On Almost Smooth Functions and Piecewise Smooth Functions1

Liqun Qi
Department of Mathematics
City University of Hong Kong
Kowloon Tong, Kowloon, Hong Kong
E-mail: maqilq@cityu.edu.hk

and

Paul Tseng
Department of Mathematics
The University of Washington
Seattle, WA 98195-4350, USA
E-mail: tseng@math.washington.edu

February 10, 2006 (revised June 6, 2006)

\textbf{Abstract.} Piecewise smooth (PS) functions are perhaps best-known examples of semismooth functions, which play key roles in the solution of nonsmooth equations and nonsmooth optimization. Recently, there have emerged other examples of semismooth functions, including the p-norm function ($1 < p < \infty$) defined on \mathbb{R}^n with $n \geq 2$, NCP functions, smoothing/penalty functions, and integral functions. These semismooth functions share the special property that their smooth point sets are locally connected around their nonsmooth points. By extending a result of Rockafellar, we show that the smooth point set of a PS function cannot have such a property. This shows that the above functions, though semismooth, are not PS. We call such functions \textit{almost smooth} (AS). We show that the B-subdifferential of an AS function at a point has either one or infinitely many elements, which contrasts with PS functions whose B-subdifferential at a point has only a finite number of elements. We derive other useful properties of AS functions and sufficient conditions for a function to be AS. These results are then applied to various smoothing/penalty functions and integral functions.

\textbf{Key Words.} Nonsmooth function, piecewise smooth function, semismooth function, subdifferential, Newton method.

\textbf{AMS Subject Classification.} 26A27, 26B05, 26B25, 26B35, 41A29, 49J52, 52A41, 65D15, 90C25

1This is a revision of a 2002 paper titled “An Analysis of Piecewise Smooth Functions and Almost Smooth Functions.” This work is supported by the Hong Kong Research Grant Council for the first author and by National Science Foundation Grants CCR-9731273, DMS-0511283 for the second author.
1 Introduction

In the past two decades, nonsmooth functions have emerged to play important roles in optimization [10, 15, 21, 42]. These functions, particularly those defined on finite-dimensional spaces, tend to be close to being smooth (i.e., continuously differentiable) in the sense that they are continuous everywhere and smooth almost everywhere. A well-known class of functions of this type are the piecewise smooth (PS) functions, which are locally representable as a selection from a finite collection of smooth functions; see Definition 1. These functions and their applications have been well studied [1, 21, 22, 23, 28, 39, 43]. Examples include the 1-norm function and the \(\infty \)-norm function and, more generally, piecewise linear functions composed with smooth functions. The PS functions have the nice properties that they are locally Lipschitzian (i.e., strictly continuous [10, 42]), and semismooth [25]. These properties ensure that these functions have generalized Jacobians [10] and B-subdifferentials [31]. Moreover, nonsmooth equations involving these functions can be efficiently solved by nonsmooth Newton methods [36]. Recently, there emerged many interesting nonsmooth functions that have similarly nice properties. These include the \(p \)-norm function on \(\mathbb{R}^n \) with \(1 < p < \infty \) and \(n \geq 2 \), the Fischer-Burmeister function [16] and other nonlinear complementarity (NCP) functions [15, 20, 24, 32, 45], smoothing/penalty functions [5, 6, 7, 8, 15, 35], and integral functions involving splines and projection onto the nonnegative reals [12, 13, 18, 34]. Are these functions PS also? If yes, then they can be treated within a well studied unifying framework. If not, then can they be treated systematically within some new framework?

By using an observation of Pang and Ralph [28] that the B-subdifferential of a PS function at a point has only finitely many distinct elements, Dontchev, Qi, and Qi [13] showed that the aforementioned integral functions are not PS due to their B-subdifferentials at the origin having infinitely many elements. This proof is specialized and does not appear to extend to other functions. This motivated a conjecture by the first author that a function defined on \(\mathbb{R}^n \) with \(n \geq 2 \) is not PS if it is smooth everywhere except at one point. This conjecture was recently proved by Rockafellar [41], showing that the nonsmooth point set of a PS function defined on \(\mathbb{R}^n \) (\(n \geq 2 \)) cannot be a singleton (or, more generally, isolated points); see Theorem 1(c). Motivated by the above results, we make further studies in this paper of the nonsmooth point sets of PS functions, and use our results to formulate and study a new class of ‘nice’ nonsmooth functions, which we call “almost smooth” functions, that are not PS but encompasses the aforementioned functions like the \(p \)-norm function, smoothing/penalty functions, and integral functions.

Our first contribution is a generalization of the result of Rockafellar [41]. We show that the smooth point set of a PS function \(f \) defined on \(\mathbb{R}^n \) (\(n \geq 2 \)) is locally disconnected around each point where \(f \) is not strictly differentiable [42]; see Theorem 2(c). We also give a characterization of strict differentiability for PS functions. A corollary of this result is that the smooth point sets of \(f \) cannot be locally connected around all the nonsmooth points; see Corollary 1. Intuitively, the nonsmooth point set of a PS function \(f \) defined on \(\mathbb{R}^n \) partitions \(\mathbb{R}^n \) into multiple connected components, with \(f \) being smooth on the interior of each component. For example, when \(n = 2 \), the nonsmooth point set can be the union of
lines and curves. All such lines and curves should either exclude their endpoints or extend to “infinity” without endpoints.

Our second contribution is a systematic treatment of nonsmooth functions such as the aforementioned p-norm function ($1 < p < \infty$, $n \geq 2$), NCP functions, smoothing/penalty functions, and integral functions, within a common framework. In particular, these functions are not only locally Lipschitzian and semismooth, they share the additional property that their smooth point sets are locally connected around all the nonsmooth points. Thus these functions are not PS. We call a function weakly almost smooth if it is locally Lipschitzian and has this additional property; see Definition 3. We call it almost smooth (respectively, strongly almost smooth) if, in addition, it is semismooth (respectively, strongly semismooth); see Definition 4. In what follows, we will often abbreviate “almost smooth” as “AS”. We study the subdifferential properties of AS functions. In particular, we show that the B-subdifferential of a weakly AS function at a point contains either a single element (in this case it is strictly differentiable at that point) or infinitely many elements; see Theorem 3. This property further distinguishes AS functions from PS functions. We define the principal part of the B-subdifferential of a locally Lipschitzian function, a notion also used by Klätte and Kummer [21, Eq. (6.30)] in analyzing nonsmooth Newton methods. For PS functions, the B-subdifferential coincides with its principal part. We show that this is also true for a weakly AS function that is smooth everywhere except at isolated points; see Theorem 4. We also show that if f is smooth everywhere except at a point and f is positively homogeneous about that point, then f is AS. If in addition ∇f is locally Lipschitzian everywhere except at that point, then f is strongly AS; see Theorem 5. This provides an easy check for positively homogeneous functions to be AS.

In Section 4, we make further studies of AS functions, with more examples and applications. In Subsections 4.1 and 4.2, the AS functions include the p-norm function defined on \mathbb{R}^n ($1 < p < \infty$, $n \geq 2$), certain NCP functions, and integral function associated with convex best interpolation. In Subsection 4.3, we derive general conditions for a class of smoothing/penalty functions for NCP and constrained optimization to be AS. We then apply them to various examples, including the Chen-Mangasarian class of smoothing functions and the exponential penalty function, to show they are AS. In Subsection 4.4, we study conditions for a certain integral function to be strongly AS. While particular instances of AS functions have been studied in disparate contexts [13, 16, 30, 32, 35], this is the first systematic study of such functions.

Throughout this paper, for any $x \in \mathbb{R}^n$, we use $\|x\|$ to denote the Euclidean norm of x. For any $\bar{x} \in \mathbb{R}^n$ and $\varepsilon > 0$, we denote the open Euclidean ball $B_\varepsilon(\bar{x}) = \{x \in \mathbb{R}^n : \|x - \bar{x}\| < \varepsilon\}$. We use “:=” to mean “define”. \mathbb{R}_+ and \mathbb{R}_- denote, respectively, the nonnegative reals and the nonpositive reals. A subset $S \subseteq \mathbb{R}^n$ is connected if, for any two points y and z in S, there exists a continuous function $x : [0, 1] \to \mathbb{R}$ satisfying $x(0) = y$, $x(1) = z$, and $x(t) \in S$ for all $t \in [0, 1]$. For a closed set $S \subseteq \mathbb{R}^n$ and $x \in \mathbb{R}^n$, we denote $\text{dist}(x, S) := \min_{s \in S} \|x - s\|$. For any $a \in \mathbb{R}$, $a_+ = \max\{0, a\}$.

Throughout, differentiability will always mean Fréchet differentiability, which for locally Lipschitzian functions is equivalent to Gâteaux differentiability [10]. For a locally
Lipschitzian function f defined on an open set $O \subseteq \mathbb{R}^n$, a property stronger than differentiability is **strict differentiability** [10, 42] (i.e., ∇f is continuous when approached from the set of differentiable points), while a property stronger than strict differentiability is **smoothness** (i.e., ∇f exists and is continuous). We denote

\[
F_f := \{ x \in O : f \text{ is differentiable at } x \},
\]

\[
S_f := \{ x \in O : f \text{ is strictly differentiable at } x \},
\]

\[
X_f := \{ x \in O : f \text{ is smooth at } x \}.
\]

Then $F_f \supseteq S_f \supseteq X_f$.

Let f be a real-valued locally Lipschitzian function defined on a nonempty open set $O \subseteq \mathbb{R}^n$. The **B-subdifferential** of f at a point $x \in O$ [31] is defined as

\[
\partial_B f(x) := \{ \lim_{x^k \to x} \nabla f(x^k) \}.
\]

It is well known that $\partial_B f(x)$ is nonempty and compact for all $x \in O$ [31]. Moreover, f is strictly differentiable at x if and only if $\partial_B f(x) = \{ \nabla f(x) \}$. f is **semismooth** at $x \in O$ if in addition f is directionally differentiable at x and

\[
f(x + h) - f(x) - g^T h = o(\|h\|) \quad \forall g \in \partial_B f(x + h).
\]

f is **strongly semismooth** if $o(\|h\|)$ can be replaced by $O(\|h\|^2)$.

2 Piecewise Smooth Functions

We begin with a definition of a PS function.

Definition 1 A real-valued function f defined on a nonempty open set $O \subseteq \mathbb{R}^n$ is **piecewise smooth (PS)** on O if it is continuous on O and there exists a finite collection of smooth functions $f_i : O \to \mathbb{R}$, $i = 1, ..., m$, such that

\[
f(x) \in \{ f_i(x) : i \in \{1, ..., m\} \} \quad \forall x \in O.
\]

Such a collection (not necessarily unique) is called a **representation** for f on O.

A PS function is locally Lipschitzian and semismooth. We next give the definition of a minimal local representation for a PS function, a term used by Rockafellar [41]. Scholtes used the term “essentially active selection” [43, Section 4.1].

Definition 2 Let f be a real-valued PS function defined on a nonempty open set $O \subseteq \mathbb{R}^n$, and let $f_1, ..., f_m$ be a representation for f on O. A collection $\{f_i\}_{i \in I}$ with $I \subseteq \{1, ..., m\}$ forms a **local representation** for f at a $\bar{x} \in O$ if there exists $\varepsilon > 0$ such that

\[
f(x) \in \{ f_i(x) : i \in I \} \quad \forall x \in O \cap B_{\varepsilon}(\bar{x}).
\]

A local representation for f at \bar{x} is **minimal** if no proper subcollection forms a local representation for f at \bar{x}.
The results of Rockafellar can be stated in full as follows.

Theorem 1 (Rockafellar 2003) Let f be a real-valued PS function defined on a nonempty open set $O \subseteq \mathbb{R}^n$. For any $\bar{x} \in O$ and any minimal local representation $\{f_i\}_{i \in I}$ for f at \bar{x}, the following results hold.

(a) For every $i \in I$, there is an open set $O_i \subseteq O$ such that $\bar{x} \in \text{cl}O_i$ and $f \equiv f_i$ on O_i.

(b) If f is differentiable at \bar{x}, then there exists $i \in I$ such that $f(\bar{x}) = f_i(\bar{x})$ and $\nabla f(\bar{x}) = \nabla f_i(\bar{x})$.

(c) If $n \geq 2$ and f is smooth on $O \setminus \{\bar{x}\}$, then f is smooth at \bar{x} and $\nabla f(\bar{x}) = \nabla f_i(\bar{x})$ for all $i \in I$.

Part (c) of Theorem 1 is the main result in [41], whose proof uses parts (a) and (b). In fact, parts (a) and (b) were shown earlier by Scholtes [43, Propositions 4.1.1 and 4.1.3]. A related result of Scholtes [43, Proposition 4.1.5] shows that a PS function defined on a nonempty open set O is smooth on some open dense subset of O.

We extend Theorem 1(c) below by relaxing the assumption that f is smooth everywhere except possibly at some point to f is smooth on a dense subset which is locally connected around some point. Our proof uses Theorem 1(a),(b), as well an argument involving connected graph. An alternative proof that may be viewed as a direct extension of Rockafellar’s approach is given in Section 5.

