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The Poisson Multiple-Access Channel

Amos Lapidoth,Member, IEEE and Shlomo Shamai (Shitzfellow, IEEE

Abstract—The Poisson multiple-access channel (MAC) models  The input signalz(¢) is often peak- and average-power
many-to-one optical communication through an optical fiber or  |imited [5]-[8] so that
in free space. For this model we compute the capacity region

for the two-user case as a function of the allowed peak power. 0<z(t) < A

Focusing on the maximum throughput we generalize our results (1.1)
to the case where thg users are subjected to an additional ]E(% foT .’17(7')d7') <B

average-power constraint and to the many-users case. We show

that contrary to the Gaussian MAC, in the Poisson MAC the hare 4 stands for the peak power adtidenotes the allowed
maximum throughput is bounded in the number of users. We

quantify the loss that is incurred when Time-Division Multiple averag.e poyver. Herle denotes the expectatiop operator, a”?’
Access (TDMA) is employed and show that while in the two-user Subscripts, if attached, denote the random variables over which
case and in the absence of dark current the penalty is rather the expectation is taken. The tirfiestands for the transmission
mild, the penalty can be quite severe in the many-users case induration and is usually assumed to approach infinity. The
the presence of large dark current. We introduce a generalized ¢ahacityc; in nats per second under these constraints is given
TDMA technique that mitigates this loss to a large extent. by [5]-[7]

Index Terms—Capacity region, infrared, multiple-access chan-
nels, multiuser, optical CDMA, optical TDMA, Poisson. C1 = Alpopt (1 + Ao /A) log(1+ A, /A)

+ (1 — popt) Ao /A log(As/A)

— (Popt + Ao/A) log(popt + Ao/A)]  (1.28)

I. INTRODUCTION
- . . where
HE Poisson channel attracts much interest as it serves as

the standard model for optical communications [1]-[3]. Popt = min (B/A, p,(A,/A)) (1.2b)
Its conceptual simplicity and the advent of many uncoded
and coded communications techniques [1]-[4] have propeli@gd where
an extensive information-theoretic study of communication (1+u)1+u
over this channel in an effort to identify and quantify the po(u) = T ate (1.2¢)
ultimate limits and the ultimate potential of this channe
The overwhelming majority of these papers [4]-[12] treat th
single-user channel only. In this model, which is depicted
Fig. 1(a), the channel outpu(t), ¢t € [0, T] is a doubly sto-
chastic Poisson process with instantaneous #te + A,
wherex(t) > 0 is the channel input, and, > 0 is a constant. Cy < Ale. (1.3)
The outputy(¢) corresponds to the number of counts registered
by the direct detection device (usually a p-i-n diode) in th€o achieve capacity, input signals of infinite bandwidth are
interval [0, ¢]; the input=z(¢) is proportional to the squaredrequired, and the capacity is typically reduced if the input is
magnitude of the optical field impinging on the detector at tim&ubjected to bandwidth-like constraints [10]-[12].
t integrated over its active surface; and the consigrgtands  The Poisson single-user channel is one of the few channels
for “dark current” and accounts for spontaneous emissions dioe¢ which, in addition to the channel capacity, the reliability
to background radiation. function at all rates below capacity is also known [5]. In fact,
in the absence of dark current and under capacity-reducing
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Fig. 1. Schematic diagram of the single- and multiple-access Poisson channel. (a) The single-user ghgniseb conditional Poisson process with
instantaneous rate(t) + Ao. (b) The multiple-access Poisson channgl) is the observed Poisson process combined of the Poisson prodegses},
which correspond to the individual rates of the independent yserét)}, k=1, 2, ---, K. D(t) is the dark-current Poisson process with rage

Poisson channel is unique in that the channel input must tleannel model is equivalent to having an input
nonnegative.
Multiuser optical channels with a variety of single-user and Z 2(t)
multiuser detection methods were studied [16]; optical CDMA
was particularly studied in [17]-[29] and in references therein.
The constraints of having nonnegative inputs fundamentatly the single-user Poisson channel. Clearly, this multi-
impacts the design of good spreading sequences [26]-[283er channel model accounts for any possible CDMA or
In fact, TDMA can be viewed as a special case of syfEDMA multiuser optical system and, therefore, motivates an
chronous CDMA where the disjoint time slots of the differeninformation-theoretic investigation in an effort to identify the
users are determined by properly selecting the spreadiigmate possible reliable transmission rates.
sequences. Most of the reported studies examine uncodedlhe literature on this topic is at best scarce. In [33] a some-
possibly spread, communication systems; but see [29]-[3%ihat loose upper bound on the overall information throughput
where coding is addressed in the context of multiuser optidalgiven in terms of the total photon count of all users in the
communication and in particular in combination with CDMA-case of no dark current. In [34] a somewhat different model for
based methods. the two-user Poisson channel is investigated in terms of cutoff
The model for the Poisson multiple-access channel (MA@ates. The channel model in [34] is different from our model in
that we study is shown in Fig. 1(b). The input of thih user that our model assumes that the rates, rather than the optical
z1(t) > 0 determines the rate of the corresponding doubfields, combine additively. The model in [34] is appropriate

stochastic Poisson procegs(t) while the overall observation when the surface area of the p-i-n diode is small compared
to the wavelength and when the optical fields produced at the

K detector by the different users can be individually controlled.
y(t) = Z yk(t) + D(t) For the model studied in [34] and [16] it has been shown [34]
k=1 that in the average-power dominated regime, a TDMA strategy
) ) i o of both users optimizes the cutoff rates.
is also a doubly stochastic Poisson process with instantaneous, this paper, we address the Poisson MAC and investigate
rate its capacity region and the overall throughput in an effort to
K determine its ultimate limitations as predicted by multiuser
Ao + Z o (t). Shannon theory [35], [36]. In the next section we show that
ot for the K-users case, the capacity region is not reduced if the
users are limited to the use of binary waveforms taking on
Here D(¢) is a homogeneous Poisson process of atéthe the extreme values of zero and the peak powefThe full-
dark current), andK designates the number of users. Thisapacity region is treated in Section Il and is determined in

k=1
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the two-user case and peak-power constrained inputs. The tgigkn the auxiliary (time-sharing) variable used to characterize
throughput is discussed in Section IV where it is investigatete capacity region of an input constrained MAC [35]-[39].
for the many-user case both with and without average-poweBy Kabanov [6] and Davis [7] we then have

constraints. No further limitations on the input signal such as .

bandwidth and the like are imposed. We show that contrary ., 1

to the Gaussian MAC, where maximum throughput increasesImS?yleC T /0 dt ]E{¢<Z zi(t), Z xi(t))
logarithmically with the number of users [36], in the Poisson es et
regime maximum throughput is bounded in the number of _ . ‘
users. This result significantly sharpens the conclusion in [33]. d)(; Ei(t), g; i (t)> }

In the concluding Section V, we quantify the loss incurred (2.3)
when TDMA is employed. We show that the loss is fairly mild

in the two-users case with low dark current, but that the logfere

is quite severe in the many-users case with high dark current.

