Rule-based Technology for Automating Contracting by Agents

Invited Presentation for
American Bar Association (ABA) Spring Meeting 3/22-25/01:
Cyberlaw Committee, Internet Law Subcommittee & Electronic Agents Task Force;
March 24, 2001 at Philadelphia Convention Center, Philadelphia, PA, USA

Prof. Benjamin Grosof

MIT Sloan School of Management
bgrosof@mit.edu http://www.mit.edu/~bgrosof/

3/26/2001 by Benjamin Grosof copyrights reserved
Outline

1. Intro: E-Signatures → deeper issues
2. What’s Doable Now in rule-based agent contracting
 - functionality: communicate, execute, modify
 - what kind of stuff represented by rules
3. Example of Agent Contract Communication:
 - Approach: Inter-operable, modular XML Rules represent parts of Contract Content
4. Applications:
 - Current
 - Vision
5. Discussion

Optional Slides: my background; agent delegations
Deeper Issues of E-Signatures

- WHAT’S THE DEAL ? ... !!
- SIGN AS WHAT ?? ... !!

- Vision/Approach: A net of documents combined by links, on the Web
Looks Simple To Start... then Gets Interestingly Precise

A Vision/Approach of what Web & Agents enable

SALES RECEIPT

Receipt ID
K46239...

Signed,
Benjamin

Web info/knowledge “behind the curtain”

ComfieCo.com
5way Chair Blue

Operating Rules
of MIT Sloan

$140.
VISA Europe

3/26/2001 by Benjamin Grosof copyrights reserved
What’s Doable Today in rule-based agent contracting, based on latest technological & conceptual progress

• Communicate:
 – XML, interoperable
 – heterogeneous rule systems / rule-based agents

• Execute contract provisions:
 – infer; ebiz actions; authorize; ...

• Modify easily: contingent provisions
 – default rules; modularity;

• Reason about the contract/proposal
 – hypotheticals, test, evaluate
Approach:

Rule-based Contracts for E-commerce

- Rules as way to specify (part of) business processes, policies, products: as (part of) contract terms.
- Complete or partial contract.
 - As default rules. Update, e.g., in negotiation.
- Rules provide high level of conceptual abstraction.
 - easier for non-programmers to understand, specify, dynamically modify & merge. E.g.,
 - by multiple authors, cross-enterprise, cross-application.
- Executable. Integrate with other rule-based business processes.
Contract Rules

across Applications / Enterprises

Application 1, e.g.,
seller e-storefront

Business Logic

Rules
e.g., OPS5

“E-Business”

Interchange

Application 2, e.g.,
buyer shopbot agent

Business Logic

Rules
e.g., Prolog

“E-Commerce”

Contracting parties integrate e-businesses via shared rules.

3/26/2001

by Benjamin Grosof copyrights reserved
Examples of Rules in Agent Contracts & Deal Making

- **Product descriptions**
 - Product catalogs: properties, conditional on other properties.
- **Price vs. quantity vs. delivery date**
- **Discounting**, incl. for groups.
- **Terms & conditions**
 - Service provisions
 - Refunds, cancellations
 - Surrounding business processes, e.g., lead time to order.
- **Trust**
 - Creditworthiness, authorization, required signatures
 - Buyer Requirements (RFQ, RFP) wrt the above
 - Seller Capabilities (Sourcing, Qualification) wrt the above
Contract Rules during Negotiation

Contracting parties NEGOTIATE via shared rules.
Exchange of Rules Content during Negotiation: example

- Buyer, e.g., manufacturer
- Request For Quote
 - Quote
 - Purchase Order
 - Ack. Deal
- Seller, e.g., supplier of parts

3/26/2001 by Benjamin Grososf copyrights reserved
Exchange of Rules Content during Negotiation: Example

Buyer, e.g., manufacturer

Seller, e.g., supplier of parts

Proposal

Counter-Proposal

Final Offer

Purchase Order

Ack. Deal

Req. For Proposal

Proposal

Counter-Proposal

Final Offer

Purchase Order

Ack. Deal

3/26/2001
Negotiation Example XML Document: Proposal from supplierCo to manufCo

- <negotiation_message>
 - <message_header>
 - <proposal/>
 - <from> supplierCo </from>
 - <to> ManufCo </to>
 - </message_header>
 - <rules_content>
 - …[see next slide]
 - </rules_content>
 - …
- </negotiation_message>

Example of similar message document format:
- FIPA Agent Communication Markup Language (draft industry standard).