Theorem 2 Let f be a real-valued PS function defined on a nonempty open set $O \subseteq \mathbb{R}^n$ with representation f_1, \ldots, f_m. For any $\bar{x} \in O$ and any minimal local representation $\{f_i\}_{i \in I}$ for f at \bar{x}, the following results hold.

(a) Let $D_1 \subseteq O$ be any open set containing \bar{x} such that

$$f(x) \in \{f_i(x)\}_{i \in I} \quad \forall x \in D_1.$$

For each nonempty $J \subseteq I$, there exists a (possibly empty) open set $O_J \subseteq D_1$ such that

$$f(x) = f_i(x) \forall i \in J, \quad f(x) \neq f_i(x) \forall i \in I \setminus J$$

and $\bigcup_{J \subseteq I} \text{cl}O_J = \text{cl}D_1$.

(b) If f is differentiable at \bar{x}, then f is strictly differentiable at \bar{x} if and only if $\nabla f(\bar{x}) = \nabla f_i(\bar{x})$ for all $i \in I$.

(c) Suppose $n \geq 2$ and f is smooth on a subset $X \subseteq O$ with $\text{cl}X \supseteq O$ and $\bar{x} \in O \setminus X$. Suppose that there exists an $\varepsilon > 0$ such that

$$X \cap B_\varepsilon(\bar{x}) \text{ is connected} \quad \forall \varepsilon \in (0, \varepsilon).$$

Then f is strictly differentiable at \bar{x}, and $\nabla f(\bar{x}) = \nabla f_i(\bar{x})$ for all $i \in I$.

(2)
\textbf{Proof.} (a) For \(k = 1, 2, \ldots, \text{card} I \), denote \(\mathcal{J}_k := \{ J \subseteq I : \text{card} J = k \} \) and, for each \(J \in \mathcal{J}_k \), define \(C_J := \{ x \in D_k : f(x) = f_i(x) \ \forall i \in J \} \), \(O_J := D_k \setminus (\bigcup_{J' \in \mathcal{J}_k \setminus \{ J \}} C_{J'}) \), and define inductively
\[
D_{k+1} := D_k \setminus (\bigcup_{J \in \mathcal{J}_k} \text{cl} O_J).
\]
It can be seen by induction that, for all \(k = 1, 2, \ldots, \text{card} I \), \(D_k \) and \(O_J \) are open (since each \(C_J \) is closed relative to \(D_k \)) and \(O_J \subset C_J \) for all \(J \in \mathcal{J}_k \). Moreover, we have \(f(x) \neq f_i(x) \) for all \(i \notin J \) and all \(x \in O_J \). Also, it can be seen that \(\bigcup_{J \subseteq I} \text{cl} O_J = \text{cl} D_1 \).

(b) Suppose that \(\bar{x} \in F_f \) and \(\nabla f(\bar{x}) = \nabla f_i(\bar{x}) \) for all \(i \in I \). Since \(\{ f_i \}_{i \in I} \) is a minimal local representation for \(f \) at \(\bar{x} \), there exists \(\epsilon > 0 \) satisfying (1). Thus, for any sequence \(\{ x^k \} \subseteq F_f \) converging to \(\bar{x} \), we have \(x^k \in B_{\epsilon}(\bar{x}) \) for all \(k \) sufficiently large, in which case Theorem 1(b) implies \(\nabla f(x^k) = \nabla f_i(x^k) \) for some \(i_k \in I \). Since \(\nabla f_i \) is continuous at \(\bar{x} \) and \(\nabla f_i(\bar{x}) = \nabla f(\bar{x}) \) for all \(i \in I \), this shows that \(\nabla f(x^k) \rightarrow \nabla f(\bar{x}) \). Thus \(f \) is strictly differentiable at \(\bar{x} \).

Suppose \(f \) is strictly differentiable at \(\bar{x} \). By Theorem 1(a), for each \(i \in I \), there exists an open set \(O_i \subseteq O \) such that \(\bar{x} \in \text{cl} O_i \) and \(f \equiv f_i \) on \(O_i \). Then there exists a sequence \(\{ x^k \} \subseteq O_i \) converging to \(\bar{x} \) and \(\nabla f \equiv \nabla f_i \) on \(O_i \subseteq F_f \). Since \(\nabla f_i \) is continuous, this implies \(\nabla f(x^k) \rightarrow \nabla f_i(\bar{x}) \). Since \(f \) is strictly differentiable at \(\bar{x} \), we must also have \(\nabla f(x^k) \rightarrow \nabla f(\bar{x}) \). Thus \(\nabla f_i(\bar{x}) = \nabla f(\bar{x}) \) for all \(i \in I \).

(c) Let \(D_1 \) and \(C_J, O_J, J \subseteq I \), be defined as in (a). Let \(\mathcal{V} := \{ J \subseteq I : \bar{x} \in \text{cl} O_J \} \). For \(\epsilon > 0 \) sufficiently small, we have \(B_{\epsilon}(\bar{x}) \subseteq D_1 \) and
\[
\bigcup_{J \in \mathcal{V}} \text{cl} U_J = \text{cl} B_{\epsilon}(\bar{x}), \tag{3}\]
where we define \(U_J := O_J \cap B_{\epsilon}(\bar{x}) \). For each \(J \in \mathcal{V} \), \(U_J \) is a nonempty open subset of \(C_J \).

By taking \(\epsilon \) smaller if necessary, we can assume that, for every \((J, J') \in \mathcal{A} := \{ (J, J') : J, J' \in \mathcal{V}, J \neq J', (\text{cl} U_J \cap \text{cl} U_{J'}) \cap X \neq \emptyset \} \), we have
\[
((\text{cl} U_J \cap \text{cl} U_{J'}) \cap B_{\epsilon}(\bar{x})) \cap X \neq \emptyset \quad \forall \epsilon \in (0, \epsilon]. \tag{4}\]
Since (2) holds, by taking \(\epsilon \) even smaller if necessary, we can further assume that \(B_{\epsilon}(\bar{x}) \cap X \) is connected for every \(\epsilon \in (0, \epsilon] \). Notice that this set is also nonempty since \(X \) is dense in \(O \).

For each \(J \in \mathcal{V} \), \(U_J \) is a nonempty open subset of \(C_J \). Since \(X \) is dense in \(O \), then \(U_J \cap X \) is dense in \(U_J \) so \(U_J \cap X \) is nonempty. For each \(i \in J \), since \(f_i \) is smooth and equal to \(f \) on \(U_J \), then \(f \) is smooth on \(U_J \) and \(\nabla f(x) = \nabla f_i(x) \) for all \(x \in U_J \). Since \(f \) is smooth on \(X \) and \(f_i \) is smooth on \(O \) so that \(\nabla f \) and \(\nabla f_i \) are continuous on \(\text{cl} U_J \cap X \), this implies
\[
\nabla f(x) = \nabla f_i(x) \quad \forall x \in \text{cl} U_J \cap X, \quad \forall i \in J. \tag{5}\]

For each \((J, J') \in \mathcal{A} \), we have from (4) that there exists a sequence \(\{ x^k \}_{k=1}^{\infty} \subseteq (\text{cl} U_J \cap X) \cap (\text{cl} U_{J'} \cap X) \) converging to \(\bar{x} \). Then, (5) implies \(\nabla f_i(x^k) = \nabla f_j(x^k) \) for all \(i, j \in J \cup J' \) and all \(k \). Since \(\nabla f_i, \nabla f_j \) are continuous, we have in the limit as \(k \rightarrow \infty \) that \(\nabla f_i(\bar{x}) = \nabla f_j(\bar{x}) \).
\(\nabla f_j(\bar{x}) \) for all \(i, j \in J \cup \mathcal{J} \). Since \(\mathcal{B}_x(\bar{x}) \cap X \) is nonempty and connected, then (3) implies \(\bigcup_{J \in \mathcal{V}} (\text{cl}U_J \cap X) \) is nonempty and connected, so that the (undirected) graph \(G = (\mathcal{V}, \mathcal{A}) \) is connected. (Notice that \((J, \mathcal{J}') \in \mathcal{A} \) if and only if \(J \neq \mathcal{J}' \) and \((\text{cl}U_J \cap X) \cap (\text{cl}U_{\mathcal{J}' \cap X}) \neq \emptyset \).) Hence \(\nabla f_i(\bar{x}) = \nabla f_j(\bar{x}) \) for all \(i, j \in \bigcup_{J \in \mathcal{V}} J \). For each \(i \in I \), we have \(\{i\} \in \mathcal{V} \) (else \(f_i \) would be superfluous in the minimal local representation), so \(\bigcup_{J \in \mathcal{V}} J = I \).

Thus \(f \) is differentiable at \(\bar{x} \) and \(\nabla f(\bar{x}) = \nabla f_i(\bar{x}) \) for all \(i \in I \). By (b), \(f \) is strictly differentiable at \(\bar{x} \).

It can be seen from its proof that Theorem 2(a) holds for any nonempty open set \(D_1 \subseteq O \) and any representation \(\{f_i\}_{i \in I} \) for \(f \) on \(D_1 \). Taking \(D_1 = O \), it shows that, for a real-valued PS function \(f \) defined on a nonempty open set \(O \subseteq \mathbb{R}^n \), \(X_f \) contains an open subset that is dense in \(O \). This gives an alternative proof of [43, Proposition 4.1.5].

Theorem 1(b) shows that if a PS function \(f \) is differentiable at \(\bar{x} \), and \(\{f_i\}_{i \in I} \) is a minimal local representation for \(f \) at \(\bar{x} \), then \(\nabla f_i(\bar{x}) = \nabla f_j(\bar{x}) \) for some \(i \in I \). Theorem 2(b) shows that if in addition \(\nabla f(\bar{x}) = \nabla f_i(\bar{x}) \) for all \(i \in I \), then \(f \) is strictly differentiable at \(\bar{x} \). This additional condition cannot be dropped, as the following example shows. Geometrically, \(f \) can fail to be strictly differentiable at \(\bar{x} \) when there exists some \(i \in I \) and open set \(O_i \) such that \(\bar{x} \in \text{cl}O_i \), \(f \equiv f_i \) on \(O_i \) and \(\nabla f_i(\bar{x}) \) is a normal vector to \(\text{cl}O_i \) at \(\bar{x} \).

Example 1 Consider the PS function

\[
f(x_1, x_2) = \begin{cases}
x_2 & \text{if } |x_2| \leq (x_1)^2, \\
(x_1)^2 & \text{if } x_2 > (x_1)^2, \\
-(x_1)^2 & \text{if } x_2 < -(x_1)^2,
\end{cases}
\]

defined on \(O = \mathbb{R}^2 \). It can be seen that \(f \) is differentiable at the origin with \(\nabla f(0,0) = 0 \), but is not strictly differentiable there. In particular, for \(x^k = (\frac{1}{k}, 0) \), \(k = 1, 2, ..., \) we have \(x^k \to (0,0) \) while \(\nabla f(x^k) = (0,1) \not\to \nabla f(0,0) \). Notice that \((0,1) \) is a normal vector to \(\{(x_1, x_2) : |x_2| < (x_1)^2\} \) at \((0,0) \). Here, \(F_f = \mathbb{R}^2 \setminus \{(x_1, x_2) : |x_2| = (x_1)^2, \ x_1 \neq 0\} \) and \(S_f = X_f = F_f \setminus \{(0,0)\} \).

Theorem 2(c) shows that, for a real-valued PS function defined on open set \(O \subseteq \mathbb{R}^n \), each point of \(O \setminus S_f \) lies in some open ball whose intersection with \(X_f \) is disconnected. For example, when \(n = 2 \), \(O \setminus S_f \) cannot include any “relative boundary point” of \(O \setminus X_f \). By using Theorem 2(b), we have the following generalization of Theorem 1(c).

Corollary 1 Let \(f \) be a real-valued PS function defined on a nonempty open set \(O \subseteq \mathbb{R}^n \) \((n \geq 2) \). Suppose \(f \) is smooth on a subset \(X \subseteq O \) with \(\text{cl}X \supseteq O \). Suppose also that, for every \(\bar{x} \in O \setminus X \), there exists an \(\bar{\varepsilon} > 0 \) such that (2) holds. Then \(f \) is smooth on \(O \).

Proof. By Theorem 2(c), \(f \) is strictly differentiable on \(O \). Then \(S_f = F_f = O \). Since \(\nabla f \) is continuous at each each point in \(S_f \) when approached from \(F_f \), this implies \(\nabla f \) is continuous on \(O \), so \(f \) is smooth on \(O \).

Lastly, Theorem 2(c) is false if we drop the assumption of \(\text{cl}X \supseteq O \) or the existence of \(\bar{\varepsilon} > 0 \) such that (2) holds. This is illustrated with the example below.
Example 2 Consider the PS function

\[f(x_1, x_2) = \max\{0, x_1\} \]

defined on \(O = \mathbb{R}^2 \). For \(X = \{(x_1, 0) : x_1 > 0\} \) and \(\bar{x} = (0, 0) \), we have that (2) holds with \(\bar{\varepsilon} = 1 \) but \(f \) is not differentiable at \(\bar{x} \). For \(X = \{(x_1, x_2) : x_1 \neq 0\} \) and \(\bar{x} = (0, 0) \), we see that \(\partial X \supseteq O \) but \(f \) is not differentiable at \(\bar{x} \).