We then introduce a generalized TDMA scheme where more

than one user may transmit at a given time slot, but where  2:i(t) = IE | zi(t) |5, U zho | i €S (2.4)
single-user detection is employed. This generalized TDMA jese

mitigates to a large extent the loss that is incurred by the

standard TDMA scheme. and where

Pa, B) =(a+ B+ Ao) log(a+ 3+ o)

[I. OPTIMAL INPUT DISTRIBUTIONS — (B4 o) log(B + Ao), @ B, Ao > 0. (2.5)
In this section, we show that the capacity region of a Poisson
MAC is not reduced if the inputs are restricted to the seéfereafter, natural logarithms are used.
{0, A}, where A denotes the peak allowed power. The inputs We now upper-bound the relevant average mutual infor-
shall be assumed throughout to be subjected to the peak- amation expressions with a bound that will later be shown to
average-power constraints be tight for “quickly varying” inputs. By the convexity of
¢(a, 3) with respect tow, the conditional independence of

0 <ay(t) < A, VE, =12 K (21 xz(t), i =1, 2, ---, K and Jensen’s inequality and using

/ m(T)dr < B, 1=1,2,.-.-, K (2.2) ]Eyéjji(t) — ]E(a:z(t)| Ujese g;]t.yo) =E(z;(t)) = m(t),

where L€

m;(t) = Ex;(t). it follows that

T
Here, as in (1.1)A and B stand for the peak- and average- 12V Y lmee < 1 / dt
power constraints, respectively, ai{7 — oo) designates ” T
PIEIORIEACE mi(ﬂ) (2.6)

the transmission time. E
The capacity region of the MAC is intimately related to all ¥
iCS 1eSe €S

possible sets of conditional (and unconditional) average mutual

information expressions [35], [36] where
av A e, B ¢) = pla, B) — dlc, B 27
x5 :y|ege = 1/T U xz 0: Y | U 1/( / ) d)( /) d)( /) ( )

1€ES jcSe

is a function of the indeterminatesand 3, and it is parame-

where § stands for any subset dfl, 2, ---, K}, $¢ is the terized by a nonnegative constant
complementary subset, zs. stand for a vector with com-  FOr the time being, we omit the time dependence of the
ponents indexed by the elements in SeindS¢, respectively, integrand in the right-hand side in (2.6) and opt to maximize
and the abbreviationat” stands for average. The notatief)
designates the sample path of a proceds, 0 < ¢ < T. max Ey <Z z;, Z T Z mz> (2.8)

It should also be noted that in the synchronous (frame ics icse ics
[37], and symbol [38]) multiple access channel all the users
{z(t)} are conditionally independent given the time axigpver all independent random variablés; } £, satisfying the
which means here that they can choose their instantanepask- and average-power constraints

average powelti(x;(¢)) i = 1, 2, ---, K, arbitrarily and in
synchronism provided that the peak- and average-power con- O0<z <A (2.9)
straint (2.1) and (2.2) are satisfied. The time-varying strategy E(z;) = m,.

of each user employed in (time) synchronism but otherwise
independently is equivalent to the independence of the uJer this end, the following assertion will be useful.
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Assertion 1: measures ofv andq; are fixed). The optimization with respect
a) The functiony(q, 3; ¢) is strictly convex with respect to z; boils down to

to « for each/s and constant, and hencdEg(«, B; ¢) 4

is a strictly convex function with respect to for each max By, 1P2(2;) = /0 dptz, P2 (1)

¢ and for any distr_ibution on the random varialffe 0<zm <A le S (2.14)
b) Eq.¢ (e, 3; E(a)) is convex with respect t@, wherea A

is assumed to be a random variable. E(z;) :/ dpig, T = my

0

Proof: Part a) follows immediately by the strict convex- 70 ) _
ity of ¢(c, 3) with respect tow for each/. To prove part i-€. the maximization of a strictly convex function over

b) we write all finite support probability measures with a given first
moment. The solution is achieved by a distribution of two
Eov(a, 5; E(a)) = Eq(a+8+ o) log(a+/5+Xo) mass points—one @tand the other ati—and the maximizing

_ . probability measure.,, is given by (2.12), withi = . The
(@) +5+20) log (]E(a)JFﬁJEZ)\;)d) result holds for any € S. The precise result from [40] that is
' needed here can be also found in [12, Lemma 1].
Now, let] € 5S¢ and, in this case, the optimization problem
in (2.8) boils down to

max B, IEy E (s, xp + by ; E(s))

Differentiating twice with respect t6 (switching the order of
expectation and differentiation) yields

PEatp (e, f;E(a)) < 1 ) {w:} i=1,2, -, K
—Ea| —— . .
32 a+34+ X under the constraints in (2.9).
1 >0 (2.11) Fix now the probability measures of all;, i € S, S¢,

B E(a)+ 5+ Mo except forz;, [ € S° (i.e., the probability measures efand

b; are fixed). The optimization problem with respectatois
where the inequality in the above is due to the convexity @hen given by

the function1/x, = > 0, and Jensen’s inequality. O
We now state Assertion 2 which limits the optimizing max By, (IEy, B¢ (s, 21 + bi; E(s)))

distributions for (2.8) to binary. A .

Assertion 2: The optimizing independent random variables - /0 iy By Btp (5, 20 + bi; B(s))
{z;},i=1, 2, ---, K in the maximization problem stated in 0<z; < A lese (2.15)
(2.8) and (2.9) are binary, taking on the valieand A with A
the probability function IE(z;) :/ dpiz, 1 = my.

