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Abstract—In this paper, we describe an approach for generating
accurate geometrically parameterized integrated circuit intercon-
nect models that are efficient enough for use in interconnect syn-
thesis. The model-generation approach presented is automatic, and
is based on a multiparameter moment matching model-reduction
algorithm. A moment-matching theorem proof for the algorithm
is derived, as well as a complexity analysis for the model-order
growth. The effectiveness of the technique is tested using a capaci-
tance extraction example, where the plate spacing is considered as
the geometric parameter, and a multiline bus example, where both
wire spacing and wire width are considered as geometric parame-
ters. Experimental results demonstrate that the generated models
accurately predict capacitance values for the capacitor example,
and both delay and cross-talk effects over a reasonably wide range
of spacing and width variation for the multiline bus example.

Index Terms—Interconnect synthesis, integrated circuits inter-
connections, modeling, parameterized reduced-order systems, re-
duced-order systems.

I. INTRODUCTION

DEVELOPERS of routing tools for mixed-signal applica-
tions could make productive use of more accurate perfor-

mance models for interconnect, but the cost of extracting even
a modestly accurate model for a candidate route is far beyond
the computational budget of the inner loop of a router. If it were
possible to extract geometrically parameterized, but inexpensive
to evaluate, models for the interconnect performance, then such
models could be used for detailed interconnect synthesis in per-
formance critical digital or analog applications.

The idea of generating parameterized reduced-order intercon-
nect models is not new. Recent approaches have been devel-
oped that focus on statistical performance evaluation [1], [2]
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and clock-skew minimization [3]. However, our target appli-
cation, interconnect synthesis, requires parameterized models
valid over a wide geometric range. Generating such parameter-
ized models is made difficult by the fact that even though the
electrical behavior of interconnect can be modeled by a linear
time-invariant dynamical system, that system typically depends
nonlinearly on geometric parameters.

One recently developed technique for generating geomet-
rically parameterized models of physical systems assumed
a linear dependence on the parameter, and was applied to
reducing a discretized linear partial differential equation [4].
The approach used closely paralleled the techniques used
for dynamic system-model reduction, an unsurprising fact
given that if the parameter dependence is linear, the generated
parameterized system of equations is structurally identical
to a Laplace transform description of a linear time-invariant
dynamical system, though the frequency variable is in the place
of the geometric parameter.

The observation that geometric parameters and frequency
variables are interchangeable, at least when the dependence of
the geometric variation is linear, suggests that the parameterized
reduction problem could be formulated so as to make use of
extensions to the projection-subspace-based moment-matching
methods that have proved so effective in interconnect modeling
[5]–[13]. In this paper, we develop approaches for generating
parameterized interconnect models exploiting just such a
connection. We start in Section II by examining the single
geometric parameter case, and treat the case when the varia-
tion with respect to the geometric parameter is nonlinear. In
Section III, we apply the single-parameter approaches to the
problem of automatically extracting parameterized models
for interconnect capacitances from integral equation-based
capacitance-extraction techniques. In Section IV, we present
a more general problem formulation for an arbitrary number
of parameters. In Section V, we extend the two-parameter
moment-matching model-reduction technique in [14], intro-
ducing a moment-matching model-reduction algorithm for an
arbitrary number of parameters. In the same section, we also
derive a rigorous proof for the moment-matching properties of
our algorithm. In Section VI, we analyze the complexity of the
algorithm in terms of model-order growth as a function of the
number of parameters, and the cost of the model construction
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as a function of the size of the original system. In Section VII,
we demonstrate the practical effectiveness of the method on
a wire-spacing parameterized multiline bus example, and
consider both delay and cross-talk effects. In Section VIII, we
use the generalized multiparameter model-reduction approach
to re-examine the multiline-bus example, but now allow both
wire width and wire spacing, together with frequency to be
parameters. Finally, conclusions are given in Section IX.