3 Almost Smooth Functions

Theorems 1(c), 2(c) and Corollary 1 describe topological properties of the nonsmooth point set of a PS function. In particular, Corollary 1 shows that a function cannot be PS if its smooth point set is locally connected around all its nonsmooth points. As we mentioned in Section 1, nonsmooth functions that possess this property, in addition to being locally Lipschitzian and semismooth, are surprisingly abundant. These include the \(p \)-norm function defined on \(\mathbb{R}^n \) (\(1 < p < \infty \), \(n \geq 2 \)), NCP functions, smoothing/penalty functions, integral functions. For some of these functions, the nonsmooth point set comprise isolated points (e.g., the sum of \(p \)-norm functions each composed with affine mappings). For others, the nonsmooth point set has dimension less than \(n - 1 \) but greater than \(0 \) (e.g., the exponential penalty function in Example 5, whose nonsmooth point set is the union of \(\frac{1}{2}(n - 1)(n - 2) \) subspaces of dimension \(n - 2 \); and the integral function in Subsection 4.4, whose nonsmooth point set is a manifold of dimension \(n - 2 \)). In this and next section, we study this class of nonsmooth functions, which we call almost smooth (AS) functions.

Definition 3 Let \(f \) be a real-valued locally Lipschitzian function defined on a nonempty open set \(O \subseteq \mathbb{R}^n \). Then \(f \) is weakly almost smooth if, for every \(\bar{x} \in O \setminus X_f \), there is an \(\varepsilon > 0 \) such that

\[X_f \cap B_\varepsilon(\bar{x}) \text{ is nonempty and connected } \quad \forall \varepsilon \in (0, \varepsilon). \tag{6} \]

\(f \) is basic weakly almost smooth if \(n \geq 2 \) and \(O \setminus X_f \) comprises isolated points.\(^2\)

The above definition of a weakly AS function \(f \), motivated by (2), implies that \(X_f \) is dense in \(O \), and is locally connected around each point not in \(X_f \). Note that when \(n = 1 \), a weakly AS function is a smooth function. When \(n \geq 2 \), a weakly AS function is either smooth or else, by Corollary 1, it is not PS. Also, a basic weakly AS function \(f \) is weakly AS.

According to Pang and Ralph [28] (also see [43, Proposition A.4.1]), the B-subdifferential of a PS function at a point contains only a finite number of elements. We show below that, for a weakly AS function \(f \), the elements of \(\partial_B f(x) \) are not isolated if \(f \) is not strictly differentiable at \(x \). This implies that the B-subdifferential of a weakly AS function \(f \) at a point contains either a single element (i.e., \(f \) is strictly differentiable at that point) or infinitely many elements. Thus, the subdifferential structure of a weakly AS function is very different from that of a PS function.

\(^2\)In other words, for every \(\bar{x} \in O \setminus X_f \), there is an open ball \(B \) centered at \(\bar{x} \) such that \(X_f \cap B = B \setminus \{\bar{x}\} \).
Theorem 3 Let f be a real-valued weakly AS function defined on a nonempty open set $O \subseteq \mathbb{R}^n$ with $n \geq 2$. Let $\bar{x} \in O \setminus S_f$. Then, $\partial_B f(\bar{x})$ has infinitely many elements and none of its elements is isolated in it.

Proof. Since f is locally Lipschitz continuous, $\partial_B f(\bar{x})$ is nonempty. Since $\bar{x} \not\in S_f$, $\partial_B f(\bar{x})$ has at least two elements. Suppose that $\partial_B f(\bar{x})$ has an isolated element g. We show below that this yields a contradiction.

Let $G := \partial_B f(\bar{x}) \setminus \{g\}$. Since $\partial_B f(\bar{x})$ has at least two elements, $G \neq \emptyset$. Since $\partial_B f(\bar{x})$ is closed and g is isolated in $\partial_B f(\bar{x})$, G is closed. Then the scalar quantity

$$\delta := \text{dist}(g, G)$$

is positive. Let

$$X_\varepsilon := X_f \cap B_\varepsilon(\bar{x}).$$

Since f is smooth on X_f, the definition of $\partial_B f(\bar{x})$ implies

$$\limsup_{\varepsilon \downarrow 0} \nabla f(X_\varepsilon) \subseteq \partial_B f(\bar{x}).$$

This convergence is uniform in ε in the sense that

$$\sup_{x \in X_\varepsilon} \text{dist}(\nabla f(x), \partial_B f(\bar{x})) \to 0 \quad \text{as} \quad \varepsilon \downarrow 0.$$

Thus, there exists $\varepsilon > 0$ such that for any $\varepsilon \in (0, \varepsilon)$, we have $B_\varepsilon(\bar{x}) \subseteq X_f$ and

$$\sup_{x \in X_\varepsilon} \text{dist}(\nabla f(x), \partial_B f(\bar{x})) \leq \delta/3 \quad \forall \varepsilon \in (0, \varepsilon).$$

(8)

Let $D_g := \{x \in X_\varepsilon : \|\nabla f(x) - g\| \leq \delta/3\}$ and $D_G := \{x \in X_\varepsilon : \text{dist}(\nabla f(x), G) \leq \delta/3\}$. Moreover, (7) implies that D_g and D_G are disjoint, while (8) and $G = \partial_B f(\bar{x}) \setminus \{g\}$ imply that

$$X_\varepsilon = D_g \cup D_G.$$

But X_ε is connected. Thus, one of D_g and D_G should be empty. This contradicts the assumption that $g \in \partial_B f(\bar{x})$ and the fact that $G \neq \emptyset$. \square

For any real-valued locally Lipschitzian function f defined on a nonempty open set $O \subseteq \mathbb{R}^n$ with X_f dense in O, we define the principal part of the B-subdifferential as

$$\partial_P f(x) := \{ \lim_{x^k \to x} \nabla f(x^k) \}.$$

Since X_f is dense in O and $X_f \subseteq F_f$, it readily follows that $\partial_P f(x)$ is nonempty and compact for all $x \in O$, and $\partial_P f(x) \subseteq \partial_B f(x)$. In fact, $\partial_P f$ had been used by Klatte and Kummer [21, Eq. (6.30)] in the context of Newton map for a pseudo-smooth function $f : \mathbb{R}^n \to \mathbb{R}$, i.e., f is locally Lipschitzian and $O \setminus X_f$ is open and dense in \mathbb{R}^n. Thus $\partial_P f$ is of practical interest.
If f is PS, then it is known [28, Lemma 2], [43, Proposition A.4.1] that $\partial_B f(x) = \{\nabla f_i(x)\}_{i \in I}$ for any $x \in O$, where $\{f_i\}_{i \in I}$ is any minimal local representation for f at x. (This can also be proved using Theorem 1(a),(b).) Moreover, Theorem 1(a) shows that $\partial_P f(x) \supseteq \{\nabla f_i(x)\}_{i \in I}$, so in fact
\[
\partial_P f(x) = \partial_B f(x) \quad \forall x \in O.
\]
(9)

Is this property of PS functions shared by weakly AS functions? The following theorem shows that the answer is yes for a basic weakly AS function. For a general weakly AS, this question remains open.

Theorem 4 Let f be a real-valued basic weakly AS function defined on a nonempty open set $O \subseteq \mathbb{R}^n$. Then (9) holds.

Proof. Since $O \setminus X_f$ comprises isolated points, X_f is dense in O. It suffices to show that (9) holds for all $x \in O \setminus X_f$. Consider any $\bar{x} \in O \setminus X_f$. Since f is basic weakly AS, there exists an open ball B centered at \bar{x} such that
\[
X_f \cap B = B \setminus \{\bar{x}\}.
\]
If $\bar{x} \notin F_f$, then $F_f \cap B = X_f \cap B$ so that (9) holds for $x = \bar{x}$. Otherwise $\bar{x} \in F_f$, so that $F_f \cap B = (X_f \cap B) \cup \{\bar{x}\}$. We prove below that $\nabla f(\bar{x}) \in \partial_P f(\bar{x})$ and hence, by $F_f \cap B = (X_f \cap B) \cup \{\bar{x}\}$, $\partial_P f(\bar{x}) = \partial_B f(\bar{x})$.

Without loss of generality, assume $\bar{x} = 0$ and $\nabla f(\bar{x}) = 0$. We argue by contradiction. Suppose $0 \notin \partial_P f(\bar{x})$. Then there exist $\bar{\varepsilon} > 0$ and $\rho > 0$ such that $B_{\bar{\varepsilon}}(0) \subseteq B$ and
\[
\|\nabla f(x)\| \geq \rho \quad \forall x \in B_{\bar{\varepsilon}}(0) \setminus \{0\}.
\]
(10)

Since f is locally Lipschitzian at \bar{x}, then Theorem 9.13 in [42] implies that, by taking $\bar{\varepsilon}$ sufficiently small, we can assume that ∇f is uniformly bounded on $B_{\bar{\varepsilon}}(0)$, i.e., there exists $M \geq 0$ such that
\[
\|\nabla f(x)\| \leq M \quad \forall x \in B_{\bar{\varepsilon}}(0).
\]
(11)

Consider any $\varepsilon \in (0, \bar{\varepsilon}/3)$. Denote $R_\varepsilon := \{x \in \mathbb{R}^n : \varepsilon \leq \|x\| \leq 3\varepsilon\}$. Then $R_\varepsilon \subset B_{\bar{\varepsilon}}(0) \setminus \{0\} \subset B \setminus \{0\}$. Let x_ε be any point satisfying $\|x_\varepsilon\| = 2\varepsilon$. Since f is smooth on $B \setminus \{0\}$, then ∇f is defined and continuous on R_ε. Since R_ε is compact, ∇f is uniformly continuous on R_ε. Thus, by choosing an integer $k \geq 1$ sufficiently large (k depends on ε), we have
\[
\|\nabla f(x) - \nabla f(y)\| \leq \varepsilon \quad \text{whenever} \quad x, y \in B_{2\varepsilon}, \|x - y\| \leq \delta,
\]
(12)
where $\delta := \frac{\varepsilon}{k}$. Define
\[
x^0 := x_\varepsilon \quad \text{and} \quad x^{j+1} := x^j + \frac{\delta}{M} \nabla f(x^j), \quad j = 0, 1, \ldots, k - 1, \quad \text{and} \quad y_\varepsilon := x^k.
\]
We have that \(\|x^{j+1} - x^j\| = \frac{\Delta t}{M} \|\nabla f(x^j)\| \). Since the distance from \(x_\varepsilon \) to the boundary of \(R_\varepsilon \) is \(\varepsilon \) and \(\|\nabla f(x^j)\| \leq M \) whenever \(x^j \in R_\varepsilon \), an induction argument shows that
\[
\|x^{j+1} - x^j\| \leq \varepsilon \quad \text{and} \quad [x^j, x^{j+1}] \subseteq R_\varepsilon, \quad j = 0, 1, \ldots, k - 1. \tag{13}
\]
(Recall that \([x, y]\) denotes the closed line segment joining \(x \) and \(y \).) Then, for each \(j \), we can apply the mean value theorem to conclude that there exists \(z^j \in [x^j, x^{j+1}] \) such that
\[
f(x^{j+1}) - f(x^j) = \nabla f(z^j)^T (x^{j+1} - x^j)
= \frac{\Delta t}{M} \nabla f(z^j)^T \nabla f(x^j)
\geq -\frac{\Delta t}{M} \|\nabla f(z^j) - \nabla f(x^j)\| \|\nabla f(x^j)\|
= -\varepsilon \|\nabla f(x^j)\| + \frac{\Delta t}{M} \|\nabla f(x^j)\|^2
\geq -\varepsilon \|\nabla f(x^j)\| + \frac{\Delta t}{M} \|\nabla f(x^j)\|^2
\]
where the last inequality uses (10)–(13). Summing this inequality over \(j = 0, 1, \ldots, k - 1 \) yields
\[
f(y_\varepsilon) - f(x_\varepsilon) \geq -\varepsilon \|\nabla f(x^j)\| + \frac{\Delta t}{M} \|\nabla f(x^j)\| = -\varepsilon \|\nabla f(x^j)\| + \frac{\Delta t}{M} \|\nabla f(x^j)\|^2
\]
However, this contracts our hypothesis that \(f \) is differentiable at 0 with \(\nabla f(0) = 0 \) and the fact that \(x_\varepsilon, y_\varepsilon \in R_\varepsilon \), so that
\[
f(x_\varepsilon) - f(0) = o(\|x_\varepsilon\|) = o(\varepsilon), \quad f(y_\varepsilon) - f(0) = o(\|y_\varepsilon\|) = o(\varepsilon),
\]
implies \(f(y_\varepsilon) - f(x_\varepsilon) = o(\varepsilon) \).