0

Pr(zi=A)=1-Pr(z;=0)=p;=m; /A, 1<4i< K. The function IE;v (s, 3; E(s)) is by Assertion 1 strictly
(2.12) convex with respect to2 and hence the function
Ey, {IE; (3 (s, by + z; E(s)))} is a strictly convex function

Proof: Consider the following random variables: of z. Thus the maximization in (2.15) is of a strictly convex
function over the probability measures of, of finite support
a; = Z 25 s= sz =z 4+ a [0, A] and of a given expectation. The conclusion about the
i€, il i€S (2.13) pptimality qf the binary(z; = 0, A) measure now foIIqws as
b = Z z w = Z x; =z + by ' in the previous case by [40]. Since the result is valid for all
ieSe, il icse [ € §¢ and for alll € S, the assertion is established. [

So far, we have examined an upper bound on the relevant
Assume first that € S. The expectation in (2.8) is then givenmutual information expression (2.6). This bound, however, can
by be made arbitrarily tight by selecting the time-varying inputs
z:(t), 1 < ¢ < K to be “infinitely fast” (infinite bandwidth)
E; Eq Eytp(z + ar, w; E(s)). Markov processes. This follows directly from the result of [41]
and is also evident by the results of [5] and [7].

The rational behind this phenomenon is that the bounding
step leading to (2.6) is the replacementigft) in (2.4) by
E(z;(t)) = m;(t). Now selectingz;(t) to be an infinitely
fast varying process with expanding unrestricted bandwidth,
rendersy], useless in the conditional estimation of(¢) and,
therefore,

Note that, by Assertion 1, the function
P1(a) = Ewipla, w; E(s))
is a strictly convex function o, and, therefore, the function
a(a) = Baa(o+ ) = [ dii 1(a + 1)
where 1, stands for the probability measure @f is also a i) =1 (wi(t)%’ U zj, 0) B ()] Ujes: Zj,0)

strictly convex function of:. Now fix the probability measures
pie. foralli e S, i € S¢buti #1 € S (i.e., the probability =E(xi(t)) = ma(t)
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where the sigr’”='3° denotes the limit of the processt) at By choosing the signaky(t) to be stationary with marginal

infinite bandwidth, and where we resort to [7] and [41] for théistribution identical to that ofX; but otherwise of ever

precise definitions of this limiting process. increasing bandwidth and likewise fdt;(t), we can attain
We can now state the following lemma, which is fundamerf2.6) with equality [41], and we can thl_Js_deduce tha_lt for

tal in the determination of the capacity region of the Poiss@very0 < p, ¢ < 1 the pentagork,, , consisting of all pairs

MAC. (R, Ry) satisfying
Lemma 1: The capacity-region achieving distributions of

<Ix. .
the K-user Poisson MAC under peak (2.1) and average (2.2) By < I v, (P ) (3.4)
power constrained inputs are binary. The independent inputs Ry < Ixvix, (p; @) (3.5)
x;(t), i =1, ---, K, assume the valugsand A only. O R+ Ry <Ix x,v(p, ¢ (3.6)

The Lemma follows directly by examining the expressio . .
in (2.6) and invoking Assertic))/n Z g P |ns achievable. The notation we adopt here makes the depen-

Lemma 1 can also be proved using the approximaticgjr?nce of the average mutual informations png explicit

technique of [5]. One first approximates the signals in the cod¥!t

?hootkti by f[raiege\;visejcontsiintt functior:s etmd then Qefrn.(:ns'tratles Ix, vix, (p, @) = Ep(Xq, Xo; Ap) (3.7
at the effect of an input that is constant over an infinitesima I . —Eb(Xy. Xi: A 3.8

time interval can be attained using binary pulsewidth modula- Xy 1% (P 4) V(X2 Xisdg) (3.8)

tion. These approximations typically result in input signals of Ixy, xaw (s @) = EP(X1 + X2, 0, A(p +q))  (3.9)

fast variations and are thus applicable only when no spectily where all expectations are with respect to the independent

restrictions are imposed on the input _[1_0]—[12] (a§ we assumigdom variablest; and X, satisfying (3.2) and (3.3).
throughout). General results on sufficiency of binary inputs By (2.6), we conclude that the capacity regiénof the

can be found in [42]. _ two-user Poisson multiple-access channel is given by
The supremization problem Mﬁ;;ymsc under the input
peak- and average-power constraints (2.1), (2.2) is equivalent C = convex closure ofR (3.10)
to supremizing
where

1 T

= / dtIE Z x;i(t), Z x;i(t); Z m;(t) R = U Ry, q- (3.11)

T Jo i€S i€Se i€S 0<p,q<1

under these input constraints, because for processes of infim%tice that by (1.3) the pentagofi®,, , are compact in the

bandwidth (2.6) holds with equality [41]. By direct applicalWo-dimensional Euclidean space wil,, , C [0, A/c] x

tion of Assertion 2 it follows that the latter supremizatior{o7 A/e]. The convex closurg OR Is thus equal to the convex
is achieved by binary signals;(t) € {0, A}, Vt. Note, hull of the closure ofR, and it is also equal to the closure of

however, that Lemma 1 does not imply stationarity in the seng]';e convex hull ofR. _ . . .
that Pr (z;(t) = A) = p; + is independent of. This possible As mentioned above, in this section we only consider

time dependence allows for time-sharing strategies [8], [35 1€ case V\_/here no average-power constramts_are placed on
Nevertheless, in the following sections we will show that in € transmitted signals. Average-power constraints cannot be

variety of interesting cases time-sharing is superfluous. generally treated simply by limiting the paifs, ¢) over which
the union in (3.11) is taken to those pairs that satisfy the

average-power constraint: the capacity region may be larger
lll. THE BOUNDARY OF THE CAPACITY REGION: TWO USERS  than that. see [39] and [42].
In this section, we study the capacity region of the PoissonWe next demonstrate that the regiBnis compact, and that
multiple-access channel when only two users access the chag-can therefore replace (3.10) with
nel. The signal transmitted by each user is peak-power limited, _
with the peak power being identical for the two users. Thus C = convex hull ofR. (3.12)
This easily follows by noting tha€ C [0, A/¢] x [0, A/¢],