II. SINGLE-PARAMETER CASE

In this section, we consider the single-parameter case and, in
Section III, we will use the resulting algorithm to generate pa-
rameterized formulas for interconnect-coupling capacitances. In
examining this simpler case, we hope to clarify some of the is-
sues that will arise in multiparameter reduction and better estab-
lish the connections between our approach with work by others.

To begin, consider a single-parameter linear system

(1)

where is the parameter; is the vector of “states,” a term we
use loosely because is not necessarily the Laplace frequency
parameter, and the system in (1) is a “dynamical system in state
space form,” only when is the Laplace frequency parameter.
Vectors and are -dimensional input and output vectors;

is an matrix; and and are and
matrices, which define how the inputs and outputs relate to the
state vector .

For many interconnect problems, the number of inputs and
outputs is typically much smaller than , the number of states
needed to accurately represent the electrical behavior of the
interconnect. In order to generate a representation of the input-
output behavior given by (1) using many fewer states, a projec-
tion approach is commonly used [8]. In the projection approach,
one first constructs an projection matrix , where ,
and then one generates the reduced model from the original
system using congruence transformations [7]. Specifically, the
reduced system is given by

(2)

where the reduced-state vector is of dimension and is repre-
senting the projection of the large original state vector .
Note that the columns of are typically chosen in such a way
that the final response of the reduced system matches terms
in the Taylor series expansion in of the original response, re-
gardless if is a Laplace frequency parameter or instead some
other kind of geometrical parameter.

The reduced-order system given in (2) is not really an ef-
ficient reduced model, as explicit evaluation of re-
quires order operations if is dense and operations if

is sparse. To generate a reduced model that can be more ef-
ficiently evaluated, consider using polynomial interpolation or

a Taylor series expansion to generate a representation of
that can be expressed as a power series

(3)

There are several approaches for constructing a reduced-order
model, given the in (3). If the power series is truncated to
order , it is possible to transform the power-series reduction
problem to a -parameter reduction problem, with only a linear
dependence on the newly introduced parameters ,

, as in

(4)

After this transformation, the multiparameter algorithms which
will be described in Section V can be used directly, though the
dimension of the resulting reduced model may be unnecessarily
high.

A more efficient reduction approach can be derived by con-
verting (1) to a linear single-parameter reduction problem by in-
troducing fictitious states [15]. The resulting representation of

is linearly dependent on and is given by

. . .
. . .

...
...

(5)

where the fictitious states, denoted , satisfy the relation

Examination of (5) yields a series expansion for in terms of
the parameter . That is,

(6)

where

(7)

and

(8)

The projection matrix used to generate a th reduced-order
model is then given by

and the reduced model is

(9)
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Fig. 1. Three conductors example for capacitance extraction. Conductors are
1� 1� 1 m. Nominal gap is 0.5 m. The discretization of the surface into small
panels is also shown.

III. PARAMETERIZED CAPACITANCE EXTRACTION

In this section, we use the single-parameter model-reduction
strategy described above to generate parameterized models for
interconnect self and coupling capacitances. We start with a
brief description of the capacitance-extraction problem, and
then describe how we made use of the model reduction.

A. Computing Capacitances

Consider the three conductors example in Fig. 1, in which we
are interested in determining the relation between the coupling
capacitances and the conductor separation distances. The ma-
trix of self and coupling capacitances is usually computed by
solving an integral equation for the conductor surface charges,
and then integrating those charges to determine conductor ca-
pacitances. In particular, the surface-charge density must sat-
isfy the first-kind integral equation

(10)

where and are positions on the conductor surfaces, is
the known conductor surface potential, is the incremental
conductor surface area, and is the usual Euclidean length of
.

