\]
Then the reassignment of beliefs can be expressed succinctly in matrix form where the entries in the vectors involved are measures rather than numbers as
\[
\mathbf{b}(t+1) = (1 - \alpha) \mathbf{b}(t) + \alpha P \mathbf{X}(t).
\]

Interpretation and Remarks.

Reserved for Publication Footnotes
Interpreting W

To instantiate our model in different linguistic applications, one must choose an interpretation of W. For the case of how a common word for a particular concept emerges, W represents the set of candidate phonological forms for that concept as our opening example suggests. These forms could be simply different pronunciations for the same word (as in the two pronunciations for “either”) or they may have no such relation (as in “lift” and “elevator” for the same object).

However, one could equally well choose W to be a set of rules or grammars as follows. Let Σ be a primitive alphabet and let g_1, \ldots, g_M be a set of grammars (rule systems) such that each g_i defines a family of grammatical expressions $L_i \subset \Sigma^*$ in the usual way. For simplicity, assume that $L_i \cap L_j = \emptyset$. In this setting, the elements of W may be identified with the grammars. A belief b is a probability measure on W where $b(i)$ is simply the probability with which an agent might choose to use the ith grammar to produce an expression (from L_i). The listener hears the expression $s \in \Sigma^*$ produced by this speaker and the corresponding random measure $X(s)$ (a function of the randomly produced expression s) is the point measure supported on g_i. Thus different speakers produce different grammatical expressions, listeners hear these expressions and update their belief over the space of possible grammars. This has immediate applicability to rule systems in phonology, morphology, or syntax.

Finally, one could choose W to be a continuous acoustic space of sounds and each speaker maintains a belief, i.e., a probability distribution over the space of sounds that it might produce. For example, W may be identified with the space of formant frequencies and the model might then characterize how a shared set of vowel formants emerge within a population.

More generally, in contexts other than language, one might identify W with a set of social or political opinions (views), a set of strategies, or a set of genes. We point to such connections at a later point.

Belief Update

At any point in time, each agent has a belief which it updates after observing the actions of its neighbors. The belief update strategy may be interpreted as a version of a linear reward scheme for online learning as articulated in [3]. A version of this has been invoked in language acquisition [21] within a framework of universal grammar. Some further remarks are worthwhile.

1. If beliefs were directly observable and agents updated based on a weighted combination of their beliefs and that of their neighbors,

$$b^{t+1} = (1-\alpha)b^t + \alpha Pb^t,$$

the system has a simple linear dynamics, where all beliefs converge to a weighted average of the initial beliefs. Thus eventually, everyone has the same belief (see [4] for a recent elaboration in an economic context.)

2. Our focus in this paper is on the situation where the beliefs are not observable but only the linguistic actions X^t are (and only to the immediate neighbors). Therefore, the corresponding dynamics follows a Markov chain. The state space of this chain (defined by Equation 1) is the set of all n-tuples of belief vectors. Since this is continuous, the standard mixing results with finite state spaces do not apply directly.

3. Note that in our setting we have assumed that the communication matrix A_j does not change with time. If this matrix changes with time the evolution is not Markovian in the usual sense but the arguments in this paper when combined with results in [5] would lead to a proof of convergence under suitable conditions. We omit this analysis for ease of exposition.

Results: Our main results are summarized below.

1. With probability 1 (w.p.1), as time tends to infinity, the belief of each agent converges in variation distance to one supported on a single word, common to all agents.

2. With probability 1, there is a finite time T such that for all times $t > T$, all agents produce the same fixed word.

3. The rate at which beliefs converge depends upon the mixing properties of the Markov chain whose transition matrix is P.

4. The rate of convergence is independent of the size of W. One might think that a population where every agent has one of two words for the concept would arrive at a shared word faster than one in which every agent had a different word for the concept. This intuition turns out to be incorrect.

5. The proof of these results exposes a natural connection with coalescent processes and has a parallel in population genetics.