0<m(t) 22(t) <4, V¢ (-1 and by noting that the functions

Throughout this sectior_1, we shall assume that no gdditional I, vix (1, ) Iy x, (P, @)
average-power constraints are in effect, corresponding to set-
ting B = A in (2.2). are all continuous on the compact0, 1] x [0, 1]. Indeed,
By Lemma 1 we may assume without loss in optimality tha@ssume thatR}, R5) € R, 4., R — Ri, Ry — Ry. It then
the signals transmitted by the two users take on the value$ollows by the compactness @, 1] x [0, 1] that there exists
and A only. With this observation in mind we define, for anya subsequence; and a pair(p*, ¢*) such thatp,, — p*,
pair 0 < p, ¢ < 1, two independent random variablég , X, qn, —¢*- The continuity of/x .y |x,(+; -), Ix,:vix, (-, -), and
by Ix,, x,;v (-, -) now demonstrates théR;, R2) € R, 4+, and
R is thus closed.

IXl,Xz;Y(pv (J)

Pr{Xl :A} =1- Pr{Xl - 0} -p (3'2) LIn the definition of the functior(«, 3), see (2.5), we defing log 0 = 0.
Pr{X; =4} =1-Pr{X, =0} =¢q. (3.3) With this definition, the functiors(«r, 3) becomes continuous.
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To continue our study of the regioR, we now compute Proof: To prove that the mapping
the maximum throughpuRy, which is defined as

K K
RE: max Rl +R2 (p17 7PI()HE[¢<ZX17 OvAsz>]

(R1,Rz)EC i=1 i=1
= max Ri+ R (3.13) .
(Ri,R2)ER is Schur-concave [43] for al(p, ---, px) € [0, 1], we
where the second equality follows from (3.12). In fact, define the function
Ry = ,Jnax Ix, x,.v(p, q) (3.14) ¢(z) = ¢(z, 0) = (z + o) log(z + Ao) — Ao log Ao (3.15)
=P, 4>

as can be verified by noting that if the maximum in (3.14) i¢here, as before, we defirielog 0 = 0. Note that
achieved by(p*, ¢*) then the paif R}, R3), where

K K
B =Ly, 0 ) ]E[V’ @X . AE}’)]
Ry =Ix, ;v (P, ¢°) — Ri K K
is achievable since =E lw <Z Xz)] - <]E lz X;| ) :
=1 =1

Ix,, ) >1 H ) —Ix,, ) . . . . . .
ey (P @) 2 oy (B 0 = Ly () ) The function(-) will play an important role in this paper,

The following lemma demonstrates th&t: can be attained at and for future reference we list its derivatives here.
a point of the form(p*, p*), thus reducing the calculation of

Ry from a two-dimensional optimization problem to a one- ¢'(z) =1+ log(z + o) (3.16)
dimensional optimization problem. It should be noted that this o' (x) = 1 (3.17)
cannot, in general, be deduced directly from the symmetry of z+ Ao

the channel and from the concavity of the mutual information O (x) = — 1 (3.18)
functional, because a convex combination of two product (z+ Xo)?

distributions is not a product distribution and thus cannot (W) oy 2 (3.19)
be used as a valid input distribution to the multiple-access p(x) = (z + Ao)? '

channel.
Lemma 2: Let {X;}X, be independent random variable
distributed as

he proof can be now concluded by noting that by (3.17) the
unctiong(-) is convex in[0, cc), and the lemma now follows

from [43, Proposition F.1., p. 360] and [44]. |
Pr(X; = A) =1-Pr(X; =0) =p;, i=1--, K Continuing our computation oRys in the two user case
then the function (K = 2), we conclude from Lemma 2 that
K K Ry = max L(p) (3.20)
E[w <Z X, 0; AZpZ)] 0sp=1
i=1 i=1 where
is a Schur concave [43] function gf;, ---, px and, in
particular, L(p) = Ixy, xa07 (P, D)
" « « =@(0)(1 — p)* + 20(A)p(1 — p) + (2A)p* — (24p)
Elw <Z X;, 0; AZI%) < m(Z X, 0; AKp')] =20(A)p(1 — p) + ¢(24)p” — ¢(24p). (3.21)
izll o= T o ~ One can readily verify from (3.18) that the third derivative
W_here{Xi} are independent and identically distributed ('-'-d-)g’(p) = _8A3,"(24p) is positive in the interva(0, 1),
with and thatl»(0) = I>(1) = 0. These facts and the positivity of
Pr(X!=A)=1-Pr(X =0)=p Iy(p) in the interval(0, 1) guarantee that in this intervé(p)
has a unique extremum, which is a global maximum. We thus
and conclude that the maximum throughpis; in the two-user
L, K case is given by
i=1 Ry = Ix,, x,;v (0", p) (3.22)
Remark: A real-valued functiors(-) defined ovetd C R¥ where p* is the unique solution in the interva0, 1) to the
is Schur-concave if equation
z=yP = ¢(zx) > d
vb = o) 2 oly) & Iy p) =0 (3.23)

for any k£ x k doubly stochastic matri¥’ and for any pair
of row vectorsz, ¥ in A. An important consequence thatHaving determined the point of maximum throughput, we now
we shall use repeatedly is thatd{-) is Schur-concave then continue our investigation of the regidR. By the symmetry

Plxy, -, 2) < P, .-+, ), whereZ = (21 +---+2x)/k. of the channel with respect to the two users it follows that
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R is symmetric about the lind&; = R,. It thus suffices to Ix, x,.v (-, -), and if § = ¢ this observation follows from
study the set our observation that the only zero in the intery@l 1) of the

derivative ofI. =1 .v(p, p) with respect top is p*,
RO {(Ri, R2) : Ry > Ra). 2(p) X1, X257 (P P) p IS p

see (3.23).
In fact, it suffices to study the even smaller &tefined by ~ With this observation we can readily deduce that
D=RN{(R1, R2) : Ry > Ry, Ry < Ix,.y(p*, p")} Ry = Ix,.vx, (B, ) (3.30)
where (p*, p*) achieves the maximum throughput, and for, otherwise, we would have
Ix,v (P, @) = Ixy, x0v (0 @) — Ix v x, (P, @) (3.24) Ry < Iy, yix, (7, @)