A standard approach to numerically solving (10) for is to
use a piece-wise constant collocation scheme. In such schemes,
the conductor surfaces are divided up into small panels, and
is assumed constant on each panel, thus generating a piecewise
constant approximation to . The panel charges can then be
determined by insisting that the approximation to generates
the correct potential at test points located at the centroids of
the panels. This constraint on the panel charges can be repre-
sented as a linear system of equations

(11)

where is the dense matrix, which relates unknown panel
charges to known panel potentials, is the vector of panel

charges, is the vector of known panel centroid poten-
tials, and

(12)

where is the centroid of the th panel and is the area of the
th panel.

For the three-conductor example shown in Fig. 1, there are
a total of six coupling capacitances and three self capacitances.
To determine these capacitance values, one can solve (11) three
times, with three different vectors. Specifically, the three dif-
ferent vectors are used to set a nonzero voltage on only one
conductor at a time. Weighted combinations of the three com-
puted vectors of panel charges then yield the self and coupling
capacitances. Altering the spacing between the three conductors
will change the separation distances between pairs of panels and
centroids that reside on different conductors. As is clear from
the formula for the potential coefficients, (12), the coefficients

depend nonlinearly on the panel separation distances and,
therefore, the matrix depends nonlinearly on conductor sep-
aration distances.

B. Approximating the Potential Coefficient Matrix

In order to apply the above techniques for model reduction to
the capacitance-extraction problem, it is first necessary to gen-
erate a polynomial approximation for the variations in the po-
tential coefficient matrix caused by variations in separation
distance . For the three conductors example in Fig. 1, we used
both a Taylor series and Chebyshev polynomial interpolation
approaches to generate a quadratic approximation of the form

where note that , , and are matrices. After the
polynomial coefficients are obtained, they can be used in the
recursion formula (7) to generate , which can in turn be used
to obtain a reduced system. Hence,

Taylor or Chebyshev approximation

Model Order Reduction

through recursion formula

Example-capacitance results for the three conductors
example are shown in Figs. 2 and 3. The conductors were
discretized into approximately 600 panels, (12) was used to
compute the matrix, and (11) was solved to determine
normalized self and coupling capacitances for the conductors.
In addition, was fit with a quadratic expansion in
using a Taylor series and a Chebyshev expansion, then these
expanded matrices were reduced, as described above.

In Fig. 2, the self and coupling capacitances computed using
the exact are compared to those produced using quadratic
models generated using the Taylor and Chebyshev approxima-
tions (no model reduction was applied). As is clear from the
figure, the quadratic approximations fit reasonably well from
one fifth of the nominal gap spacing to nearly twice the gap
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Fig. 2. Illustration of the error introduced by the first step of our procedure.
In this example, an approximation using second-order Taylor or Chebyshev
polynomials. Taylor is better locally around its expansion point (gap = 0:5m),
while Chebyshev is better on a wider range of values, yet still finite (e.g., see
lower plot). No model-order reduction technique has been applied at this stage.
Capacitances values should be scaled by 10 pF, gap is in m.

Fig. 3. Illustration of the additional error introduced by the actual model-order
reduction step (second step). The reference for the comparison in this figure
is the result of the first step: the second-order Chebyshev approximation. The
reduction step produces a good fit around the expansion point. However, the
model is valid only for a finite range of values of the parameter. Higher orders are
shown to yield higher accuracies and wider ranges. Capacitance values should
be scaled by 10 pF, gap is in m.
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spacing. Both the Taylor and Chebyshev methods become inac-
curate for very small conductor separations, and the Chebyshev
method is more accurate for large separations, being indistin-
guishable from the exact solution at 1.8 times the nom-
inal spacing, at least for the self and largest coupling capaci-
tance. Note that the capacitance coupling for the first and third
conductor is an order of magnitude smaller than the self and
nearby coupling capacitances, but is still approximated reason-
ably accurately.