In general, a locally Lipschitzian function \(f \) with dense smooth point set need not satisfy (9), as the following example shows.

Example 3 Let \(f : \mathbb{R} \to \mathbb{R} \) be the function whose graph is obtained by taking the line through \((-1, 1)\) with slope \(-2\), reflecting it up (with slope \(2\)) whenever it hits the \(x\)-axis and down (with slope \(-2\)) whenever it hits the parabola \(y = x^2 \). This defines \(f(x) \) for all \(x < 0 \). We define \(f(x) \) symmetrically (about the \(y\)-axis) for all \(x > 0 \), and define \(f(0) = 0 \). Thus, the graph of \(f \) is bounded between the \(x\)-axis and the parabola \(y = x^2 \) and comprises infinitely many line segments with slopes of either \(2\) or \(-2\).

It can be calculated that these line segments have endpoints \(\pm a_1, \pm a_2, \ldots \), where
\[
a_1 = \frac{1}{2}, \quad a_{2k} = \varphi_{even}(a_{2k-1}), \quad a_{2k+1} = \varphi_{odd}(a_{2k}), \quad k = 1, 2, \ldots,
\]
and we define \(\varphi_{even}(x) := \sqrt{2x + 1} - 1 \), \(\varphi_{odd}(x) := x - x^2/2 \).

It is readily seen that \(f \) is locally Lipschitzian on \(\mathbb{R} \) and is differentiable at 0, with \(\nabla f(0) = 0 \), but \(f \) is not continuously differentiable at 0. Thus, \(F_f = \mathbb{R} \setminus \{\pm a_1, \pm a_2, \ldots\} \) and
\[X_f = F_f \setminus \{0\}. \]
Then \(\partial_P f(0) = \{-2, 2\} \) while \(\partial_B f(0) = \{-2, 2, 0\} \). Since a PS function \(f \) defined on an open set \(O \) must satisfy (9), this proves that \(f \) is not PS. Since \(n = 1 \) and \(f \) is not smooth, \(f \) is also not weakly AS. It can be further checked that \(f \) is not semismooth at 0, though \(f \) is pseudo-smooth in the sense of [21].

Definition 4 A real-valued function \(f \) defined on a nonempty open set \(O \subseteq \mathbb{R}^n \) is (basic) **almost smooth** if \(f \) is (basic) weakly almost smooth and semismooth. If in addition \(f \) is strongly semismooth, then \(f \) is (basic) **strongly almost smooth**.

In general, a weakly AS function need not be semismooth. For example, let \(f : \mathbb{R}^n \to \mathbb{R}, n \geq 2 \), be defined by

\[
 f(x) = \begin{cases}
 \|x\|^2 \sin \left(\frac{1}{\|x\|} \right), & \text{if } x \neq 0, \\
 0, & \text{if } x = 0.
 \end{cases}
\]

This function is locally Lipschitzian, differentiable everywhere. It is smooth everywhere except at the origin, so it is basic weakly AS but not PS. In particular, \(\partial_B f(0) \) is the unit ball, which contains infinitely many elements. It is readily seen that

\[
 f(h) - f(0) - f'(h; h) = \|h\| \cos \left(\frac{1}{\|h\|} \right) + O(\|h\|^2) \quad \forall h \neq 0,
\]

so \(f \) is not semismooth at 0. Since sum and product of locally Lipschitzian semismooth functions are also locally Lipschitzian semismooth, the following properties of AS functions readily follow:

P1 If \(f_1, f_2 \) are real-valued AS functions defined on an open set \(O \subseteq \mathbb{R}^n \) and \(O \setminus X_{f_1}, O \setminus X_{f_2} \) are manifolds of dimension less than \(n - 1 \),\(^3\) then \(f_1 + f_2 \) and \(f_1 f_2 \) are both AS functions defined on \(O \).

\(^3\)We say \(Y \subset O \) is a manifold of dimension \(k \leq n \) if \(Y = \{x \in O : F(x) = 0\} \) for some smooth mapping \(F : O \to \mathbb{R}^k \) whose Jacobian has rank \(n - k \) on \(O \).
P2 If f is a real-valued AS function defined on an open set $O \subseteq \mathbb{R}^n$ and F is a smooth 1-to-1 mapping from an open set $O' \subseteq \mathbb{R}^n$ to O, then $f \circ F$ is an AS function defined on O'.

P3 If f is a real-valued basic AS function defined on an open set $O \subseteq \mathbb{R}^n$ and F is a smooth mapping from an open set $O' \subseteq \mathbb{R}^m$ to O with the Jacobian of F having rank greater than 1 on O', then $f \circ F$ is an AS function defined on O'.

Klatte and Kummer [21, page 128] had proposed a **locally PC1** function as a generalization of PS functions and the Euclidean norm function. In particular, $f : \mathbb{R}^n \to \mathbb{R}$ is locally PC1 if (i) f is pseudo-smooth; (ii) f is selected from a finite collection of continuous functions f_1, \ldots, f_m with f_i smooth on some open set $O_i \subseteq \mathbb{R}^n$ and ∇f_i uniformly continuous on each bounded subset of O_i; and (iii) for each $x \in \mathbb{R}^n$, there is an open ball B centered at x such that $x \in X_f \cap B$ implies $f(\bar{x}) = f_i(\bar{x})$, $f(x) = f_i(x)$, $\nabla f(x) = \nabla f_i(x)$, and $|\bar{x}, x| \subseteq O_i$ for some $i \in \{1, \ldots, m\}$. (Here $|\bar{x}, x| = \{tx + (1 - t)x : 0 < t < 1\}$.) It is shown in [21, Theorem 6.18] that locally PC1 functions have properties similar to semismoothness but with $\partial_p f$ in place of $\partial_B f$. Moreover, locally PC1 functions include PS functions, the composition of the Euclidean norm with a linear mapping, and the composition of a smooth mapping with two PC1 functions [21, Lemma 6.17]. In fact, conditions (ii) and (iii) hold (with $m = 1$) whenever ∇f is uniformly continuous on each bounded subset of X_f and $O \setminus X_f$ is polyhedral. If $O \setminus X_f$ is not polyhedral, then (iii) may fail to hold. For example, the function

$$f(x_1, x_2, x_3) = \sqrt{(x_1)^2 + (x_2)^2}$$

is pseudo-smooth with $X_f = \mathbb{R}^3 \setminus \{(x_1, 0, x_3) : (x_1)^2 = x_3\}$. Let \bar{x} be the origin. For any $0 < \varepsilon \leq 1$, we have $x = (\varepsilon/2, 0, (\varepsilon/2) \bar{x} \in B \setminus B$ but $|\bar{x}, x| \not\subseteq X_f$. Thus, f does not appear to be locally PC1. On the other hand, f is semismooth and X_f has dimension 1, so f is AS. This also follows from property P3 and the observation that f is the composition of the Euclidean norm with a smooth mapping whose Jacobian has rank greater than 1.

As a referee noted, apart from $\partial_p f$ and $\partial_B f$, there is another subdifferential, first studied by Mordukhovich [26] and now playing a central role in variational analysis [27, 42]. For a real-valued locally Lipschitzian function f defined on a nonempty open set $O \subseteq \mathbb{R}^n$, this subdifferential is defined as

$$\partial f(x) := \left\{ \lim_{x^k \to x, v^k \in \hat{f}(x) : k} v^k \right\},$$

where $R_f := \{x \in O : \hat{f}(x) \neq \emptyset\}$ and $\hat{f}(x) := \{v \in \mathbb{R}^n : f(y) \geq f(x) + v^T(y - x) + o(\|y - x\|)\}$. Since $F_f \subseteq R_f$, it follows that $\partial B f(x) \subseteq \partial f(x)$ for all $x \in O$. If f is basic weakly AS, then $\partial f(x) = \partial_B f(x) \cup \hat{f}(x)$. As examples, for $f(x) = \|x\|$, $\hat{f}(0)$ is the closed unit ball; while for $f(x) = -\|x\|$, $\partial f(0) = \emptyset$. For f in Example 3, $\partial f(0) = \{0\}$ and $\partial f(0) = [-2, 2]$. In general, what can we say about ∂f when f is weakly AS or (basic) AS? This is an interesting question for future investigation.

By Theorem 4, a basic weakly AS function shares with PS functions the subdifferential property (9). Example 1 shows that a differentiable PS function need not be smooth. What
about a basic AS function? Since such a function is smooth everywhere except at isolated points and is semismooth there, might differentiability imply smoothness? The following example shows that this is false. The motivation for the example comes from the observation that if \(f \) is differentiable and semismooth at the origin 0 and (without loss of generality) \(\nabla f(0) = 0 \), then for any sequence \(x^k \) converging to 0, we have \(\nabla f(x^k)^T x^k / \| x^k \| \to 0 \). Thus, if \(\nabla f(x^k) \neq 0 \), then \(\nabla f(x^k) \) must be perpendicular to \(x^k / \| x^k \| \) asymptotically. The example constructs a function \(f \) with such a property.

Example 4 We define \(f \) below. Let \(\varphi: \mathbb{R}^2 \to \mathbb{R} \) be any smooth function satisfying (i) \(\varphi(x) = 0 \) whenever \(\| x \| \geq 1 \), and (ii) \(\nabla_1 \varphi(\hat{x}) \neq 0 \) for some \(\hat{x} \) satisfying \(\| \hat{x} \| < 1 \). (Here \(\nabla_1 \varphi \) denotes the partial derivative with respect to \(x_1 \).) For \(k = 2, 3, \ldots \), we scale and translate \(\varphi \) to obtain the function

\[
\varphi_k(x) := \frac{1}{k} \varphi \left(k \left(\frac{1}{x_1} - k^2, \frac{1}{x_2} - k \right) \right).
\]

Notice that \(\varphi_k \) is smooth and vanishes outside of

\[
X_k := \left\{ (x_1, x_2) : \left\| \left(\frac{1}{x_1} - k^2, \frac{1}{x_2} - k \right) \right\| < \frac{1}{k} \right\}.
\]

Moreover, \(X_k, k = 2, 3, \ldots \), are disjoint. In particular, observe that \(x \in X_k \) implies \(\frac{1}{x_1} - k^2 < \frac{1}{x_1} \) and \(|\frac{1}{x_2} - k| < \frac{1}{x_2} \) or, equivalently, \(1/(k^2 + \frac{1}{k}) < x_1 < 1/(k^2 - \frac{1}{k}) \) and \(1/(k + \frac{1}{k}) < x_2 < 1/(k - \frac{1}{k}) \). Now, define

\[
f(x) := \begin{cases} (x_1)^2 \varphi_k(x) & \text{if } x \in X_k \text{ for some } k \in \{2, 3, \ldots\}; \\ 0 & \text{else}. \end{cases}
\]

Roughly speaking, the graph of \(f \) comprises a sequence of “bumps” along the parabola \(x_1 = (x_2)^2 \), with each bump of radius approximately \(x_2 \) and height \(O((x_1)^2 x_2) \).

We have that \(X_k \subseteq \mathbb{R}^{2+} \) for all \(k = 2, 3, \ldots \), so it follows from the chain rule that \(f \) is smooth at every \(x \in \text{int} X_k \) for each \(k \). Since \(\varphi_k \) is smooth and has value 0 on the boundary of \(X_k \), it is also readily seen that \(f \) is smooth on the boundary of \(X_k \). Also, clearly \(f \) is smooth at every \(x \) outside of \((\cup_{k=2}^\infty X_k) \cup \{(0,0)\} \). Thus, \(f \) is smooth on \(\mathbb{R}^2 \setminus \{(0,0)\} \).

We claim that \(f \) is differentiable at \((0,0) \) with \(\nabla f(0,0) = (0,0) \). Since \(f(0,0) = 0 \), it suffices to show that \(f(x) = o(\|x\|) \) for \(x \neq (0,0) \). For \(x \notin (\cup_{k=2}^\infty X_k) \cup \{(0,0)\} \), this is clearly true. For \(x \in X_k \) for some \(k \in \{2, 3, \ldots\} \), we have that \(x_1 \) is in the order of \(1/k^2 \) and \(x_2 \) is in the order of \(1/k \), so that \(x_1 = O((x_2)^2) \). Since \(\varphi_k \) is bounded, this yields \((x_1)^2 \varphi_k(x) = o(x_1 + x_2) \) and hence \(f(x) = o(\|x\|) \).