6. Our analysis brings out two different interpretations of the behavior of a linguistic agent. In the most direct interpretation, the agent’s linguistic knowledge of the word is internally encoded in terms of a belief vector. This belief vector is updated with experience. In a second interpretation an agent’s representation of its linguistic knowledge is in terms of a memory stack in which it literally stores every single word it has heard weighted by how long ago it heard it and the importance of the person it heard it from. Such an interpretation is consistent with exemplar theory (see [9]). An external observer looking at this agent’s linguistic actions will not be able to distinguish between these two different internal representations that the agent may have.

Connections to other fields. The general theme of predicting the macroscopic behavior of a system from the local behavior of its microscopic components arises in many different areas of physics, biology, and the social sciences. It is also a fundamental issue in the analysis of distributed systems in computer science.

In Spin systems, which originated as models for Ferromagnets, atoms are pictured to be in a 2-Dimensional square array, each possessing a spin “up” or “down.” The effect that an atom has on the spin of a neighbor is a function of temperature. Typically, coherence is observed at low temperatures, while at high temperatures atoms tend not to align, which is in agreement with the demagnetization that ferromagnets undergo at high temperatures. The model we consider, involving the convergence in beliefs has many high level similarities though we do not address the question of what might be the analog of temperature in our model, how to take the thermodynamic limit, and if and how phase transitions may arise.

Another closely related model is the voter model studied in probability theory with its origins in the social sciences. Each agent lives on the vertex of the graph, has a belief which is a discrete variable, and is observable to its neighbors. Each agent changes its belief with a certain probability based on the observed beliefs of its neighbors. Another kind of belief propagation model is that described by Jackson (2007). In both cases, the beliefs are observable in contrast to our setting. Our communication graphs model the pattern of local
interaction among agents and may arise through modes of social network formation studied in the field of social network theory [26, 15].

Linear update rules are often used in distributed systems, to achieve coherence among different agents or to share knowledge gathered individually. In a model that has been intensively studied, a number of sensors form a network, each of which measures a quantity such as temperature [4]. Neighbors communicate during each time step and make linear updates in a synchronous or asynchronous manner. The rate at which consensus is attained is studied. There is also a related body of work on Coordination and Distributed Control. A model of flocking has been considered in [6], where a group of birds, have a certain initial velocity, and the evolution of their velocities is governed by a differential equation wherein each bird modifies its velocity to bring it closer to that of its neighbors. The update rule involves a graph Laplacian. Some results are derived concerning the initial conditions that result in flocking behavior.

There are two connections to evolutionary theory that are worth mentioning. First, our proof of convergence exposes a natural coalescent process over words. Coalescent processes are, of course, widely used in modeling and making inferences about genetic evolution [16, 17]. Second, researchers have considered game-theoretic models of evolution [20] and more recent research in this tradition has addressed evolutionary games on graphs [24, 19, 25]. The question of how agents achieve coherence among different agents or to share knowledge is governed by a differential equation wherein each bird modifies its velocity to bring it closer to that of its neighbors. The update rule involves a graph Laplacian. Some results are derived concerning the initial conditions that result in flocking behavior.

Convergence to a Shared Belief: Quantitative results

Let \(P \) be the transition matrix on the state space \(\tilde{S} = S \cup \tilde{S} \), where for \(i, j \in S := \{1, \ldots, n\} \) and \(\tilde{S} = \{1, \ldots, \tilde{n}\} \),

\[
\tilde{P}(i \rightarrow j) = \tilde{P}(i \rightarrow j) = \alpha P_{ij},
\]

\[
\tilde{P}(i \rightarrow \tilde{i}) = \tilde{P}(i \rightarrow \tilde{i}) = 1 - \alpha.
\]

Definition 1. Let \(T_{\text{mix}}(\epsilon) \) denote the mixing time of \(\tilde{P} \), defined as the smallest \(t \) for which, for each specific choice of \(v, w \in \tilde{S} \),

\[
\sum_{u \in \tilde{S}} |\tilde{P}^t(v \rightarrow u) - \tilde{P}^t(w \rightarrow u)| < \epsilon.
\]

Here \(\tilde{P}^t(b \rightarrow c) \) denotes the probability that a Markov Chain governed by \(\tilde{P} \) starting in \(b \) lands in \(c \) at the \(t \)th time step.

The following is the main result of this paper.