In order to examine the impact on accuracy of the model
reduction, the three 600 600 matrices generated by the
quadratic Chebyshev expansion were reduced to 5 5 and
7 7 matrices using the congruence-projection model-reduc-
tion described above. Once the reduced matrices are calculated,
evaluating the self and coupling capacitances for a new value
of is just a matter of a few very simple additions and fac-
torizations operations on matrices of order 5 5 or 7 7. As
shown in Fig. 3, the capacitances computed using the original
600 600 Chebyshev matrices are indistinguishable from
those generated by the reduced models for the self and nearby
coupling capacitances. In addition, the reduced model results
are still reasonable for the much smaller distance coupling
capacitance.

IV. MORE GENERAL PROBLEM FORMULATION

When modeling long-interconnect wires, it is usually insuf-
ficiently accurate to use a simple-lumped capacitor model. In-
stead, the long wires are usually modeled using a distribution
of resistors and capacitors, and sometimes even inductors. Even
if there is only one geometric parameter of interest, such in-
terconnect examples still generate a multiparameter reduction
problem, with frequency being the second parameter.

In order to derive an approach for the multiparameter
problem, consider the following parameterized state space
system model:

(13)

where are parameters, is the state of the system,
is the system descriptor matrix, is

a matrix relating the inputs to the state , and is a matrix
relating the state to the outputs .

In general, the descriptor matrix could have
a complicated and nonlinear dependence on the parameters

. As a first step of our approach, we capture this
dependence by means of a power series in the parameters

(14)

One of the easiest ways to produce such a power-series rep-
resentation is to truncate the variables Taylor-series expan-
sion shown in (15) (see equations (15)–(18) at the bottom of the
page), where are the expansion points. In a practical
implementation, one could, for instance, choose the expansion
points to coincide with the “nominal values” for each of the pa-
rameters. Also, in practical implementations one could be more
interested in working explicitly with variables that represent
relative variations of the actual parameters around the
expansion points, rather than working with absolute variations

. Finally, as an alternative to using a -variables Taylor-se-
ries expansion, it is also possible to generate the power-series
representation using, instead, polynomial interpolation to a set
of data points.

(15)

(16)

(17)

(18)
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Given the power-series representation in (14), a re-
duced-order model can then be generated by using a congru-
ence transformation on the power-series representation, as in
(16), where , and the size of the reduced-order
system matrices is typically much smaller than the size of the
original system matrices.

In order to calculate the column span of the projection matrix
, it is convenient to use the power series (14) to rewrite system

(13) as in (17), so that is given by (18).

V. PARAMETER MODEL-ORDER REDUCTION

One simple way to construct the columns of the projection
matrix for the reduced order model in (16) is to identify a
new set of parameters and matrices (see equation (16) at
the bottom of the previous page),

so that one can rewrite the parameterized system in (13) as a
linearly parameterized model

(19)

In the special case [(20) and (21)], the power series is con-
structed using a Taylor series expansion. [See equations (20)
and (21) at the bottom of the page.] In this simplified setting,
the reduced model is now

(22)

and once again, in order to calculate the column span of the
projection matrix , it is convenient to write the system (19)
as

where

for

Hence, is given by (23) [See equations (23)–(27) at the bottom
of the next page.]

Lemma 1: The coefficients of the se-
ries in (23) can be calculated using (24).

The proof can be found in Appendix A. For a single input
system, , and the columns of can
be constructed to span the Krylov subspace (25), or equivalently
(26).

The following lemmas are useful to prove the main moment
matching theorem for parameterized model order reduction.

Lemma 2: If is an orthonormal matrix ,
, and is any vector in the column span of

the matrix , , then .
Note that “in general” .
Lemma 3: If is an orthonormal matrix ,

, and is a vector such that ,
then .

Lemma 4: If is a matrix constructed
as in (24), and is an orthonormal matrix constructed
such that (26) holds, then (27) holds for .

Theorem 1: (Parameterized Model Order Reduction Mo-
ment Matching Theorem) The first moments (corresponding
to the first orders of derivatives in each parameter) of the
transfer function for the reduced-order model (22), constructed
using the columns of the orthonormal projection matrix

in (26) match the first moments (corresponding
to the first orders of derivatives in each parameter) of the
transfer function of the original system (19).