We claim that \(f \) is semismooth at \((0,0) \). Since \(f(0,0) = 0 \) and \(f(x) = o(\|x\|) \), it suffices to show that \(\nabla f(x)^T x = o(\|x\|) \) for \(x \neq (0,0) \). We have that \(\nabla f(x) = (0,0) \) if \(x \notin \cup_{k=2}^\infty X_k \), so this holds immediately. If \(x \in X_k \) for some \(k \in \{2, 3, \ldots\} \), then we have from the chain rule and the form of \(\varphi_k \) that

\[
\nabla_1 f(x) = 2x_1 \varphi_k(x) - \nabla_1 \varphi \left(k \left(\frac{1}{x_1} - k^2, \frac{1}{x_2} - k \right) \right),
\]

\[
\nabla_2 f(x) = -\frac{(x_1)^2}{(x_2)^2} \nabla_2 \varphi \left(k \left(\frac{1}{x_1} - k^2, \frac{1}{x_2} - k \right) \right).
\]
Since \(x_2 \) is in the order of \(1/k \) and \(\varphi_k(x) = O\left(\frac{1}{k}\right) \), then \(\varphi_k(x) = O(x_2) \). Thus \(2x_1\varphi_k(x) = O(x_1x_2) = o(\|x\|) \). Since \(x_1 = O\left((x_2)^2\right) \), then \((x_1)^2/(x_2)^2 = O(x_1) \) and \(x_1 = O(\|x\|^2) \). Then, the boundedness of \(\nabla_1\varphi \) and \(\nabla_2\varphi \) yield that \(\nabla_1 f(x) \cdot x_1 = O(x_1) = O(\|x\|^2) \) and \(\nabla_2 f(x) \cdot x_2 = O(x_1x_2) = O(\|x\|^2) \). Thus \(\nabla f(x)^T x = O(\|x\|^2) \).

The above argument also shows that \(\nabla f \) is bounded. Thus, by the mean value theorem or Theorem 9.13 in [42], \(f \) is locally Lipschitzian everywhere.

Finally, for each \(k \in \{2, 3, \ldots\} \), define \(x^k = (x_1^k, x_2^k) \) by

\[
x_1^k = \frac{1}{k^2 + \hat{x}_1/k}, \quad x_2^k = \frac{1}{k + \hat{x}_2/k}.
\]

Then \(x^k \in X_k \) and we have from the above formula for \(\nabla_1 f \) that

\[
\nabla_1 f(x^k) = 2x_1^k \varphi_k(x^k) - \nabla_1 \varphi(\hat{x}).
\]

Thus \(\nabla_1 f(x^k) \to \nabla_1 \varphi(\hat{x}) \neq 0 \) while \(x^k \to (0, 0) \) as \(k \to \infty \). Since \(\nabla_1 f(0, 0) = 0 \), this shows that \(f \) is not smooth at \((0, 0) \).

A basic AS function need not be pseudo-smooth in the sense of [21]. For an example, let \(\varphi : \mathbb{R}^2 \to \mathbb{R} \) be a function that (i) vanishes outside the unit Euclidean ball and (ii) is smooth everywhere except at the origin and is differentiable and semismooth there. Such a \(\varphi \) can be constructed by modifying the function \(f \) in Example 4 which satisfies (ii). Define \(f : \mathbb{R}^2 \to \mathbb{R} \) by

\[
f(x) = \sum_{k=1}^{\infty} \frac{1}{k^2} \varphi \left(2^{k+2}(x - (2^{-k}, 0))\right).
\]

It can be verified that \(\nabla f(x) = \frac{4}{k} \nabla \varphi \left(2^{k+2}(x - (2^{-k}, 0))\right) \) if \(\|x - (2^{-k}, 0)\| \leq 1/2^{k+2} \) for some \(k \) and otherwise \(\nabla f(x) = 0 \). Moreover, \(f \) is locally Lipschitzian and semismooth everywhere and \(\nabla f \) is continuous at the origin. Thus \(\mathbb{R}^2 \setminus X_f \) comprises isolated points, so \(f \) is basic AS. However, \(X_f \) is not open, so \(f \) is not pseudo-smooth.

The next theorem shows that if a function \(f \) defined on \(\mathbb{R}^n \) (\(n \geq 2 \)) is smooth everywhere except at one point and is positively homogeneous about that point, then \(f \) is basic AS. If in addition \(\nabla f \) is locally Lipschitzian everywhere outside that point, then \(f \) is basic strongly AS. The \(p \)-norm function on \(\mathbb{R}^n \) with \(1 < p < \infty \) and the Fischer-Burmeister function are examples of such functions; see Subsection 4.1 for further discussions.

Theorem 5 Let \(f \) be a real-valued function defined on \(\mathbb{R}^n \). Suppose that \(f \) is smooth everywhere except at some \(\bar{x} \in \mathbb{R}^n \). Also, suppose that \(f \) is positively homogeneous about \(\bar{x} \); i.e., for any \(h \in \mathbb{R}^n \) and \(t \in \mathbb{R}_+ \),

\[
f(\bar{x} + th) = tf(\bar{x} + h).
\]

Then \(f \) is Lipschitz continuous on \(\mathbb{R}^n \) and is strongly semismooth at \(\bar{x} \). If furthermore \(\nabla f \) is locally Lipschitzian on \(\mathbb{R}^n \setminus \{\bar{x}\} \), then \(f \) is a strongly semismooth function.
Proof. First, we prove that f is Lipschitz continuous on \mathbb{R}^n. Clearly, $f(\bar{x}) = 0$. Since f and ∇f are continuous on the compact unit sphere $S^0 := \{x \in \mathbb{R}^n : \|x - \bar{x}\| = 1\}$, then there exists scalar $L > 0$ such that $|f(x)| \leq L$ and $\|\nabla f(x)\| \leq L$ for all $x \in S^0$. Using the fact that the arclength of the geodesic on S^0 between any two points $x, y \in S^0$ is at most $\frac{\pi}{2}\|x - y\|$, it is readily shown by parameterizing the geodesic that $|f(x) - f(y)| \leq \frac{\pi}{2}L\|x - y\|$. Consider any $h, k \in \mathbb{R}^n$. If $h \neq 0$ and $k \neq 0$, we have

$$f(\bar{x} + h) - f(\bar{x} + k) = f\left(\bar{x} + \|h\|\frac{h}{\|h\|} + \|k\|\frac{k}{\|k\|}\right) - f\left(\bar{x} + \|h\|\frac{h}{\|h\|} + \|k\|\frac{k}{\|k\|}\right)$$

and hence

$$|f(\bar{x} + h) - f(\bar{x} + k)| \leq \|h\| - \|k\| \left|L + \|k\|\frac{\pi}{2}L\left(\frac{h}{\|h\|} - \frac{k}{\|k\|}\right)\right|$$

$$\leq \|h\| - \|k\| \left|L + \|k\|\frac{\pi}{2}L\left(\frac{h}{\|h\|} - \frac{h}{\|k\|} + \frac{h}{\|k\|} - \frac{k}{\|k\|}\right)\right|$$

$$= \|h\| - \|k\| \left|(L + \frac{\pi}{2}L)\|h - k\|\right|$$

$$\leq \|h - k\|(L + \frac{\pi}{2}L)\|h - k\|.$$

If $h \neq 0$ and $k = 0$, then

$$|f(\bar{x} + h) - f(\bar{x} + k)| = \|h\| \left|f\left(\bar{x} + \frac{h}{\|h\|}\right)\right| \leq \|h\|L = \|h - k\|L.$$

The case of $h = 0$ and $k \neq 0$ can be treated similarly.

For any $h \in \mathbb{R}^n$ with $h \neq 0$, f is smooth at $\bar{x} + h$ and

$$f(\bar{x} + h) - f(\bar{x}) - \nabla f(\bar{x} + h)^T h = f(\bar{x} + h) - f'(\bar{x} + h; h)$$

$$= f(\bar{x} + h) - \lim_{t \downarrow 0} \frac{f(\bar{x} + h + th) - f(\bar{x} + h)}{t}$$

$$= 0.$$

This shows that f is strongly semismooth at \bar{x}. Since f is smooth everywhere except at \bar{x}, then f is semismooth everywhere. If ∇f is locally Lipschitzian on $\mathbb{R}^n \setminus \{\bar{x}\}$, then f is strongly semismooth everywhere, i.e., it is a strongly semismooth function.

4 Further Results, Examples, and Applications

In this section, we make further studies of AS functions, with more examples and applications.
4.1 p-Norm Functions and NCP Functions

The p-norm function $f : \mathbb{R}^n \to \mathbb{R}$, defined by

$$f(x) := \|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}$$

for $1 < p < \infty$, is smooth everywhere except at the origin. In particular, $X_f = F_f = \mathbb{R}^n \setminus \{0\}$. It is positively homogeneous about the origin. Hence, when $n \geq 2$, by Theorem 5, it is a basic AS function. If $p \geq 2$, then it is basic strongly AS. More generally, the function

$$f(x) := \sum_{i=1}^{N} \|F_i(x)\|_{p_i}$$

where $1 < p_i < \infty$, $n_i \geq 2$, $F_i : \mathbb{R}^{m} \to \mathbb{R}^{n_i}$ is a smooth mapping whose Jacobian has rank greater than 1 on \mathbb{R}^{m}, is an AS function defined on \mathbb{R}^{m}. These p-norm functions arise frequently in nonlinear optimization [38, 47].

An **NCP function** is a function $f : \mathbb{R}^2 \to \mathbb{R}$ with the property that $f(a, b) = 0$ if and only if $a \geq 0$, $b \geq 0$, $ab = 0$. A well-known NCP function closely related to 2-norm is the **Fischer-Burmeister function** [16], defined by

$$f(a, b) := \|(a, b)\|_2 - a - b \quad \forall (a, b) \in \mathbb{R}^2.$$

This function is basic strongly AS. It is used extensively in the solution of nonlinear complementarity and variational inequality problems [11, 14, 15, 16, 19, 33, 48]. Qi [32] showed that the Fischer-Burmeister function and its several variants, such as the Tseng-Luo NCP function [24, 45] and the Kanzow-Kleinmichel NCP function [20], are smooth away from the origin and are strongly semismooth at the origin. The Fischer-Burmeister function and these variants are irrational. Qi [32] proposed a class of piecewise rational NCP functions having the same strongly semismooth property. All these functions are basic strongly AS.

4.2 Convex best Interpolation

By using the first-order optimality condition and duality, a certain convex best interpolation problem may be reformulated equivalently as a system of *nonsmooth equations*

$$F(\lambda) = d,$$

where the ith component of F has the form

$$F_i(\lambda) := \int_a^b \left(\sum_{i=1}^{N} \lambda_i B_i(t) \right) B_i(t) dt.$$

Here B_i is the normalized B-spline of order two associated with the problem data.

4 This can also be deduced from [21, Theorem 6.18(ii)] and Theorem 4.
Irvine, Marin and Smith [18] proposed in 1986 a Newton-type method for solving the equation (14). They observed fast convergence in numerical experiments and raised the question of theoretically estimating the rate of convergence. Dontchev, Qi and Qi [12] answered this question by proving that F is semismooth. Dontchev, Qi and Qi [13] further proved that F is strongly semismooth, based on which quadratic convergence of the above method was proved. Specifically, they proved that

$$
\begin{align*}
F_1(\lambda) &= \Phi_1(\lambda_1) + \Psi_1(\lambda_1, \lambda_2), \\
F_i(\lambda) &= \Gamma_i(\lambda_{i-1}, \lambda_i) + \Psi_i(\lambda_i, \lambda_{i+1}), \quad i = 2, \ldots, N - 1, \\
F_N(\lambda) &= \Gamma_N(\lambda_{N-1}, \lambda_N) + \Phi_2(\lambda_N),
\end{align*}
$$

where Φ_1 and Φ_2 are piecewise linear, and each Γ_i and Ψ_i are strongly semismooth, and smooth with a Lipschitzian gradient away from the origin. Moreover, they showed that each Γ_i and Ψ_i are not PS, and neither is F. This also follows from Theorem 1(c) or Corollary 1. Using the terminology in this paper, we see that Γ_i and Ψ_i are basic strongly AS functions.

4.3 Smoothing/Penalty Functions

A popular technique to deal with nonsmooth functions is to approximate them by smooth functions [9, 35]. Suppose a function $g: \mathbb{R}^n \rightarrow \mathbb{R}$ is nonsmooth. We choose a locally Lipschitzian function $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ such that

$$
f(x, 0) = g(x) \quad \forall \ x \in \mathbb{R}^n
$$

and f is smooth at all (x, t) with $t \neq 0$. Then, instead of g, we work with f at $t \neq 0$ and drive $t \rightarrow 0$. Such a function f is called a smoothing function of g.

Since a smoothing function f is locally Lipschitzian and is smooth at all (x, t) with $t \neq 0$, it is readily seen that f satisfies the definition of a weakly AS function except for possibly the local connectedness of X_f at each $(\bar{x}, 0) \in \mathbb{R}^{n+1} \setminus X_f$, i.e., property (6). The local connectedness of X_f needs to be checked separately since in general we only know that X_f contains $\{(x, t) \in \mathbb{R}^{n+1} : t \neq 0\}$, which is not locally connected around its boundary points. We will also be interested in smoothing functions that are (strongly) AS, which means checking (strong) semismoothness of f. We do this below for some popular classes of smoothing/penalty functions.