This observation follows by noticing that if maximum through- d Id be abl hieva: I 8 f
put is achieved by(p*, p*) then the boundary segment oft"d We would be able to ac levdt, K, + ) for some
Ry, that is of slope—1 must be on the boundary &. positive § by slightly perturbing(p, ¢) in the direction that

The regionD will be determined once we compute jtdncreasesly,, x,;y without violating (3.4). Equations (3.28)
boundarydD. The parts ofdD that are of least interest to and (3.30) combine to prove the lemma. -

us are those for whicl?, or I, are zero. We thus defingé Lemma 3 establishes that an achigvable pentagpn can
to be the interesting paD, i.e intersect the boundary at most at a single point, and that this

point must be a vertex point of the form
&= {(Rl, RQ) €dD: Ry, Ry > 0}

- (Ix,v1x: (9, @) Iy (P, @)
Inspecting (3.11), we see that for some paffs q) the

pentagonR, , may not touch (intersec§ and for others it The following lemma determines a relationship betwgemd
may. The following lemma characterizes the point at whicp that must be satisfied ik, , is to touch€.

Rp,q could touchf. Lemma 4: For condition (3.25) to hold, the paip, ) must

Lemma 3: If for some pair(p, §) € [0, 1] x [0, 1] satisfy

Rﬁ,(i né 7& 0 (325) aIXl,Xz;Y(pv (J) aIXl;Y|X2 (p7 (J) _ aIXl,Xz;Y(pv (J)
thenR; ; N € consists of only one point, and Ip g 9
. o . aIX1§Y|X2(p7(J) | =0 (3 31)
RpaN€ ={{Ix,v1x.,(# D> Ixov (B, @) }.  (3.26) ap @9~ :

~ Proof: We shall prove that (3.26) follows from (3.25)  Proof: First note that by the definition of it follows

using a perturbation argument. Let that (3.25) implies that(p, §) must be in the interior of

[0, 1] x [0, 1]. In particular, this implies that we can perturb
(7, ¢) in any direction. Clearly, a necessary condition for a
By the definition of€, it follows that R, # 0 and thusj # 0.  pair (p, §) to satisfy (3.25) is that in any direction we perturb
It can be easily verified thaky, .y |x, (p, -) is monotonically (7, ¢) we cannot have botlfix, .y |x, (-, -) and Ly, x,;v (-, )
decreasing, and it follows that (3.25) (and in particufar> increase. This implies that the gradients of these two functions

(Rl, RQ) € R@q ne.

0) implies must be antipodal, which implies that the cross product of these
gradients must be zero. O
82 Ixovix (0 @)l g <0 (3.27) Using Lemmas 3 and 4, we can obtain a descriptiorf of
q ’ and thus determine the sRt This can be done by allowing
It follows that to vary freely betwee andp* and by solving forj(¢) from
- . (3.31). The curve
Ry + Ry = Ix,, x,;v (P, ) (3.28)
for otherwise we would have (IX“YlXZ P0): D Lo (000 é)), s 12*3 32)
R+ Ry < Ix, x,.v(B, §) then tracest.

. . _ _ _ The final step in the computation of the capacity regibn
and we could slightly decreaspand in this way achieve a s to compute the convex hull &, see (3.12). iR is convex

point (Ry + 6, R») for some positives. thenC = R and there is no need for further computation. To
It follows from (3.28) and the definition of that check whetherR is convex one needs to check whether the
5, §) # (", p*) (3.29) trajectory& has negative curvature, but the calculation of this

curvature is quite messy.
where (p*, p*) attains the maximum throughput. Condition While we conjecture thaR is indeed convex, we have been
(3.29) implies that the poinfg, ) is not a local maximum unable to verify this analytically using the above approach.
for Ix, x,:v (-, -), i.e., that there is some direction in whichHowever, in the absence of dark currény, = 0) we were
Ix, x,;v (-, -) Is strictly increasing. Indeed, if # ¢ then able to compute and plot the curvaturefofind to verify that

this observation follows from the strict Schur concavity oR is indeed convex.
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throughput. We only consider the symmetric case where all

Optimal —— users are subjected to the same peak-power constaint
Denoting the maximum throughput fdk users byR(EI‘)

we have by Lemma 2 that

) — max I 4.1
Ry, max, L (p) (4.1)
where
K K
o Ix()=E [<P <Z Xz)] - <]E [Z Xz]) 4.2)
=1 =1
and whereXy, --., Xg are i.i.d. with
PrX;,=A)=1-Pr(X;=0)=p (4.3)

and ¢(-) is defined in (3.15).

Maximum throughput can be thus achieved when all users
transmit at the same rate, without the need for time-division
multiple accessing. It should be noted that this result does
\ not hold true for a general multiple-access channel, where
Ae time division (and, hence, synchronization) may be required
to achieve maximum throughput at equal rates [45], [46].

Fig. 2. The capacity region of the Poisson multiple-access channel in thel emma 5: The sequence
absence of dark current. Also shown is the suboptimal TDMA region, a

pentagon (corresponding to some pair of input distributions) touching the {R(K)}
boundary of the region, and the region’s symmetry line. Py

R1

K=1
corresponding to the maximum throughput achievableiby

In the absence of dark current we have that users, is monotonically increasing and bounded by the peak
1 B ) ) power A.
AT Iy, oy (P, @) = 2pg log 2 — (p + ) log(p + q) Proof: Monotonicity is a simple consequence of the
A7 x, v x, (P, @) =2pq log 2 — q(1 + p) log(1 + p) Schur-concavity, which was proved in Lemma 2. Indeed,
—(1-q)p log p. setting one of K + 1 users to be deterministically zero

. . _ _ demonstrates that the throughput achievable ith 1 users
Solving (3.23) numerically we obtain that ~ 0.2659, which s at least as high as the throughput achievable ithsers. In
corresponds tdis; ~ 0.434A. Equation (3.31) reduces 1o fact, the strict Schur-concavity dfy, ..., x,,,» demonstrates

(2qlog 2 —log(p+q) — 1) (2p log 2 — (1 +p) that R is strictly bigger thanr{")
log (1 +p) +p log p) = (2p log 2 —log(p+¢) - 1) Ixy o Xaea v (0, 9y, 0) < Iy Xy 0, 0, 1)
(2q log 2 —qlog(1+p) —(1-g)logp—1) wherey/ = K/(K + 1)p.
and the capacity region can be obtained by solvinggiap), We now turn to proving that