Proofs for Lemma 2–4 and for Theorem 1 are given in
Appendices B–E, respectively. Note that the development
closely follows the two-parameter approach given in [14].

(20)

(21)
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Extension of the parameterized model-order reduction moment
matching theorem to multi-input systems is straightforward.
For a -input system, the columns of can be constructed to
span the Krylov subspaces produced by all the columns
of as shown in (28).

VI. ORDER GROWTH AND COMPUTATIONAL

COMPLEXITY ANALYSIS

Lemma 5: If is the total number of parameters and is
the largest order of derivative that will be matched with respect

to any parameter, then the order of the parameterized reduced
system is

(proof in Appendix F).
One way to improve accuracy is to increase . Unfortu-

nately, with large the order of the produced model might
quickly become impractical. When , the order of the
produced model scales linearly with the number of parameters
and a large number of parameters can be handled. In some ap-
plications, the accuracy given by matching a single derivative
per parameter can be good enough. In particular, we recall that
many of the examples presented in this paper are obtained using

(23)

if
if
if (24)

(25)

(26)

(27)

(28)
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and show good accuracy. Using improves
the accuracy but generates a larger system. For example, with

the order of the produced parameterized model is

which implies that a 66th order model will be generated from
a problem with parameters. For larger values of ,
impractically large models will be generated even for a small
number of parameters .

In terms of computational cost, it is important to make a dis-
tinction between the cost of “constructing” the model and the
cost of “evaluating” the model. The models constructed by our
procedure are extremely small compared to the original systems,
therefore, their evaluation cost is also small compared to the
construction cost. In particular, when constructing the model,
most of the cost is in constructing each of the columns of
matrix . In particular, generating vectors defined in (24),
is the most expensive operation, given that it involves iterative
large and dense matrix solves in , and several other large and
dense matrix-vector multiplications. In order to make the cost
of model computation practical, one can use Krylov subspace
iterative methods combined with “fast-methods” [16]–[20] for
the required matrix-vector products. Exploiting such well devel-
oped techniques, we need to perform operations for
each column of . Hence, the total construction cost is ,
where is typically on the order of few hundreds, and can be
as large as hundreds of thousands. When evaluating the model,
one needs only solve a small matrix of size , therefore, the eval-
uation cost is very low.

VII. EXAMPLE: A BUS MODEL PARAMETERIZED

IN THE WIRES’ SPACING

One design consideration for interconnect busses is the
tradeoff between:

• wider spacing to reduce propagation delays and crosstalk.
• narrower spacing to reduce area and therefore cost.

In this example, we have used a multiparameter model-order-
reduction approach to construct a low-order model of an inter-
connect bus, parameterized by the wire spacing. The model can
be efficiently constructed “on the fly” during the design and can
account for the topology of the surrounding interconnect already
present in the design. Once produced, the model can be simply
evaluated for different values of the main parameter, the wire
spacing, in order to determine propagation delay, crosstalk or
even detailed step responses.

Our example problem is the bus in Fig. 4, which consists of
parallel wires, with thickness m, and width
m. The total length of each wire is mm. Above

and below our bus, we assumed a random collection of inter-
connect at several layout levels, ranging from a distance of 1 to
5 m. We have subdivided each wire into 20 equal sections de-
limited by nodes. Each section has been modeled with
a resistor. Each node has a “grounded capacitor” representing
the interaction with upper and lower interconnect levels. In ad-
dition, each node has two coupling capacitors to the adjacent
wires on the bus. The value of the capacitors was determined

Fig. 4. Sketch of the modeled 16 parallel wires interconnect bus above a
random collection of prerouted interconnect at lower layers.

using simple parallel plate formulas. Standard frequency-do-
main nodal analysis leads to a system of equations of the form