Let $\psi: \mathbb{R}^n \rightarrow \mathbb{R}$ be a smooth convex function. Consider the function $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ defined by

$$
f(x, t) := \begin{cases}
|t|\psi(x/|t|) & \text{if } t \neq 0, \\
\psi_\infty(x) & \text{if } t = 0,
\end{cases}
$$

(15)

where ψ_∞ denotes the recession function of ψ, i.e., $\psi_\infty(x) := \lim_{t \rightarrow 0} t\psi(x/t)$ [40, Corollary 8.5.2]. It is known that ψ_∞ is proper closed convex and positively homogeneous about the origin. Two well-known examples of ψ are

$$
\psi(x) = \sum_{i=1}^{n} \sqrt{1 + x_i^2},
$$

(16)
\[\psi(x) = \ln \left(\sum_{i=1}^{n} e^{x_i} \right), \tag{17} \]

with \(\psi_{\infty}(x) = \|x\|_1 \) and \(\psi_{\infty}(x) = \max\{x_1, \ldots, x_n\} \), respectively. The exponential penalty function ([3, 4, 29, 30], [40, page 68]) corresponds to \(f(x, t) \) with \(\psi \) given by (17). The Chen-Mangasarian class of smoothing functions for \(g(x) = x_+ = \max\{0, x\} \) corresponds to \(f(x, t) \), with \(\psi : \mathbb{R} \mapsto \mathbb{R} \) being a smooth convex function satisfying \(\lim_{x \to -\infty} \psi(x) = \lim_{x \to \infty} \psi(x) - x = 0 \) [7, 8, 46]. This class includes the popular Chen-Harker-Kanzow-Smale (CHKS) function [5, 17, 44], which is a special case of \(f(x, t) \) with

\[\psi(x) = \frac{x + \sqrt{x^2 + 1}}{2}. \]

It also includes the “neural network” function [7, 8], which is a special case of \(f(x, t) \) with

\[\psi(x) = \ln(e^x + 1). \]

Here \(\psi_{\infty}(x) = \max\{0, x\} \).

The relationship between \(\psi_{\infty} \) and the parameterized smoothing/penalty function \(t\psi(\cdot/t) \) has been much studied, particular in the context of penalty functions for constrained optimization; see [3, 8, 46] and references therein. Moreover, it is known that \(f \) is a convex function on \(\mathbb{R}^n \times \mathbb{R}_+ \) [40, Theorem 8.2]. It readily follows that \(f \) is a convex function on \(\mathbb{R}^n \times \mathbb{R}_- \) also. However, \(f \) need not be a convex function on \(\mathbb{R}^{n+1} \). The theorem below shows that \(f \) is convex on \(\mathbb{R}^{n+1} \) provided \(\psi_{\infty} \) is majorized by \(\psi \).

Theorem 6 Let \(\psi : \mathbb{R}^n \to \mathbb{R} \) be a convex function satisfying \(\psi_{\infty}(x) \leq \psi(x) \) for all \(x \in \mathbb{R}^n \). Then \(f \) defined by (15) is a convex function on \(\mathbb{R}^{n+1} \).

Proof. Fix any \((x, t), (y, s) \in \mathbb{R}^{n+1} \). We will prove that

\[f((1 - \lambda)(x, t) + \lambda(y, s)) \leq (1 - \lambda)f(x, t) + \lambda f(y, s) \quad \forall \ 0 \leq \lambda \leq 1. \]

If \(t \geq 0, s \geq 0 \), this follows from the convexity of \(f \) on \(\mathbb{R}^n \times \mathbb{R}_+ \). If \(t \leq 0, s \leq 0 \), this follows from the convexity of \(f \) on \(\mathbb{R}^n \times \mathbb{R}_- \). Suppose \(t > 0 \) and \(s < 0 \). (The case of \(t < 0 \) and \(s > 0 \) can be treated similarly.) Let \(\lambda_0 := t/(t - s) \), which satisfies \((1 - \lambda_0)t + \lambda_0s = 0 \). Direct calculation shows that \((1 - \lambda_0)t = \lambda_0(-s) = \beta \), where \(\beta := -st/(t - s) \). Thus,

\[f((1 - \lambda_0)x + \lambda_0 y, 0) = \psi_{\infty}((1 - \lambda_0)x + \lambda_0 y) \]

\[= \psi_{\infty} \left(\beta \frac{x}{t} + \beta \frac{y}{(-s)} \right) \]

\[= 2\beta \psi_{\infty} \left(\frac{1}{2} \left(\frac{x}{t} + \frac{y}{(-s)} \right) \right) \]

\[\leq \beta \left(\psi_{\infty} \left(\frac{x}{t} \right) + \psi_{\infty} \left(\frac{y}{(-s)} \right) \right) \]
\[\leq \beta \left(\psi \left(\frac{x}{t} \right) + \psi \left(\frac{y}{-(s)} \right) \right) \]
\[= (1 - \lambda_0) t \psi \left(\frac{x}{t} \right) + \lambda_0 (-s) \psi \left(\frac{y}{-(s)} \right) \]
\[= (1 - \lambda_0) f(x, t) + \lambda_0 f(y, s), \] (18)

where the third equality is due to \(\psi_\infty \) being positively homogeneous about the origin. For \(0 < \lambda < \lambda_0 \), we have \((1 - \lambda) t + \lambda s > 0 \) and hence the convexity of \(f \) on \(\mathbb{R}^n \times \mathbb{R}_+ \) yields

\[f((1 - \lambda)(x, t) + \lambda(y, s)) = f \left(\left(1 - \frac{\lambda}{\lambda_0} \right)(x, t) + \frac{\lambda}{\lambda_0}((1 - \lambda_0)x + \lambda_0y, 0) \right) \]
\[\leq \left(1 - \frac{\lambda}{\lambda_0}\right)f(x, t) + \frac{\lambda}{\lambda_0}f\left((1 - \lambda_0)x + \lambda_0y, 0\right) \]
\[\leq \left(1 - \frac{\lambda}{\lambda_0}\right)f(x, t) + \frac{\lambda}{\lambda_0}((1 - \lambda_0)f(x, t) + \lambda_0f(y, s)) \]
\[= (1 - \lambda)f(x, t) + \lambda f(y, s), \]

where the second inequality uses (18). Similarly, for \(\lambda_0 < \lambda < 1 \), we have \((1 - \lambda) t + \lambda s < 0 \) and hence the convexity of \(f \) on \(\mathbb{R}^n \times \mathbb{R}_- \) yields

\[f((1 - \lambda)(x, t) + \lambda(y, s)) = f \left(\left(1 - \frac{1 - \lambda}{1 - \lambda_0} \right)(y, s) + \frac{1 - \lambda}{1 - \lambda_0}((1 - \lambda_0)x + \lambda_0y, 0) \right) \]
\[\leq \left(1 - \frac{1 - \lambda}{1 - \lambda_0}\right)f(y, s) + \frac{1 - \lambda}{1 - \lambda_0}f\left((1 - \lambda_0)x + \lambda_0y, 0\right) \]
\[\leq \left(1 - \frac{1 - \lambda}{1 - \lambda_0}\right)f(y, s) + \frac{1 - \lambda}{1 - \lambda_0}((1 - \lambda_0)f(x, t) + \lambda_0f(y, s)) \]
\[= (1 - \lambda)f(x, t) + \lambda f(y, s), \]

where the second inequality uses (18).

Since a real-valued convex function is locally Lipschitzian and directionally differentiable everywhere [40], it follows from Theorem 6 that \(f \) is locally Lipschitzian and directionally differentiable everywhere provided \(\psi_\infty \) is real-valued and majorized by \(\psi \). In particular, this holds for the examples (16), (17), as well as the CM class of smoothing functions. Notice that \(\psi \) being positive-valued is not sufficient for \(\psi_\infty \) to be majorized by \(\psi \). An example is \(\psi(x) = \sqrt{1 + x^2} - c \) with \(0 < c < 1 \).

Suppose \(f \) is locally Lipschitzian and directionally differentiable everywhere. Since \(f \) is smooth everywhere except possibly on \(\mathbb{R}^n \times \{0\} \), then \(f \) is semismooth provided that, for any \(\bar{x} \in \mathbb{R}^n \),

\[f(x, t) - f(\bar{x}, 0) - f'(((x, t); (x - \bar{x}, t)) = o(\|x - \bar{x}\| + |t|) \] (19)

for all \((x, t) \) in some neighborhood of \((\bar{x}, 0) \). Similarly, \(f \) is strongly semismooth provided that

\[f(x, t) - f(\bar{x}, 0) - f'((x, t); (x - \bar{x}, t)) = O(\|x - \bar{x}\|^2 + |t|^2). \] (20)
If $t = 0$, then $f(x, t) = \psi_\infty(x)$ and $f'(((x, t); (x - \bar{x}, t)) = \psi'_\infty(x; (x - \bar{x}))$. Thus, provided that ψ_∞ is semismooth (respectively, strongly semismooth), (19) (respectively, (20)) would hold for all $(x, 0)$ in some neighborhood of $(\bar{x}, 0)$. For any (x, t) with $t \neq 0$, the following lemma gives a simplification of the left-hand side of (19).

Lemma 1 Let $\psi : \mathbb{R}^n \to \mathbb{R}$ be a smooth convex function. Let f be defined by (15). For any $\bar{x} \in \mathbb{R}^n$ and any $(x, t) \in \mathbb{R}^{n+1}$ with $t \neq 0$,

$$0 \geq f(x, t) - f(\bar{x}, 0) - \nabla f(x, t)^T (x - \bar{x}, t) = \nabla \psi(x/|t|)^T \bar{x} - \psi_\infty(\bar{x}). \quad (21)$$

Proof. For any (x, t) with $t > 0$, we have from (15) that $\nabla f(x, t) = (\nabla \psi(x/t), \psi(x/t) - \nabla \psi(x/t)^T x/t)$. This together with the convexity of f on $\mathbb{R}^n \times \mathbb{R}_+$ yields

$$0 \geq f(x, t) - f(\bar{x}, 0) - \nabla f(x, t)^T (x - \bar{x}, t)$$
$$= \psi(x/t) - \psi_\infty(\bar{x}) - \left(\nabla \psi(x/t)^T (x - \bar{x}) + (\psi(x/t) - \nabla \psi(x/t)^T x/t)\right)$$
$$= \nabla \psi(x/t)^T \bar{x} - \psi_\infty(\bar{x}).$$

For $t < 0$, we have $\nabla f(x, t) = (\nabla \psi(-x/t), -\psi(-x/t) - \nabla \psi(-x/t)^T x/t).$ This together with the convexity of f on $\mathbb{R}^n \times \mathbb{R}_-$ yields

$$0 \geq f(x, t) - f(\bar{x}, 0) - \nabla f(x, t)^T (x - \bar{x}, t)$$
$$= -\psi(-x/t) - \psi_\infty(\bar{x}) - \left(\nabla \psi(-x/t)^T (x - \bar{x}) + (-\psi(-x/t) - \nabla \psi(-x/t)^T x/t)\right)$$
$$= \nabla \psi(-x/t)^T \bar{x} - \psi_\infty(\bar{x}).$$

(The argument for the case of $t < 0$ can alternatively be deduced from the case of $t > 0$ by using $f(x, t) = f(x, -t)$ for all (x, t).)

Example 5 Suppose ψ is given by (17). Then $\nabla \psi(x) = \frac{1}{e^{x_1} + \cdots + e^{x_n}} (e^{x_1}, \ldots, e^{x_n})$. Without loss of generality, assume that $\bar{x}_1 = \max\{\bar{x}_1, \ldots, \bar{x}_n\} = \psi_\infty(\bar{x})$ and let $I := \{i \in \{1, \ldots, n\} : \bar{x}_i \neq \bar{x}_1\}$ and $\Delta := \bar{x}_1 - \max_{i \in I} \bar{x}_i$. Then, whenever $\|x - \bar{x}\|_\infty \leq \Delta/2$, we have $x_i - \bar{x}_i \leq -\Delta/2$ for all $i \in I$ so that

$$\nabla \psi(x/|t|)^T \bar{x} - \psi_\infty(\bar{x}) = \frac{\sum_{i=1}^n e^{x_i}/|t| \bar{x}_i}{\sum_{i=1}^n e^{x_i}/|t|} - \bar{x}_1$$
$$= \frac{\bar{x}_1 + \sum_{i \neq 1} e^{(x_i - x_1)/|t|} \bar{x}_i}{1 + \sum_{i \neq 1} e^{(x_i - x_1)/|t|}} - \bar{x}_1$$
$$= \frac{\sum_{i \in I} e^{(x_i - x_1)/|t|} \bar{x}_i}{1 + \sum_{i \neq 1} e^{(x_i - x_1)/|t|}}$$
$$\geq e^{-0.5\Delta/|t|} \sum_{i \in I} (\bar{x}_i - \bar{x}_1).$$
This together with (21) shows that \(f \) defined by (15) satisfies
\[
|f(x, t) - f(\bar{x}, 0) - \nabla f(x, t)^T (x - \bar{x}, t)| \leq e^{-0.5A/|t|} \sum_{i \in I} (\bar{x}_i - \bar{x}_i) \quad \forall \, t > 0.
\]

Notice that \(\lim_{t \to 0} e^{-0.5A/|t|} \cdot |t|^k = 0 \) for any \(k > 0 \) and, in particular, for \(k = 2 \). Since \(\psi_{\infty} \) is piecewise linear and hence strongly semismooth, then (20) holds, i.e., \(f \) is strongly semismooth at \((\bar{x}, 0) \). In fact, \(f \) is semismooth of order \(k \) at \((\bar{x}, 0) \) for any \(k > 0 \).