Theorem 1. 1. The probability that all agents produce the same word at times \(T, T+1, \ldots \) tends to 1 as \(T \) tends to \(\infty \). More precisely, if

\[
\tau = (4n/\alpha^2)T_{\text{mix}}(\epsilon) \ln(4n/\alpha^2),
\]

\[
M = e,
\]

then

\[
\phi[Y_{\geq T} u \in S] X_u^t = X_T^t > 1 - \frac{MnTe^{-\frac{T}{4}}}{1 - e^{-\frac{T}{4}}}. \quad [3]
\]

2. As time \(t \to \infty \) all produced words converge (almost surely) to a word whose probability distribution is

\[
\sum_{i=1}^{n} \pi_i b_i^{(0)},
\]

where \((\pi_1, \ldots, \pi_n) \) is the stationary distribution of the Markov chain whose transition matrix is \(P \).

A Model of Memory. The evolution of the \(B^{(t)} \) is a Markov chain. It can be seen that its only absorbing states are of the form \((b_1^{(t)}, \ldots, b_n^{(t)})^T \), where \(\forall i, b_i^{(t)} = \delta_w \), and \(\delta_w \) is the point measure concentrated on some word \(w \in \mathcal{X} \). Formally, \(\delta_w \) is the measure on \(\mathcal{X} \), which assigns to a measurable set \(A \) the measure \(\delta_w(A) \) according to the following rule.

\[
\delta_w(A) = \begin{cases} 1 & \text{if } w \in A \\ 0 & \text{otherwise.} \end{cases}
\]

Therefore, if the Markov Chain were finite, a simple argument would suffice. In our case however, we have a Markov Chain whose state space is uncountably infinite. Thus in principle, its dynamics could be hard to analyze. Our proof is based on coalescent processes, which have also been extensively used to study biological evolution [16, 17]. In analyzing the evolution of beliefs, we trace the origin of words backwards in time and find that all surviving words, are copies of a single word produced at some point in time sufficiently far in the past. Observe that if the process had begun at time 0, the beliefs at time \(t+1 \) would be

Observation 2.

\[
B^{(t+1)} = \sum_{i=0}^{t} \alpha(1-\alpha)^i PX^{(t-i)} + (1-\alpha)^{t+1} B^{(0)}. \quad [4]
\]

\(X^{(t)} = (X_1^{(t)}, \ldots, X_n^{(t)})^T \) is a random vector whose entries are point measures, where \(X_i^{(t)} = \delta(w_i^{(t)}) \) and \(w_i^{(t)} \) is chosen from the measure \(b_i^{(t)} \) on \(\mathcal{X} \), independent of the choice of other coordinates of the vector \(X^{(t)} \). This observation, motivates a model of memory that we define in the following paragraph.

Let each agent’s memory be modeled as a stack. At the top level of the stack of agent \(i \) are all the words heard at time \(t \). Below this are all words heard at time \(t-1 \) and so on tracing backwards in time until the first words heard at an initial time 1. At the lowest level, corresponding to time 0, is a single word produced at some point in time sufficiently far in the past. Let \(Y \) denote a binomial random variable where

\[
\phi[Y = i] = \alpha(1-\alpha)^i.
\]
If $Y \leq t-1$, $X_j(t)$ is chosen to be the word produced by j' at time $t-1-Y$ (which is stored in $S_{t-1-j'}$) with probability $P_{j,j'}$. If $Y \geq t$, $X_j(t)$ is chosen from the distribution in $b^{(0)}$. This process has been illustrated in Figure 2. Note that in this model words are formal objects. While any two words present in the stack positions $S^{(t)}_j$ for $t = 1, 2, \ldots$ are considered distinct, there is a natural “parent-child” structure existing on the set of words. Under this scheme, let the probability distribution of $X_j^{(i)}$ be denoted $b_{(i)}^t$. Denoting by $\tilde{B}^{(t)}$ the vector $(\tilde{b}_{(1)}^t, \tilde{b}_{(2)}^t, \ldots, \tilde{b}_{(n)}^t)$.