3/26/2001 by Benjamin Grosof copyrights reserved
Negotiation Ex. Doc. Rules: Proposal from supplierCo to manufCo

- ...
 <usualPrice> price(per_unit, ?PO, $60) ←
 - purchaseOrder(?PO, supplierCo, ?AnyBuyer) ∧
 - quantity_ordered(?PO, ?Q) ∧ (?Q ≥ 5) ∧ (?Q ≤ 1000) ∧
 - shipping_date(?PO, ?D) ∧ (?D ≥ 24Apr00) ∧ (?D ≤ 12May00).
- <volumeDiscount> price(per_unit, ?PO, $51) ←
 - purchaseOrder(?PO, supplierCo, ?AnyBuyer) ∧
 - quantity_ordered(?PO, ?Q) ∧ (?Q ≥ 100) ∧ (?Q ≤ 1000) ∧
 - shipping_date(?PO, ?D) ∧ (?D ≥ 28Apr00) ∧ (?D ≤ 12May00).
 overrides(volumeDiscount, usualPrice).
- ⊥ ← price(per_unit, ?PO, ?X) ∧ price(per_unit, ?PO, ?Y) GIVEN (?X ≠ ?Y).
- ...

3/26/2001 by Benjamin Grosf copyrights reserved
Negotiation Ex. Doc. Rules:
Counter-Proposal from manufCo to supplierCo

- ...
 \[\text{<usualPrice>} \quad \text{price(per_unit, ?PO, $60)} \leftrightarrow \ldots \]
- \[\text{<volumeDiscount>} \quad \text{price(per_unit, ?PO, $51)} \leftrightarrow \]
 \[
 \text{purchaseOrder(PO, supplierCo, ?AnyBuyer) } \land \\
 \text{quantity_ordered(PO, Q) } \land (Q \geq 5) \land (Q \leq 1000) \land \\
 \text{shipping_date(PO, D) } \land (D \geq 28\text{Apr}00) \land (D \leq 12\text{May}00) \ldots
 \]
 overrides(volumeDiscount, usualPrice).
- \[\downarrow \leftrightarrow \text{price(per_unit, PO, X)} \land \text{price(per_unit, PO, Y) GIVEN (X } \neq \text{ Y)}. \]
- \[\text{<aSpecialDeal>} \quad \text{price(per_unit, PO, $48)} \leftrightarrow \]
 \[
 \text{purchaseOrder(PO, supplierCo, manufCo) } \land \\
 \text{quantity_ordered(PO, Q) } \land (Q \geq 400) \land (Q \leq 1000) \land \\
 \text{shipping_date(PO, D) } \land (D \geq 02\text{May}00) \land (D \leq 12\text{May}00) \ldots
 \]
 overrides(aSpecialDeal, volumeDiscount).
- overrides(aSpecialDeal, usualPrice).
- ...

Simply added rules!
In XML: Business Rules Markup Language

- `<clp>`
- `<erule rulelabel="usualPrice">`
- `<head>`
- `<cliteral>`
- `<predicate name="price" arity="3"/>`
- `<larglist>`
- `<lfunction name="per_unit"/>`
- `<variable name="PO"/>`
- `<function name="$60"/>`
- `</larglist>`
- `</cliteral>`
- `</head>`
- `</erule>`
- `... (see next page) </body>`
- `</clp>`

3/26/2001 by Benjamin Grososf copyrights reserved
Business Rules Markup Language for Negotiation Example (continued)

- <body>
- <andb>
- <fcliteral>
- <predicate name="purchaseOrder" arity="3"/>
- <larglist>
- <variable name="PO"/>
- <lfunction name="supplierCo"/>
- <variable name="AnyBuyer"/>
- </larglist>
- </fcliteral>
- ...
- </fcliteral>
- ...
- </andb>
- </body>
Commercial Implementation & Piloting

• **IBM CommonRules**: AlphaWorks Java library
 - implements rule-based capabilities:
 • XML inter-operability; prioritized conflict handling

• **Rule Markup Language**: nascent industry standards effort
 - XML Knowledge Representation (KR) → make the Web be “Semantic”
 - KR: **Situated Courteous Logic Programs in XML**

• EECOMS industry consortium including Boeing, Baan, TRW, Vitria, IBM, universities, small companies
 - $29Million 1998-2000; 50% funded by NIST ATP
 - application piloted
 • contracting & negotiation; authorization & trust
Flavors of Rules Commercially Most Important today in E-Business

• E.g., in OO app’s, DB’s, workflows.

• Relational databases, SQL: Views, queries, facts are all rules.

• Production rules (OPS5 heritage): e.g.,
 – Blaze, ILOG, Haley: rule-based Java/C++ objects.

• Event-Condition-Action rules (loose family), cf.:
 – business process automation / workflow tools.
 – active databases; publish-subscribe.