Since \(f \) is twice continuously differentiable at any \((\bar{x}, \bar{t}) \) with \(\bar{t} \neq 0 \), this shows that \(f \) is strongly semismooth on \(\mathbb{R}^{n+1} \) [30].

Next, we show that
\[
X_f = \{(x, t) : x \in \mathbb{R}^n, t \neq 0\} \cup \{(x, 0) : \nu(x) = 1\},
\]
where \(\nu(x) := \text{Card}\{i \in \{1, \ldots, n\} : \psi_{\infty}(x_i) = x_i\} \). To see this, note that \(f \) is smooth at every \((x, t) \) with \(t \neq 0 \) and \(f \) is not differentiable at every \((x, 0) \) with \(\nu(x) \geq 2 \). Thus, it suffices to verify that \(f \) is smooth at every \((x, 0) \) with \(\nu(x) = 1 \). Fix any \(\bar{x} \in \mathbb{R}^n \) with \(\nu(\bar{x}) = 1 \). Without loss of generality we can assume that \(\bar{x}_i > \bar{x}_i \) for \(i = 2, \ldots, n \). Then, it is straightforward to verify that \(f \) is differentiable at \((\bar{x}, 0) \) with \(\nabla f(\bar{x}, 0) = (1, 0, \ldots, 0) \). For all \((x, t) \) with \(t > 0 \), we have that
\[
\nabla f(x, t) = \left(\nabla \psi(x/t), \psi(x/t) - \nabla \psi(x/t)^T x/t \right)
\]
\[
= \left(\left(\frac{e^{x_1/t}}{\sum_{i=1}^{n} e^{x_i/t}}, \ldots, \frac{e^{x_n/t}}{\sum_{i=1}^{n} e^{x_i/t}} \right), \left(\frac{e^{x_1/t} x_1 + \cdots + e^{x_n/t} x_n}{\sum_{i=1}^{n} e^{x_i/t}} \right) \right)
\]
\[
= \left(\frac{1}{1 + \sum_{i \neq 1} e^{(x_i - x_1)/t}}, \ln \left(1 + \sum_{i = 1}^{n} e^{(x_i - x_1)/t} \right) + \frac{x_1}{t} - \frac{x_1/t + \cdots + e^{(x_n - x_1)/t} x_n/t}{1 + \sum_{i \neq 1} e^{(x_i - x_1)/t}} \right).
\]
As \((x, t) \to (\bar{x}, 0) \), we have \(x_i - x_1 \to \bar{x}_i - \bar{x}_1 < 0 \) and hence \(e^{(x_i - x_1)/t} / t \to 0 \) for all \(i \neq 1 \). Then the above formula yields that \(\nabla f(x, t) \to (1, 0, \ldots, 0) \). For all \((x, t) \) with \(t < 0 \), the same conclusion is reached. For all \((x, 0) \) with \(x \) sufficiently near \(\bar{x} \), we have that \(\nu(x) = 1 \) and hence \(f \) is differentiable at \((\bar{x}, 0) \) with \(\nabla f(x, 0) = (1, 0, \ldots, 0) \). This verifies that \(f \) is smooth at every \((x, 0) \) with \(\nu(x) = 1 \).

Finally, we verify that \(X_f \) is locally connected, which would establish that \(f \) is strongly AS. Fix any \(\bar{x} \in \mathbb{R}^n \) with \(\nu(\bar{x}) \geq 2 \) and any \(\varepsilon > 0 \). \(X_f \cap B_\varepsilon((\bar{x}, 0)) \) is nonempty since it contains \((\bar{x}, \varepsilon/2) \). Consider any two points \((x^1, t^1) \) and \((x^2, t^2) \) in \(X_f \cap B_\varepsilon((\bar{x}, 0)) \). If \(t^1 \) and \(t^2 \) have the same positive or negative sign, then the line segment joining them lies in \(X_f \cap B_\varepsilon((\bar{x}, 0)) \). The same is true if exactly one of \(t^1 \) and \(t^2 \) is zero. If both \(t^1 \) and \(t^2 \) are zero, then the line segments from \((x^1, t^1) \) to \((\bar{x}, \varepsilon/2) \) and then from \((\bar{x}, \varepsilon/2) \) to \((\bar{x}, \varepsilon/2) \) would lie in \(X_f \cap B_{\varepsilon/2}((\bar{x}, 0)) \). If \(t^1 > 0 \) and \(t^2 < 0 \), then the line segments from \((x^1, t^1) \) to \((x^3, 0) \) and then from \((x_3, 0) \) to \((x^2, t^2) \) would lie in \(X_f \cap B_{\varepsilon/2}((\bar{x}, 0)) \), where \(x^3 \) is a small perturbation of \(\bar{x} \) so that \(\nu(x^3) = 1 \) and \((x_3, 0) \in B_{\varepsilon}(\bar{x}, 0) \). Thus, \(X_f \cap B_{\varepsilon}(\bar{x}, 0) \) is nonempty and connected.

Notice that \(f \) is not basic AS when \(n \geq 2 \) since \(\mathbb{R}^{n+1} \setminus X_f = \{(x, 0) \in \mathbb{R}^{n+1} : x_i = x_j \text{ for some } 1 \leq i < j \leq n \} \), being the union of \(\frac{1}{2}n(n-1) \) subspaces of dimension \(n-1 \), is not comprised of isolated points.
Suppose $\psi : \mathbb{R} \to \mathbb{R}$ is smooth convex and ψ_∞ is real-valued. Then it is known that ψ' is a nondecreasing function and $\psi_\infty(x) = \max\{\alpha x, \beta x\}$, where $\alpha := \lim_{x \to -\infty} \psi'(x) > -\infty$ and $\beta := \lim_{x \to \infty} \psi'(x) < \infty$. We note that f is semismooth at $(\bar{x}, 0)$ for any $\bar{x} \in \mathbb{R}$ if and only if
\[
\lim_{x \to -\infty} (\psi'(x) - \alpha)x = 0, \quad \lim_{x \to \infty} (\beta - \psi'(x))x = 0.
\]
This is due to ψ_∞ being piecewise linear (so that (20) holds for all $(x, 0)$ near $(\bar{x}, 0)$), (21), and the observation that
\[
\psi'(x/|t|)\bar{x} - \psi_\infty(\bar{x}) = \begin{cases} (\psi'(x/|t|) - \alpha)\bar{x} & \text{if } \bar{x} < 0, \\ 0 & \text{if } \bar{x} = 0, \\ (\psi'(x/|t|) - \beta)\bar{x} & \text{if } \bar{x} > 0. \end{cases}
\]
Similarly, for any $1 < k \leq 2$, we have that f defined by (15) is semismooth of order k at $(\bar{x}, 0)$ for any $\bar{x} \in \mathbb{R}$ if and only if
\[
\lim_{x \to -\infty} \sup (\psi'(x) - \alpha)|x|^k < \infty, \quad \lim_{x \to \infty} \sup (\beta - \psi'(x))x^k < \infty.
\]
Suppose that, in addition to (22), we have $\alpha \neq \beta$ and
\[
\lim_{x \to -\infty} \psi(x) - \alpha x = 0, \quad \lim_{x \to \infty} \psi(x) - \beta x = 0.
\]
Then we claim that
\[
X_f = \mathbb{R}^2 \setminus \{(0, 0)\}.
\]
To see this, note that f is smooth at every (x, t) with $t \neq 0$ and, due to $\alpha \neq \beta$, f is not differentiable at $(0, 0)$. Thus, it suffices to verify that f is smooth at every $(x, 0)$ with $x \neq 0$. Fix any $\bar{x} \in \mathbb{R}$ with $\bar{x} > 0$. It is straightforward to verify using (23) that f is differentiable at $(\bar{x}, 0)$ with $\nabla f(\bar{x}, 0) = (\beta, 0)$. For all (x, t) with $t > 0$, we have
\[
\nabla f(x, t) = (\psi'(x/t), \psi(x/t) - \psi'(x/t)x/t).
\]
As $(x, t) \to (\bar{x}, 0)$, we have $x/t \to \infty$ and hence $\psi'(x/t) \to \beta$. Also, (22) and (23) imply that $\psi(x/t) - \psi'(x/t)x/t \to 0$. Thus, $\nabla f(x, t) \to (\beta, 0)$. For all (x, t) with $t < 0$, the same conclusion is reached. For all $(x, 0)$ with x sufficiently near \bar{x}, we have that $x > 0$ and hence f is differentiable at $(x, 0)$ with $\nabla f(x) = (\beta, 0)$. This verifies that f is smooth at every $(x, 0)$ with $x > 0$. The case of $x < 0$ can be treated similarly.

We illustrate the above results with three examples below.

Example 6 Suppose $\psi(x) = \sqrt{1 + x^2}$ with $x \in \mathbb{R}$. Then, $\psi_\infty(x) = |x|$ and $\alpha = -1$ and $\beta = 1$. Moreover,
\[
(\psi'(x) - \alpha)x^2 = \left(\frac{x}{\sqrt{1 + x^2}} + 1\right)x^2 = \frac{x^2}{\sqrt{1 + x^2}(\sqrt{1 + x^2} - x)} \to \frac{1}{2} \quad \text{as } x \to -\infty.
\]
\[
(\beta - \psi'(x))x^2 = \left(1 - \frac{x}{\sqrt{1 + x^2}}\right)x^2 = \frac{x^2}{\sqrt{1 + x^2}(\sqrt{1 + x^2} + x)} \to \frac{1}{2} \quad \text{as } x \to \infty.
\]
Thus, by the above fact, if defined by (15) is strongly semismooth at \((\bar{x}, 0)\). Since \(f\) is twice continuously differentiable at any \((\bar{x}, \bar{t})\) with \(\bar{t} \neq 0\), then \(f\) is strongly semismooth on \(\mathbb{R}^{n+1}\). Also, \(\psi_\infty\) is majorized by \(\psi\) and (23) holds, so \(f\) is locally Lipschitzian, directionally differentiable, and smooth everywhere except at \((0, 0)\). Thus \(f\) is basic strongly AS. In particular, this shows that the CHKS function is basic strongly AS. Since \(f\) is positively homogeneous about \((0, 0)\), Theorem 5 shows that \(f\) is in fact Lipschitz continuous.

Example 7 Suppose \(\psi : \mathbb{R} \to \mathbb{R}\) is given by

\[
\psi(x) = \begin{cases}
2x + \frac{e}{\ln x} & \text{if } x \geq e, \\
e^{x-e} + 3e - 1 & \text{if } x \leq e.
\end{cases}
\]

This is a smooth convex function and, in particular, its derivative

\[
\psi'(x) = \begin{cases}
2 - \frac{e}{(\ln x)^2x} & \text{if } x \geq e, \\
e^{x-e} & \text{if } x \leq e,
\end{cases}
\]

is an increasing function. Also, \(\psi_\infty(x) = 2 \max\{0, x\}\) and \(\alpha = 0, \beta = 2\). We have

\[
(\psi'(x) - \alpha)x = e^{x-e}x \to 0 \quad \text{as } x \to -\infty,
\]

\[
(\beta - \psi'(x))x = \frac{e}{(\ln x)^2} \to 0 \quad \text{as } x \to \infty,
\]

so (22) holds. Thus, by the above result, \(f\) defined by (15) is semismooth at \((\bar{x}, 0)\) for any \(\bar{x} \in \mathbb{R}\). Hence \(f\) is semismooth on \(\mathbb{R}^2\). However, it is easily seen that \((\beta - \psi'(x))x^k \to \infty\) for any \(k > 0\), so \(f\) is not semismooth of order \(k\) at \((\bar{x}, 0)\). Also, \(\psi_\infty\) is majorized by \(\psi\) and (23) holds, so \(f\) is locally Lipschitzian, directionally differentiable, smooth everywhere except at \((0, 0)\). Thus \(f\) is basic AS. Since \(f\) is positively homogeneous about \((0, 0)\), Theorem 5 shows that \(f\) is in fact Lipschitz continuous.

Example 8 Suppose \(\psi : \mathbb{R} \to \mathbb{R}\) is given by

\[
\psi(x) = \begin{cases}
2x - e\ln x & \text{if } x \geq e, \\
e^{x-e} + e - 1 & \text{if } x \leq e.
\end{cases}
\]

This is a smooth convex function and, in particular, its derivative

\[
\psi'(x) = \begin{cases}
2 - \frac{e}{x} & \text{if } x \geq e, \\
e^{x-e} & \text{if } x \leq e,
\end{cases}
\]

is an increasing function. Also, \(\psi_\infty(x) = 2 \max\{0, x\}\) and \(\alpha = 0, \beta = 2\). We have

\[
(\beta - \psi'(x))x = e \not\to 0 \quad \text{as } x \to \infty.
\]

Thus \(f\) is not semismooth at \((\bar{x}, 0)\) when \(\bar{x} > 0\).

