Problem Set 1

June 12, 2005

1. Show that if there are \(n \) people at a party, then two of them know the same number of people.

2. (a) Find all \(n \) such that 7 is a factor of \(2^n - 1 \).
 (b) Prove there is no \(n \) such that 7 is a factor of \(2^n + 1 \).

3. Determine all non-negative integral solutions \((n_1, n_2, \ldots, n_{14})\), apart from permutations, of the Diophantine equation

\[
 n_1^4 + n_2^4 + \ldots + n_{14}^4 = 159,999.
\]

4. Circles \(\omega_1 \) and \(\omega_2 \) are externally tangent at \(T \). Line \(\ell \) is tangent to \(\omega_2 \) at \(X \) and meets \(\omega_1 \) at \(A \) and \(B \). Line \(XT \) meets \(\omega_1 \) again at \(S \). Point \(C \) lies on arc \(ST \) of \(\omega_1 \) and \(CM \) is tangent to \(\omega_2 \) at \(M \). Lines \(SC \) and \(XM \) intersect at \(I \).
 (a) Prove that quadrilateral \(CTIM \) is cyclic.
 (b) Prove that \(I \) is the excenter opposite \(A \) of triangle \(ABC \).

5. Let \(P \) be a point on the arc \(AB \) of the circumcircle of \(ABC \) that does not contain \(C \). Let \(I_1 \) be the incenter of \(PAC \) and \(I_2 \) be the incenter of \(PBC \). Show that the circumcircle of \(PI_1I_2 \) passes through a fixed point of the circumcircle of \(ABC \).

6. Let \(f : \mathbb{C} \to \mathbb{C} \) be a polynomial defined by \(f(z) = z^n + a_1z^{n-1} + \ldots + a_n \) with roots \(z_1, z_2, \ldots, z_n \) such that \(\sum_{k=1}^{n} |a_k|^2 \leq 1 \). Prove that \(\sum_{k=1}^{n} |z_k|^2 \leq n \).

7. Let \(u_1, u_2, \ldots, u_n \) be \(n \) 2-dimensional vectors such that none of their lengths is greater than 1 and \(u_1 + u_2 + \ldots + u_n = 0 \). Show that you can find a permutation \(v_1, v_2, \ldots, v_n \) of \(u_1, u_2, \ldots, u_n \) such that none of the sums \(v_1 + v_2, \ldots, v_1 + v_2 + \ldots + v_n \) have lengths greater than \(\sqrt{n} \).

8. Let \(O \) be the center of a circle circumscribed about convex \(2n \)-gon \(A_1A_2 \cdots A_{2n} \). Prove

\[
 \left| \sum_{i=1}^{n} A_{2i-1}A_{2i} \right| \leq 2 \sin \frac{\angle A_1OA_2 + \angle A_3OA_4 + \cdots + \angle A_{2n-1}OA_{2n}}{2}.
\]