0 < ¢ < p* and mapping(p(j), ) according to (3.32).
The results are depicted in Fig. 2. In Fig. 2, we also show
an example of a pentagdR,, , touching the capacity region, Note that since dark current cannot increase throughfurt,

and the single-user-based time-sharing capacity region, whése purposes of proving (4.4), we may assume the absence of
boundary is the straight line connecting the pdidfe, 0) and dark current, i.e.\g = 0. Let p be fixed and set

(0, A/e). For reference, we also show the symmetry line of

/ K
the region. 7 = Z X; (4.5)
=1

R < 4 (4.4)

At the other extreme, when the dark current is very large,
one can also verify thaR is convex. Indeed, for very large i
dark current the capacity region tends to an empty set, butihere {X;}/%, are independent random variables satisfying
we properly normalize the rates the limiting capacity regiotf-3). The random variabl& satisfies

is a rectangle. 0< Z<KA (4.6)
E[Z] = KpA 4.7
IV. K USERS MAXIMUM THROUGHPUT

E[Z%] = (Kp(1 - p) + K*p*) A% (4.8)

In thi . id h h h 2Dark current cannot increase throughput because in its absence the receiver
n this section, we consider the case where _more t a_n t\e% always add an independent homogeneous Poisson process to the received
users access the channel and study the maximal achievalieess and thus in effect introduce dark current.

A. Peak-Power Constraints Only
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We upper-bound and note that by the Central Limit Theorem, Astends to
infinity, the distribution of ¥ tends to a zero-mean, unit-
Ix(p) = Ep(Z) — o(IE(2)) variance Normal distribution. We now have

by maximizing Ix(p) =E[p(2)] - o(E[Z])
Ep(Z) — o(E(Z) (4.9) = / |o(VER(L = p)v + Kp) - $(Kp)| dyun(v)

over all random variableg’ that satisfy (4.6)—(4.8). Sineg(-) wherepun(v) is the probability distribution ofvV. Noting that
has a strictly negative third derivative for all positive arguthe fourth derivative ofp(x) is positive for positiver (3.19)
ments (3.18), it follows that the solution to this maximizatioit follows from Taylor’s expansion of the functiop(z) about
problem is to haveZz’ take on only two values, one of whichKp that

is 0 [40], see also [12, Lemma 1]. Denoting the second of

the two values by and its corresponding mass hywe can <P(\/ Kp(l-p)v+ Kp) — ¢(Kp)
solve for ¢ and
¢ andg > VEp(1 - p)v¢'(Kp)
£ =A(Kp+(1-p)) + 5 (VEp(1 - pv)*¢" (Kp)
q Kp + #(VEp(l - p)v)2e" (Kp), Yv > 0. (4.16)

- Kp+(1-p) - . o
_ _ Similarly, for negativerr we note that the third derivative of
Computing (4.9) and noting that(0) = 0, we have ©(z) is negative for alkz (3.18), and hence by a second-order

. Taylor expansion we obtain
R < qp(8) - o(g€)

K VEp(l—pv+ Kp) — (K
= Wzlj—p) p(A(Kp+(1—p))) — p(Kpa) <p( p{l —p) p) #(Kp)
> VKp(l - pve'(Kp)
§ Kp+1-p 1 2 u
=KpA log ~ Kp (4.10) + 5 (VEp(1 —p)v)*o"(Kp), Yv < 0. (4.17)
<A(1-p) (4.11) Recalling that!V is of zero mean and unit variance we obtain
<A from (4.16) and (4.17)

1 "
concluding the proof of the lemma. Here the inequality before Ix(p) 2 5 Kp(l = p)e"(Kp) y
last fo!lows from. the inequalityog(1 + ) %a:. +1(KpQ1 _p))3/2¢///(Kp) / Ay ().
Having established that the sequerfﬁ%’ converges we 0

now study its limit. Upon substitution of the derivatives @ from (3.17) and

Lemma 6: (3.18) we obtain
a) Irrespective of the strength of the dark curragt

Kp(l-p)  (Kp(1-p)** /°° 3
. ( ( > - 4
Jlim REY > 472, @12) 0 2500, 00 T skp o Sy VAN
1-p
b) In the absence of dark current — T
lim Rg() ~ 0.584 (4.13) where the Iim!ting behavior a& pends to infinity follows from
Koo the Central Limit Theorem, which guarantgeisat

and oo B
/ 1/3du1\r(1/) — 4=,
(4.14) 0 T

0 < limsup Kpj < o

K—oo

Choosingp arbitrarily small demonstrates (4.12) and thus

where p, is the argument that achieves the maximuroncludes the proof of a).
in (4.1). To prove part b) we must consider three cases corresponding

Proof: To simplify notation we normalize the peak powef® the limsup of Kpj. being equal to zero, a constant, or
and assume thatl = 1. We begin by proving part a) of infinity. The first case is ruled out by (4.10) as it leads to zero
the lemma. To this end, we define the random variable throughput. _
as in (4.5), wherd X; } | are independent random variables W€ next consider the second case corresponding to
satisfying (4.3). We next define the zero-mean unit variance limsup Kp’y = co.
random variableN by Koo N

Z —Kp 3Strictly speaking, this does not follow directly from the Central Limit
= ﬁ (4-15) Theorem since the functiofi(v) = »* is unbounded. Nevertheless, standard
p(1—p) techniques, possibly using (4.18), guarantee this limiting behavior.
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To simplify notation, we shall normalize the peak power and/e can thus conclude that
assume thatl = 1. We defineZ via (4.5) where{ X; } are i.i.d.
Bernoulli random variables with probability of succesg.
We also definelV as in (4.15). To upper-bound the resultingrhe monotonicity of the maximum throughput in the number
throughput we need the four moments/fand their limiting of users now establishes

behavior asKpx tends to infinity. Those are given by

lim Kpg =00 = limsup Ix(px) < 1/2.

limsup Kpj = oo = lim RE < A/2.