As Example 8 shows, \(\psi\) being smooth convex and positive-valued is not sufficient for \(f\) given by (15) to be semismooth.
4.4 Integral Functions

The result of Dontchev, Qi and Qi [13] cited in Subsection 4.1 was proved by showing that an integral function involving B-splines is strongly semismooth. This result was then extended by Qi and Yin [37] to a more general class of functions; also see [34, Section 5]. In particular, they showed that if \(g \) is a continuous function on \([a, b]\) \((-\infty < a < b < \infty)\) and \(u, v \) are two real-valued strongly semismooth functions on \(\mathbb{R}^n \), then the integral function \(f : \mathbb{R}^n \to \mathbb{R} \)
defined by

\[
f(x) := \int_a^b (tu(x) + v(x)) + g(t) dt
\]

is strongly semismooth on \(\mathbb{R}^n \). This result was used in [37] to prove quadratic convergence of a Newton-type method proposed by Andersson, Elfving, Iliev and Vlaxhкова [2] for interpolation of convex scattered data. Notice that, although the integrand in (24) is strongly semismooth, this alone is not sufficient for the integral function to be strongly semismooth, as is shown by a counterexample in [37].

Since the integrand in (24) is PS for each \(t \), is the function \(f \) defined by (24) a PS function also? In the case where \(u \) and \(v \) are linear, i.e., \(u(x) = \bar{u}^T x \), \(v(x) = \bar{v}^T x \) for some \(\bar{u}, \bar{v} \in \mathbb{R}^n \), Qi and Yin proved the following result [37].

(a) If \(\bar{u} \) and \(\bar{v} \) are linearly dependent, then \(f \) is piecewise linear and hence PS.

(b) If \(\bar{u} \) and \(\bar{v} \) are linearly independent, then \(f \) is smooth and strongly semismooth on \(\mathbb{R}^n \setminus \{x \in \mathbb{R}^n : \bar{u}^T x = \bar{v}^T x = 0\} \). If in addition \(g \neq 0 \) on \([a, b]\), then \(f \) is strongly semismooth on \(\mathbb{R}^n \) and \(X_f = F_f = \mathbb{R}^n \setminus \{x \in \mathbb{R}^n : \bar{u}^T x = \bar{v}^T x = 0\} \).

It readily follows from Definition 4 that if \(\bar{u}, \bar{v} \) are linearly independent, then \(f \) is basic strongly AS for \(n = 2 \) and \(f \) is strongly AS but not basic strongly AS for \(n > 2 \) (since \(X_f = F_f \) is a subspace of dimension \(n - 2 \)). Then, by Corollary 1, \(f \) is not PS whenever \(\bar{u} \) and \(\bar{v} \) are linearly independent.

What about nonlinear \(u, v \)? We study this general case below. Suppose \(u, v : \mathbb{R}^n \to \mathbb{R} \)
are smooth and \(g \) is continuous on \([a, b]\) \((-\infty < a < b < \infty)\). It can be shown that \(f \)
defined by (24) is locally Lipschitzian and semismooth on \(\mathbb{R}^n \); see [12]. Moreover, by using the formula (24), it is straightforward to show that \(f \) is smooth at every \(x \in \mathbb{R}^n \) such that \(u(x), v(x) \) are not both zero. In particular,

\[
\nabla f(x) = \begin{cases}
0 & \text{if } u(x) = 0, v(x) < 0, \\
\int_a^b (t \nabla u(x) + \nabla v(x)) g(t) dt & \text{if } u(x) = 0, v(x) > 0, \\
\int_{\max\{a, r(x)\}}^{\min\{b, r(x)\}} (t \nabla u(x) + \nabla v(x)) g(t) dt & \text{if } u(x) > 0, \\
\int_{\min\{a, r(x)\}}^{\max\{b, r(x)\}} (t \nabla u(x) + \nabla v(x)) g(t) dt & \text{if } u(x) < 0,
\end{cases}
\]

where \(r(x) := -v(x)/u(x) \). Thus \(\mathbb{R}^n \setminus X_f \subseteq Y := \{x \in \mathbb{R}^n : u(x) = v(x) = 0\} \), so, in order to verify that \(f \) is AS, it suffices to show that for every \(\bar{x} \in Y \) there is a \(\bar{\varepsilon} > 0 \)
satisfying (6). Fix any \(\bar{x} \in Y \). Suppose that \(\nabla u(x), \nabla v(x) \) are linearly independent for all \(x \in \mathbb{R}^n \) \((n \geq 2)\). It follows from the implicit function theorem that there exist indices \(1 \leq i < j \leq n \), open balls \(B_i \subset \mathbb{R}, B_j \subset \mathbb{R}, B_R \subset \mathbb{R}^{n-2} \) centered at \(\bar{x}_i, \bar{x}_j, \bar{x}_R, \) respectively, and differentiable functions \(\varphi_i, \varphi_j : B_R \to \mathbb{R} \) such that \(x_i = \varphi_i(x_R), x_j = \varphi_j(x_R) \) if and only if \(x \in Y, (x_i, x_j, x_R) \in B_i \times B_j \times B_R \). Suppose that \(\varphi_i \) changes concavity finitely many times on each line segment lying in some open ball \(\bar{B}_R \subset B_R \) centered at \(\bar{x}_R \) and similarly for \(\varphi_j. \) (Roughly speaking, the manifold \(Y \) is not too “wiggly”.) Then we have that the open set
\[
X := \mathbb{R}^n \setminus Y = \{(x_i, x_j, x_R) \in B_i \times B_j \times \bar{B}_R : x_i \neq \varphi_i(x_R) \text{ or } x_j \neq \varphi_j(x_R) \}
\]
is nonempty and connected. This is because, for any two points \((\bar{x}_i, \bar{x}_j, \bar{x}_R)\) and \((\hat{x}_i, \hat{x}_j, \hat{x}_R)\) in \(X \), the line segment joining them intersects \(Y \) at \((x_i, x_j, x_R)\) if and only if the line segment joining \((\bar{x}_i, \bar{x}_R)\) and \((\hat{x}_i, \hat{x}_R)\) intersects the graph of \(\varphi_i \) at \((x_i, x_R)\) and the line segment joining \((\bar{x}_j, \bar{x}_R)\) and \((\hat{x}_j, \hat{x}_R)\) intersects the graph of \(\varphi_j \) at \((x_j, x_R)\). By our assumption on \(\varphi_i \), the number of such intersection points on its graph is finite and similarly for \(\varphi_j \). Thus, perturbing either \(\bar{x}_i \) or \(\hat{x}_i \) changes the \(x_R \) component of each intersection point on the graph of \(\varphi_i \) while leaving the intersection points on the graph of \(\varphi_j \) unchanged. Since \(\varphi_i \) is continuous, this means that, for sufficiently small perturbation, the \(x_R \) component of each intersection point on the graph of \(\varphi_i \) differs from the \(x_R \) component of each intersection point on the graph of \(\varphi_j \). Thus the perturbed line segment does not intersect \(Y \) and lies entirely in \(X \). This shows that there is a \(\bar{\varepsilon} > 0 \) satisfying (6). Hence \(f \) is AS under the above assumption on the (implicit) functions \(\varphi_i \) and \(\varphi_j \) defined around each \(\bar{x} \in Y \). If in addition \(u \) and \(v \) are strongly semismooth, then the result of Qi and Yin [37] implies that \(f \) is strongly AS. By Corollary 1, \(f \) is either smooth or not PS.

Example 9 Suppose \(n \geq 3 \) and \(u(x) = x_1 + p(x_3, \ldots, x_n), \) \(v(x) = x_2 + q(x_3, \ldots, x_n), \) where \(p, q : \mathbb{R}^{n-2} \to \mathbb{R} \) are polynomial functions. Then \(u, v \) are infinitely differentiable and \(\nabla u(x), \nabla v(x) \) are linearly independent for all \(x \in \mathbb{R}^n \). Moreover, we can take \(i = 1, j = 2 \) and \(\varphi_i \equiv -p, \varphi_j \equiv -q. \) Then \(\varphi_i, \varphi_j \) are polynomial functions and hence they change concavity finitely many times on any line segment in \(\mathbb{R}^{n-2}. \) Thus, by the above discussion, if \(g \) is continuous on \([a, b] \), then \(f \) defined by (24) is strongly AS.

It is an open question whether we can relax the above assumption of finitely many concavity changes on the (implicit) functions \(\varphi_i, \varphi_j. \) In particular, complication arises if the graphs of these functions can have infinitely many intersection points with a line segment.

5 Appendix

In this appendix, we give an alternative proof of Theorem 2(c) that is a more direct extension of Rockafellar’s proof.

5For any \(x \in \mathbb{R}^n \), we denote by \(x_R \) the reduced vector in \(\mathbb{R}^{n-2} \) obtained by dropping \(x_i, x_j \) from \(x \).

6More precisely, for any \(x_R, y_R \in B_R \), the derivative of the function \(t \mapsto \varphi_i((1-t)x_R + ty_R) \) changes sign a finite number of times over \(0 \leq t \leq 1 \), and the same holds for \(\varphi_j \) in place of \(\varphi_i \).
Let $\varepsilon > 0$ be small enough such that (1) holds with $\varepsilon = \varepsilon$ and $cl\{X_{\varepsilon} \subset O$, where we define

$$X_{\varepsilon} := X \cap B_{\varepsilon}(\bar{x}) \quad \forall \varepsilon \in (0, \varepsilon).$$

Notice that X_{ε} is nonempty for every $\varepsilon > 0$ since X is dense in O. For each $i \in I$, let

$$D_i := \{x \in O : f(x) = f_i(x), \nabla f(x) = \nabla f_i(x)\}.$$

On X_{ε}, the mapping ∇f is continuous, and it agrees with ∇f_i on $D_i \cap X_{\varepsilon}$. For each $x \in X_{\varepsilon}$, \{f_i\}_{i \in I} forms a local representation for f at x and hence, by Theorem 1(b), $x \in D_i$ for some $i \in I$. This implies that the sets $D_i, i \in I$, cover X_{ε} for all $\varepsilon \in (0, \varepsilon)$. By Theorem 1(a), for each $i \in I$ there is an open set O_i such that $\bar{x} \in clO_i$ and $f \equiv f_i$ on O_i. The latter implies f is smooth on O_i and $\nabla f \equiv \nabla f_i$ on O_i. Hence $D_i \supseteq O_i \cap B_{\varepsilon}(\bar{x}) \neq \emptyset$ for all $\varepsilon \in (0, \varepsilon)$, so that $\bar{x} \in clD_i$. Since $D_i, i \in I$, cover X_{ε} for all $\varepsilon \in (0, \varepsilon)$ and ∇f_i is continuous on each D_i, whose closure contains \bar{x}, we have

$$\limsup_{\varepsilon \downarrow 0} \nabla f(X_{\varepsilon}) \subseteq \{\nabla f_i(\bar{x}) : i \in I\}.$$

On the other hand, ∇f is continuous on X_{ε} and X_{ε} is nonempty and connected by (2), so the image $\nabla f(X_{\varepsilon})$ is nonempty and connected. Hence the set $\nabla f(X_{\varepsilon})$, which is uniformly bounded as $\varepsilon \downarrow 0$, must converge to some particular element of $\{\nabla f_i(\bar{x}) : i \in I\}$, say $\nabla f_i(\bar{x})$ for some $i \in I$. Thus, ∇f has a continuous extension from X to $X \cup \{\bar{x}\}$.

For each $i \in I$, since $O_i \cap X_{\varepsilon}$ is dense in $O_i \cap B_{\varepsilon}(\bar{x})$ whose closure contains \bar{x}, then $\bar{x} \in cl(O_i \cap X_{\varepsilon})$. Since $\nabla f \equiv \nabla f_i$ on O_i, the continuity of ∇f_i on O_i implies

$$\nabla f_i(\bar{x}) = \limsup_{\varepsilon \downarrow 0} \nabla f(O_i \cap X_{\varepsilon}) \subseteq \limsup_{\varepsilon \downarrow 0} \nabla f(X_{\varepsilon}) = \nabla f_i(\bar{x}).$$

Then, for any $x \in O \cap B_{\varepsilon}(\bar{x})$, we have $f(x) = f_1(x)$ for some $i \in I$ and $f(\bar{x}) = f_i(\bar{x})$, $\nabla f_i(\bar{x}) = \nabla f_i(\bar{x})$. This, together with smoothness of f_i, implies

$$f(x) - f(\bar{x}) - \nabla f_i(\bar{x})^T(x - \bar{x}) = f_i(x) - f_i(\bar{x}) - \nabla f_i(\bar{x})^T(x - \bar{x}) = o_i(h),$$

where $\lim_{||h|| \to 0} o_i(h)/||h|| = 0$. Since I is a finite set, this shows that f is differentiable at \bar{x} with $\nabla f(\bar{x}) = \nabla f_i(\bar{x})$. The last claim of the theorem follows from (25).

Thus f is differentiable at \bar{x} and $\nabla f(\bar{x}) = \nabla f_i(\bar{x})$ for all $i \in I$. By (b), f is strictly differentiable at \bar{x}.

References