(29)

where is the Laplace transform variable, is the spacing be-
tween wires, is the nodal conductance matrix. The

matrix is the diagonal nodal matrix associated with
the grounded capacitors, and is the sparse nodal matrix as-
sociated with the adjacent coupling capacitors. is the
matrix relating input voltages to the internal node poten-
tials , is a matrix relating node potentials to the
output voltages . We would like to underline that our model
is limited to capturing the behavior of the interconnect, which is
linear for almost all practical applications. Our models can then
be used in conjunction with any device model, from the most
simple linear device model to the most sophisticated spice de-
vice model. It is not the purpose of this paper to discuss models
for devices, however, just in order to “simulate” our intercon-
nect model, for simplicity we will drive our wires with ideal
linear devices having impedance . In general, when

is much smaller than the conductance of a wire section, all
the capacitors in the different sections of each wire appear as
lumped, and the detailed model presented here is not necessary.
A more interesting case is observed when instead is large. In
such a case, the wires charge up slowly from the input side of
the bus and continue to charge up along the length of the bus. In
order to observe this more interesting effect, we chose .
All of the wires are left open on the other side.

A. Crosstalk From One Input to all Outputs

When determining the crosstalk generated on all the outputs
by a transition on a single input, the input matrix becomes a
vector

and the output matrix is

. . .

The system in (29) has the following parameterized descriptor
matrix
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where we choose to work with parameter instead of param-
eter . For frequency , we choose as expansion point

. For the separation, we choose m.

(30)
Either by identifying terms directly on (30) or by using the
formulas in (20)–(21), one can recognize a system as in (19)
defining

The original system for this example has an order of 336
(16 wires 21 nodes each). We performed a model-order
reduction procedure as described in Section V and obtained a
small model capturing the transfer functions from one input to
all outputs

(31)

where

The projection matrix can be constructed such that

where

A modified Arnoldi algorithm [8] could be used to orthonor-
malize the columns of during the matrix construction.

The step response at the end of the wire excited as shown in
the top of Fig. 5 is given in the graphs of the same figure. The
graphs compare the step responses of the original system (con-
tinuous lines) and a reduced model of order three (small crosses)
when the spacing distance assumes the values
0.5, 1, and 10 m. The model was constructed using a nominal
spacing m; hence, the error is smaller near

m. One can notice that the reduced model can be easily and

Fig. 5. Responses at the end of wire 4 when a step is applied at the beginning
of the same wire. Continuous lines are the response of the original system (order
336). Small crosses are the response of the reduced model, order 3 (top), and
order 6 (bottom). The model was constructed using a nominal wire spacing d =

1 �m and responses are shown here evaluating it at spacing (from the lowest
curves to the highest) d = d +�d = 0.5, 1, and 10 �m.

accurately used to evaluate the step response and propagation
delay for any value of parameter near , by plugging into
the reduced model (31). From the reduced model (31), we have
readily available not only step responses on the same wire, but
also crosstalk step responses from one wire to all the other wires.
For example, Fig. 6 shows step responses from the input of wire
4 to the output of wires 4–7. In this figure, we compare again the
response of the original system of order 336 (continues curves)
with the response of a reduced model order 10 (small crosses)
constructed at nominal spacing m, but evaluated in
this particular figure at spacing m. Note that the model
produced by our procedure is parameterized in the wire spacing,
hence, any of the such crosstalk responses can be evaluated at
any spacing. For instance, we show in Fig. 7 the response at the
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Fig. 6. Responses at the end of wires 4–7 (from highest to lowest curve) when
a step is applied at the beginning of wire 4. Continuous lines are the response of
the original system (order 336). Small crosses are the response of the reduced
model (order 10). The model was constructed using a nominal wire spacing
d = 1 �m and responses are shown here evaluating it at spacing d = 0:5 �m.

Fig. 7. Crosstalk responses at the end of wire 5, when a step is applied at
the beginning of wire 4, for different values of spacing (from highest to lowest
curve) d = d +�d = 0.5, 1, and 10 �m.

output of wire 5 when a step waveform is applied at the input
of wire 4 for different spacing values, 0.5, 1,
10 m.