Observation 3. A direct computation shows that in the model just described

$$\tilde{B}^{(t+1)} = \sum_{i=1}^{t} \alpha (1-\alpha)^i PX^{(t-i)} + (1-\alpha)^{t+1} \tilde{B}^{(0)}.$$

This along with the fact that the randomness used in the generation of $X_j^{(i)}$ is independent of the randomness in the generation of all other words, tells us that the model of memory just described results in a system with the same dynamics as that introduced earlier. This particular model of memory may be viewed as an implementation of the ideas implicit in exemplar based accounts of linguistic behavior.

Proofs

By observations 2 and 3, in order to obtain an upper bound on $\phi[X_1^{(i_1)} \neq X_1^{(i_2)}]$, it is sufficient to trace the ancestry of both words backwards in time and show that the probability that they do not have a common ancestor is small. Our results are best stated in terms of the coalescence time of a set of random walks. In Figure 2, we illustrate how the path tracing the origin of a word backwards in time can be encoded as a Markov chain on a state space $S \cup \tilde{S} = \{1, \ldots, n, \tilde{1}, \ldots, \tilde{n}\}$. We use the states $\tilde{1}, \ldots, \tilde{n}$ as additional “memory” states. Since the random variable Y introduced in section can be interpreted as the length of a run of heads in a biased coin (whose probability of coming heads is $1-\alpha$), we can account Y using additional memory states.

We define a variant of the meeting time between two Markov Chains as follows. Let $u, v \in S \cup \tilde{S}$.

Definition 2. For $t \geq 0$, let Y_t and Z_t be two independent random walks on $S \cup \tilde{S}$ each of which has P as its transition matrix and have initial states $Y_0 = u, Z_0 = v$. For $\Delta > 0$, let $M_{uv}(\Delta)$ be the smallest time $t > 0$ for which $Y_t + \Delta = Z_t \in S$.

Theorem 1. 1. The probability that all agents produce the same word at times $T, T+1, \ldots$ tends to 1 as T tends to ∞. More precisely, if

$$\tau = (4n/\alpha^2)T_{mix}(\alpha/4) \ln(4n/\alpha^2),$$

$$M = e,$$

then

$$\phi{\forall_{t \geq T} X_u^t = X_1^T} > 1 - \frac{MnTe^{-\frac{T}{\tau}}}{1 - e^{-\frac{T}{\tau}}}. \qquad [6]$$

2. As time $t \to \infty$, all produced words converge (almost surely) to a random word chosen from the probability distribution

$$\sum_{i=1}^{n} \pi_i b_{(i)}^t,$$

where (π_1, \ldots, π_n) is the stationary distribution of the Markov chain whose transition matrix is P.

Proof: To prove the first part, we observe that

$$\phi{\forall_{t \geq T} X_u^t = X_1^T}$$

$$\leq \sum_{j=1}^{\infty} \left(\frac{\phi[X_1^{(j+1)T} = X_1^T]}{\sum_{j=0}^{T-1} \sum_{u=1}^{n} \phi[X_u^{(j+1)T} \neq X_1^T]} \right)$$

by the union bound. The following application of Lemmas 1 and 2 completes the proof.

$$\phi{\forall_{t \geq T} X_u^t = X_1^T}$$

$$\leq \sum_{j=1}^{\infty} \left(\frac{\phi[M_{11}(T) \geq jT]}{\sum_{j=0}^{T-1} \sum_{u=1}^{n} \phi[M_{11}(k) \geq jT]} \right)$$

$$\leq \frac{MnTe^{-\frac{T}{\tau}}}{1 - e^{-\frac{T}{\tau}}},$$

where M and τ are the constants that appear in Lemma 2.

