Variance bias derivation (optional)

This derivation requires the identity \(\text{var}[x] = E[x^2] - E[x]^2 \), along with the fact that if \(x \) and \(y \) are independent, then \(E[xy] = E[x]E[y] \). For convenience, let \(E[x_i^2] = E[x^2] \), since it’s the same for all \(x_i \).

\[
E[\hat{\sigma}^2] = E \left[\frac{1}{n-1} \sum_i (x_i - \bar{x})^2 \right]
\]
\[
= \frac{1}{n-1} \sum_i E[x_i^2 - 2x_i\bar{x} + \bar{x}^2]
\]
\[
= \frac{1}{n-1} \sum_i \left(E[x_i^2] - \frac{2}{n} E \left[x_i \sum_j x_j \right] + \frac{1}{n^2} \mathbb{E} \left[\left(\sum_j x_j \right)^2 \right] \right)
\]
\[
= \frac{1}{n-1} \sum_i \left(E[x_i^2] - \frac{2}{n} E \left[x_i^2 \right] - \frac{2}{n} E \left[x_i \sum_{j \neq i} E \left[x_j \right] \right] + \frac{1}{n^2} \sum_j E \left[x_j^2 \right] + \frac{1}{n^2} \mathbb{E} \left[\sum_{j \neq i} x_j x_k \right] \right)
\]
\[
= \frac{n}{n-1} E[x^2] - \frac{2}{n} n E[x^2] - \frac{2}{n(n-1)} n(n-1) \mu^2 + \frac{1}{n^2} n(n-1) E[x^2] + \frac{1}{n^2} n(n-1) E[x]^2
\]
\[
= E[x^2] - E[x]^2
\]
\[
= \text{var}[x]
\]