B. Exploiting the Adjoint Method for Crosstalk From All
Inputs to One Output

It is possible to construct, with the same amount of calcula-
tion, a model that provides the susceptibility of one output to
all inputs. In order to do this, we can use an adjoint method and
start from an original system which swaps positions of and

Fig. 8. Adjoint method results: responses at the end of wire 4, when a step is
applied at the beginning of wires 4–7 (from highest to lowest curve). Continuous
lines are the response of the original system (order 336). Small crosses are the
response of the reduced model (order 10). The model was constructed using
d = 1 �m. The plot on top is for d = 0:25 �m. The plot on the bottom is for
d = 2 �m.

and transposes all system matrices. Note that since we are con-
sidering a single output and is a vector

(32)

In this case, the columns of the projection operator will span
the Krylov subspace

or in general

In Fig. 8, we show the responses at the end of wire 4 when a step
is applied at the beginning of wires 4–7. The model was con-
structed using a nominal wire spacing m. Responses
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in Fig. 8 (top) are for m. Responses in Fig. 8 (bottom)
are for m.

VIII. EXAMPLE: BUS MODEL PARAMETERIZED IN BOTH

WIRE WIDTH AND SEPARATION

Often, when designing an interconnect bus, one would like
to quickly evaluate design tradeoffs originating not only from
different wire spacings, but also for different wire widths. Wider
wires have lower resistances but use more area and have higher
capacitance. The higher capacitance to ground, however, helps
improving crosstalk immunity. We show here a procedure that
produces small models that can be easily evaluated with respect
to propagation delays and crosstalk performance for different
values of the two parameters: wire spacing , and wire width

. As in the case of wire spacing, we constructed models for
a given nominal wire width , and then we parameterized in
terms of perturbations . Considering the same bus example
with parallel wires described in Section VII, we can write the
equations for the original large parameterized linear system

The system has the following parameterized descriptor matrix

where , , and and are as de-
scribed in Section VII. With respect to the expansion points

, ,

(33)

Either by identifying terms directly on (33) or by using the
formulas in (20)–(21), one can recognize a system as in (19)
defining

Following the procedure in Section V, the produced reduced
order model is

(34)

Fig. 9. Original system (continuous curves) versus fifth-order reduced model
(small crosses) using both spacing and width parameters. The nominal wire
spacing was d = 1�m and the nominal wire width was W = 1 �m.Top:
responses at the end of wire 4 due to a step at the beginning of the same wire for
different widths (from highest to lowest curve) W = 0.25, 2, 4, and 8 �m and
for spacing d = 0:25 �m. Bottom: same responses but for spacing d = 2 �m.

where
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Fig. 10. Original system (continuous curves) versus 5th order reduced model
(small crosses) using both spacing and width parameters. The nominal wire
spacing was d = 1 �m and the nominal wire width was W = 1 �m. Top:
crosstalk at the end of wire 5 due to a step at the beginning of wire 4. Curves
correspond to widths (from highest curve to lowest) W = 0.25, 2, 4, and 8 �m
and spacing is d = 0:25 �m. Bottom: same crosstalk responses but for spacing
d = 2 �m.

The projection matrix can be constructed for instance for
a single input case as shown in (26) where

A modified Arnoldi algorithm [8] could be used to orthonor-
malize the columns of during the matrix construction.

In Figs. 9 and 10, we compare the step and crosstalk re-
sponses of the original system to the reduced and parameter-
ized model obtained using a Krylov subspace of order .
This corresponds to choosing in (26), or in other
words it corresponds to constructing a reduced model that
matches the original model up to one moment (or derivative)
for each parameter . The model was constructed using a
nominal spacing m and nominal wire width

m. The key point is that this parameterized model
can be rapidly evaluated for any value of spacing and wire
width, for instance for a fast and accurate tradeoff design op-
timization procedure.