• Prolog. “logic programs” as a full programming language.

• (Lesser: other knowledge-based systems.)
Criteria for Contract Rule Representation

- **High-level**: Agents reach common understanding; contract is easily modifiable, communicatable, executable.
- Inter-operate: heterogeneous commercially important rule systems.
- Expressive power, convenience, natural-ness.
- ... but: computational tractability.
- Modularity and locality in revision.
- **Declarative** semantics.
- Logical non-monotonicity: default rules, negation-as-failure.
 - essential feature in commercially important rule systems.
- Prioritized conflict handling.
- Ease of parsing.
- Integration into Web-world software engineering.
- **Procedural** attachments.
Delegations between agents

• Delegations between agents
• XML Ontologies (Vocabularies)

– knowledge representation: infer with definitional knowledge
– specific domain/industry vocabularies
– legal XML
– Industry-Specific
– E-Commerce
– Agents, Business Processes, Workflow
– Web

Industry Standards:

• DARPA Agent Markup Language: ontologies, rules

• Legal XML

• Law: Electronic Signatures, ...

Also Currently Being Developed

in the world today
Applications: Current and Visions

- product and contract/deal descriptions
- negotiation
- authorization
- automating legal reasoning and processes
- evidence
- regulations
- Alternative Dispute Resolution
- adjudication, legal decision-making
- … ?pointers?
Thanks!

Questions?

Comments? Pointers?

For More Info:
 - http://www.mit.edu/~bgrosof/
 • links to http://www.research.ibm.com/rules/
Delegation Logic: Goal and Basic Approach

• Our goal: Develop a language that
 – can represent, with significant expressive power, policies and credentials for authorization in Internet scenarios
 – can provide mechanisms for delegation
 – has a clear declarative semantics

• Our approach: Delegation Logic (DL): multi-agent logic programs with delegation to complex delegatees
 – D1LP: extends negation-free OLP \(\Rightarrow \) with delegation
 – D2LP: extends Courteous LP \(\Rightarrow \) with delegation
 – Tractable “Delegation compiler” similar to courteous compiler.

• Collaborators: Ninghui Li (NYU→Stanford), Joan Feigenbaum (ATT→Yale)
Delegation Logic (D1LP) Example: accessing medical records

- **Problem:** Hospital HM to decide: requester Alice authorized for patient Peter?
- **Policies:** HM will authorize only the patient’s physician. HM trusts any hospital it knows to certify the physician relationship. Two hospitals together can vouch for a 3rd hospital.
 - HM says `authorized(?X, read(medRec(?Y)))` if HM says `inRole(?X, physic(?Y))`.
 - HM delegates `inRole(?X, physic(?Y))^1` to `threshold(1, ?Z, HM says inRole(?Z,hosp))`.
 - HM delegates `inRole(?H,hosp)^1` to `threshold(2, ?Z, HM says inRole(?Z,hosp))`.
- **Facts:** HC certifies Alice is Peter’s physician. HM knows two hospitals HA and HB. HA and HB each certify HC as a hospital.
 - HC says `inRole(Alice, physic(Peter))`. HA says `inRole(Joe, physic(Sue))`.
 - HM says `inRole(HA,hosp)`. HM says `inRole(HB, hosp)`.
 - HA says `inRole(HC,hosp)`. HB says `inRole(HC, hosp)`.
- **Conclusion:** HM says `authorized(Alice, read(medRec(Peter)))`. *Joe NOT authorized.*
Launch Vector: My Background
E-Commerce Agents, Rules: Techno + Biz

- Harvard BA math econ & mgm sci
- startups
- Stanford CS (Computer Science) PhD in AI
- IBM Watson Research: IA for EC
 - Led Intelligent Agents, Business Rules for E-Commerce
- MIT Sloan: Information Technology group
- Technology end of B-school IT world
 - how/where the technology is useful, important
 - business value; implications for processes & strategies
 - market evolutions; innovation paths; organizational changes

3/26/2001 by Benjamin Grosof copyrights reserved
Background in Law-related Research

• Overall: formally represent policies and info as rules
• Evidential Reasoning: probabilistic, fuzzy, ...
• Bureaucratic Processes as domain
 – pioneer within AI knowledge representation community
• Argumentation with rule-based beliefs:
 – efficient algorithms
 – theory
 – bridge to commercially practical rule-based/database systems
• Contracting & Negotiation, Authorization & Trust

• Invited Speaker at 2001 International Conference on AI & Law:
 – “Automating Law in the Small: Contracts, Regulations, and Prioritized Argumentation”

3/26/2001 by Benjamin Grosf reserved