E[N]=0
E[N?] = 1 To conclude the discussion, we now examine that case where
Kpic(1 = pi)(1 = 2px0) Kprx — A for somel < A < oc. In this case, the distribution
E[N?] = PK PK PK of Z converges to Poisson with parameterOne can now

(Kpx(1 —pr))*/? numerically compute

= (Kpx(1- pl())_l/2(1 —2pg) — 0. Nk
AN T ek) - oY)
To computelE[N?] note that e k!
E[(Z - Kpi) =3 > E[X:—pr)*(X; - px)’] and verify that this is maximized at~ 1.35 with correspond-
(4, )izty ing mutual information that satisfies (4.13).
+ Z]E =)y We thus see that of the three cases originally considered,

the case that yields the highest throughput is the third case
33(Kp1((1 — i) + KE[(X: — pre)Y] \{_vrr]\ere the sum of the channel inputs obeys a Poisson Limit
) eorem. O
<3(Kpx (1 —pK))” + Kpr(1l — pr)
where the last inequality follows from B. Peak- and Average-Power Constraints
E[(X:—pr )Y = prc(1=pi) +(pr)*(1=px) < pre(1=pic). We now con5|der the case where in addition to t_he_ peak-
power constraints the users are also average-power limited. We

We thus have treat only the case where the peak powers and average powers
3(Kpr(l—pr))? + Kpre(1 — pxe of all users are identical. The peak.powers are denoted by
E[NY] < P % B’)i - I;( )y and the average powers i, according to (2.1) and (2.2).
(Kpx(l—px)) (4.18) Accounting for average-power constraints in a multiple-

access channel is generally more complicated than in the

where the limiting behavior holds when, does not converge single-user case [39], [42]. The capacity region in the con-
to 1, which is the only case of interest by (4.11). We can no@irained case could be larger than the convex hull of the union

upper-bound the maximum throughput as follows: of all pentagons corresponding to pairs of input distributions
7 —Fol(Z ElZ that satisfy the average-power constraint. To simplify the
x(px) =Ep(Z) - o(E[Z]) analysis, we shall not study the entire capacity reglon but

I]E|:(\/KO'2N + Km) log (\/Ka?N + Km)} only the maximum throughput, which we denoteﬁg (B),
where K denotes the number of users accessing the channel,

— K'm log (Km) and B is the highest allowed average power for each user.
— VKoIN It follows from [39] and [42] that the set of achievable rates
2 -
[( Ko*N + Km) log <1 + for the constrained Poisson channel is the closure of the set of
all tuples(Ry, ---, Rx) of the form
whereo? = px (1 —px), m = pg, and the last equality holds L
becausdE[N] = 0. Sinceo? < m we have (R Ric) = Z al(R(l) R(l))
- ;) = O .. R
Ix(pi) <E [(\/KmN + Km) log (1 + (Km)~Y 2N)} . =1
. . where
We now use the inequality L
2 3
108(1+$) x_.’L’_+.’L'_ Zal 1 Oél_O [ 1, 7L
2 3 =
to get and the tupIQR(l) v Rg?) is achievable with some product

input distribution
Ix(px) <E

<(Km)1/ ’N + Km> <(Km)—1/ 2N

- 1(Km)—lN2 + %(Km)_?’/QN?’)] and where

[

L
— < (Em) T2 E[N®] + (Km) T E[NY] — l >oaw) SB/A 1SkSK. (419)
6 ' =

l\DIr—\
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Here by Carathddory’s Theorerh[36] L can be taken to be three-users case, i.e., that our conjecture holdsKore= 3

2K + 1, but in factK + 2 is enough [47], [48]. and )y = 0. To simplify notation we assume normalized peak
It is clear that if power A = 1. By the definition ofI;(p) we have
), =1L k=1 K I3(p) =p°@(3) + 3p*(1 = p)e(2) + 3p(1 — p)*¢(1) — ¥(3p)
_ .3 _ 2 -
satisfy (4.19), then so do =p"[p(3) = 3¢(2) + 3p(1)] + p7[3¢(2) — 60(1)]
o +p[3e(1)] = ¢(3p)- (4.22)
ﬁk? l:]-v"'va k:]-va
Note that
where
. L(p)l,=, >0 (4.23)
. 1
pg) =K Z pg)- as can be verified by evaluating
k=1
I (p) =6 3) — 3p(2) 4+ 3(1)] + 2|3¢(2) — 6p(1
We can now conclude from the Schur-concavity of the max- 3 (p) = 6ple ; (2 P [3¢(2) Pl
i - 4.24
imum throughput (Lemma 2) that 5+ (4.24)
L
RE(B) = ( max ) Z asz(ﬁ(l)) (4.20) atp = 1 (and Ag = 0). Next, note that
(PO iy =1 I (P)lp=o <0 (4.25)
where the maximum is over all nonnegatisg that sum to Which can be verified by evaluating (4.24)at= 0. Consider
one, and all tup|e$ﬁ(1)7 . ]j(L)) with entries between zero now the function/} (p) for A\ = 0. It starts negative ai = 0
and one that satisfy and ends positive gt = 1 and must therefore have an odd
. number of zeroes if0, 1). If I§(p) has more than one zero in
) (0, 1) it must have at least three aiff (p) must have at least
Z ap < BJA. (4.21) two zeros. This would contradict the fact thBt’(p) < 0,

=t which can be easily verified. We thus conclude tigtp)

We have thus proved the following assertion. starts negative, and then goes positive and remains positive
Assertion 3: If the function I (p), which is defined in until p = 1. The zero ofI% (p), which we denote by must

(4.2) as the maximum throughput achievable with the inpghtisfy

distributionPr (X; = A) = pforall 1 <i < K, is concave in

the interval(0, pJ |, wherepj, is the argument that maximizes p>p’

I (), then the maX|maI throughput under an average po"‘ﬂﬁ/herep* is the zero off}(p), which exists becausg;(0) =

constraintB is given by I3(1) = 0. This easily follows by noting thaf}(1) < 0.

R(EK)(B) = Ik (p) Indeed, suppose, by c/on~trad|ct|on that p*. S~|nceI§(0) >0
this would imply thatZ5(p) > 0. But for p > 5, we have that

where I4(p) > 0 which implies that forp > p we have that/;(p)
. _ . is monotonically increasing iifp, 1), and hencel;(p) > 0
p=min{B/A, pf}. implies 15(1) > 0 which is a contradiction.