To prove the second part, we use the linearity of expectation to show that the expected value of the beliefs follows a simple rule. Namely

$$\mathbb{E}b^{(t+1)} = (1-\alpha)\mathbb{E}b^{(t)} + \alpha P\mathbb{E}X^{(t)}$$

$$= ((1-\alpha)I + \alpha P)b^{(t)}$$

$$= \ldots$$

$$= ((1-\alpha)I + \alpha P)^{t+1}b^{(0)}.$$
By well known results on Markov chains,
\[
\lim_{t \to \infty}((1 - \alpha)I + \alpha P)^t = (1, \ldots, 1)^T(\pi_1, \ldots, \pi_n),
\]
where \(\pi_i\) is the stationary probability of the state \(i\) under the chain \(P\). Therefore, for each \(j\),
\[
\lim_{t \to \infty} E b_j^{(t)} = \sum_{i=1}^n \pi_i b_j^{(0)},
\]
By the first part of this theorem, as \(t \to \infty\), \(b_j^{(t)}\) converges almost surely to a measure that is concentrated on a single common word \(w\). Given a signed measure \(\mu\), let
\[
|\mu| = \sup_{\|f\|_1 \leq 1} \int fd\mu.
\]
Then,
\[
|E[\delta_w] - E[X_w^T]| \leq \phi \left(\left(\frac{1}{\tau - T} \sum_{u \in S} \frac{X_u^T}{X_1^T} \right)^{\alpha} \right) \leq \frac{MnT e^{-\tau}}{1 - e^{-\tau}}.
\]
It follows that this common word \(w\) must have the distribution \(\sum_{i=1}^n \pi_i b_i^{(0)}\).

Lemma 1. The probability that the word produced by agent \(u\) at time step \(t_1\) is different from that produced by agent \(v\) at time step \(t_2\) greater than \(t_1\) can be bounded from above as follows.
\[
\phi[X_u^{(t_1)} \neq X_v^{(t_2)}] \leq \phi[M_{uv}(t_2 - t_1) \geq t_1].
\]

Proof: In the model of memory introduced in section we described a parent-child relationship between words, where a child word is identical to a parent word. The evolution of the Markov chain defined in this section corresponds to the genealogy of a word. The event that the words \(X_u^{(t_1)}\) and \(X_v^{(t_2)}\) have a common ancestor produced at some time \(\geq 0\) is the event that \(M_{uv}(t_2 - t_1) \leq t_1\). The lemma follows from the fact that two words that have a common ancestor are the same.

Lemma 2. The random variable \(M_{uv}(\Delta)\) has an exponential tail bound uniform over \(u, v\) and \(\Delta\). More precisely, there exist constants \(\tau, \alpha > 0\) independent of \(u, v\) and \(\Delta\) such that
\[
\phi[M_{uv}(\Delta) \geq T] \leq e^{-\tau},
\]
(In fact, this is satisfied for \(T = 4n e^{2T_{max}(\frac{\alpha}{T})}\) and \(M = e^\alpha\).)

Proof: The stationary measure \(\bar{\mu}\) satisfies for each \(i\), the identity \(\alpha \bar{\mu}(i) = (1 - \alpha) \bar{\mu}(i)\).

Let \(\tau_i = T_{mix}(\frac{\alpha}{T})\). Let us denote by \(q_v(i)\) the probability \(\phi[Z_v = i | Z_0 = v]\). Then,
\[
\sup_{u,v,v} \phi[-(Y_{\Delta+1} = Z_{\tau} \in S) | Y_\Delta = u, Z_0 = v] = 1 - \inf_{u,v,v} \sum_{i \in S} q_v(i) q_u(i) \leq 1 - \inf_{u,v,v} \sum_{i \in S} \min(q_v(i), q_u(i))^2 \leq 1 - \frac{\alpha^2}{4n^2}.
\]
Now, using the Markov property and conditioning repeatedly, we see that
\[
\phi[M_{uv}(\Delta) \geq T] \leq \phi[-(Y_\Delta = Z_0 \in S)] \times \prod_{i=1}^{\frac{T}{\tau}} \sup_{u,v} \phi[-(Y_{\Delta+1} = Z_{\tau_1} \in S)]
\]
\[
\leq \phi[-(Y_\Delta = Z_0 \in S)] \prod_{i=1}^{\frac{T}{\tau}} (1 - \frac{\alpha^2}{4n}) \leq e^{1 - \frac{T}{\tau}},
\]
where
\[
\tau = \frac{4n}{\alpha^2} T_{mix}(\frac{\alpha}{T}) \ln \left(\frac{4n}{\alpha^2} \right),
\]
which proves the Lemma.

ACKNOWLEDGMENTS. text of acknowledgments here, including grant info –