IX. CONCLUSION

In this paper, we described an approach for generating geo-
metrically parameterized integrated circuit interconnect models
that are efficient enough for use in interconnect synthesis. The
model generation approach presented is automatic, and is based
on series expansion of the parameter dependence followed by
single or multiparameter model-reduction. The effectiveness
of the techniques described was tested using a multiline bus
example in two different settings. In the first setting, the model
reduction approach was used to automatically generate, from
an integral equation-based capacitance-extraction algorithm,
second-order models for the dependence of self and coupling
capacitances on line separation. In the second setting, mul-
tiparameter-model reduction was used to generate, from a
formula-based capacitance and resistance-extraction algorithm,
high-order models for the dependence of delay and cross-talk
on line separation and conductor width. The experimental
results clearly demonstrated that the reduction strategies gener-
ated models that were accurate over a wide range of geometric
variation.

It should be noted, however, that there are closed-form
analytical models which relate geometric parameters to self and
coupling capacitances, and the model-reduction approaches
presented herein are unlikely to be as efficient. However, the
methods presented here are potentially more accurate, and
certainly more automatic and more flexible. In addition, there
are many potential issues that can lead to new contributions
in this field. The multiparameter method was tested using
only resistor-capacitor interconnect models, and accuracy
issues may arise when inductance is included. We also did not
investigate using multipoint moment matching, which could be
a better choice given the range of the parameters is often known
a priori. In addition, the multiparameter reduction method can
become quite expensive when a large accuracy is required and
the model has a large number of parameters, so the method
would not generate a very efficient model if each wire pair
spacing in a 16 wire bus was treated individually. Finally, there
are some interesting error bounds in [4], and these results could
be applied to automatically select the reduction order.
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(35a)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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APPENDIX

A. Proof of Lemma 1

Lemma 1 can be shown by induction on . For , we
can easily verify that

Let us now assume for that (35) holds. In order to
show that the property holds for , we can first write (36).
Multiplying and collecting the terms with the same powers of

, we obtain (37), which proves that the statement
holds for .

B. Proof of Lemma 2

As from [8], if , then there must exist a vector
such that . Substituting,

.

C. Proof of Lemma 3

As from [8], we need to show that is
a solution for the linear system .
Substituting, . Since

from Lemma 2 we have that
.

D. Proof of Lemma 4

A proof is given in this paper by induction on the order of
the coefficient. First, let us prove the statement in the lemma for

, i.e.,

Since , from Lemma 3 we have (35a). (See
equation (35a) at the top of the previous page.) This concludes
the proof for . Let us now assume that the statement is
correct for order and let us show that this implies it is

correct for order . From the recursive definition formula (24),
we have (38), Using the inductive hypothesis on order for
each of the terms in the summation we have (39). Using Lemma
2 on each of the terms of the summation we have (40). Since

we can use Lemma 3 and obtain (41). Note that the hypoth-
esis for Lemmas 2 and 3 in this context hold only for

. Hence, (27) holds only for .
This concludes the proof of Lemma 4.

E. Proof of Theorem 1

The transfer function of the system in (19) for a single input
case is given by (42). Similarly, the transfer
function of the system in (22) is given by (43). Using first
Lemma 4, then Lemma 2, we can see that each moment of
the reduced model transfer function expansion (43) matches
the corresponding moment of the original transfer function
expansion (42)

Note that Lemmas 2 and 3 in this context hold only for the first
moments, corresponding to . Hence, only

those moments are guaranteed to be matched.

(42)

(43)
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F. Proof of Lemma 5

The number of coefficients of order , for a system with
parameters, can be obtained by induction

if ,

if

or equivalently

[See equation (42) and (43) at the bottom of the previous page.]
Using, then, the asymptotic approximation [21] for the Gamma
Function , one obtains

Observing that for most practical problems , we have

The order of the produced parameterized reduced system is
then
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