The significance of this lemma is in demonstrating that
under the above concavity conditions, maximum throughput V. SUMMARY AND CONCLUSIONS

can be achieved in the presence of average power constrainty this paper, we have studied the capacity region of
without the need to resort to time-division multiaccessing, ard poisson multiple-access channel. In the case where only
that synchronization is thus not needed. The analogous resiy users access the channel we have demonstrated how
in the absence of average power constraints follows, of courgge capacity region can be computed when both users are
from Lemma 2. While we conjecture that the functib®(p) subjected to the same peak-power constraint, but are otherwise
is indeed concave in the intervi, pj] irrespective of the ynlimited in their average transmit power. The computation
number of userd( and of the dark currenky, we have been relies on the optimality of binary signaling (Lemma 1) and on
unable to prove this in general. Note, however, that for @perturbation argument that leads to a characterization of the
particular number of usel®” and a particular value of the darkinput distributions that achieve points on the boundary of the
current)g this condition can be easily checked numerically. Iapacity region (Lemmas 3 and 4). The perturbation argument
the two-users case, it is particularly simple to show th&t) |eading to this characterization may well find uses in the
is concave in the intervg, p3], see the discussion leadingcomputation of the capacity regions of other multiple-access
to (3.22). channels.

We next show that in the absence of dark current, time\we next considered the maximum throughput achievable
sharing is not required to achieve maximum throughput in th# the Poisson multiple-access channel, and demonstrated

“Note thatL larger thank + 1 may be required here due to the averagéhat in the absence of average-power constraints, maximum
power constraints [39], [42], [47], [48]. throughput can be achieved at equal rates without the need
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for time-division multiaccessing (Lemma 2). This result does Standard TDMA results when all but one {lj(’“?}{?’:l are

not hold for all multiple-access channels as demonstratedziero. A throughput ofd/4 results when the dark current is

[45] and [46]. We have also demonstrated that the maximuarge, K — oo, and

throughput is monotonically increasing with the number of 1

users, but bounded by the peak powér(Lemma 5) (or M=, VI<k<K.

more precisely, by roughly.584A—Lemma 6). This should 2

be contrasted with the Gaussian channel where throughpuf different approach to achieving high throughput with

increases logarithmically with the number of users [36].  single-user detection can be based on the rate-splitting ap-
Notice that if we allowed full cooperation between the useoach [49]. This approach allows one to achieve the entire

by assuming that the messages to be transmitted by eaclcapacity region of the asynchronous channel using single-

the users is known to all other users, a maximum throughpuger detection (and without requiring synchronization). While

of K A/e could have been achieved (in the absence of darte splitting was originally proposed for discrete memory-

current and average-power constraints). This throughput dess multiple-access channels, it also applys to the Poison

be achieved by viewing this situation as a single-user Poisdd\C as the latter can be viewed as a limit of discrete

channel with peak powedl{A. Maximum throughput thus memoryless multiple-access channels by finely discretizing the

increases linearly in the number of users if full cooperatidime axis [5]. Note also that for various scenarios we have

is allowed, whereas it is bounded in the number of usersdémonstrated that the maximal throughput in the asynchronous

each user is ignorant of the other users’ messages. Poisson MAC is identical to the maximum throughput in the
In the absence of dark current, the maximum throughpsynchronous case.

achievable using time-division multiple-access (TDMA) is In this paper, we have also treated average-power con-

Ale = 0.368A irrespective of the number of users, whilestraints. If average-power constraints are present, the computa-

the maximum achievable throughput with optimal coding artibn of the capacity region becomes much more elaborate. We

decoding is0.434A in the two user case, and converges tbave, therefore, focused on maximum throughput and derived

0.58A as the number of users tends to infinity. We can thike maximum throughput under average-power constraints for

conclude that in the absence of dark current, the loss time two-user case as well as for the three-users case in the

throughput due to time division is at most a factor1o3s. absence of dark current. For these cases, time division is not
The situation changes dramatically in the presence ofnacessary, and maximum throughput can be achieved without

large dark current. TDMA achieves a throughput that does me¢nchronization. We conjectured that this behavior holds for

depend on the number of users and which decreases to z@@re users too, and gave a numerical algorithm for checking

with the dark current (1.2). In contrast, with optimal signalinghis conjecture for a given number of users and a given level

throughput increases with the number of users, and in the limit dark current.

where the number of users tends to infinity one can achieveOur model did not account for any spectral (bandwidth)

a throughput of0.5 A4, irrespective of the dark current (Lem-constraints. Bandwidth constraints are of practical interest

ma 6). and an investigation of the Poisson MAC subjected to such
Time-division multiaccessing has the advantage that it doadditional constraints is called for, thus extending the single-

not require joint decoding, and the receiver complexity is thuser results reported in [10]-[12].

significantly reduced. A natural question is thus whether one

can find a channel-accessing scheme that would not require APPENDIX

joint decoding and yet achieve a positive throughput in the GeneraLIZATION OF TDMA: SINGLE-USER DECODING

limit of large dark current and many users. A positive answer Y lize th dard ical hni
to this question is given in the appendix where we describe ere, we generalize the standard optical TDMA technique

a “generalized TDMA” scheme that does not require joi y allowing more than one user to be active in a given time

detection and yet achieves a throughputdgfd in this limit. slot. Only single-user detection is, however, allowed, and
In the generalized TDMA schemé-time zones are spec—eaCh user is thus decoded by treating the other active users

ified and in different time zones the strategies of users &8 background ra((jlk)atmn (ng:’?e). ;he scheme depends ona
cyclically shifted. As opposed to standard TDMA, in eacRarameter vecto(g'™, ---, ¢'*’) whose components are in

time zone more than one user can be active, but each use r&interval [0, 1]. If gverage power constrg?nts (2.2) gre in
decoded by treating all other users as background radiation®! ct, we shall require that the vector additionally satisfy

is shown that with this scheme one can achieve a throughput of K
K Z q(k) < B/A.
Roroma = [¢®¢| 4,4 ¢P b=t
k=1 J#k The proposed accessing scheme can be described as follows.
The time axis is divided intd< slots, and in slotn userl
—¢| ™A, A Z q» (5.1) transmits using a stationary binary signaling scheme with the
Tk probability of transmitting4 beingp,,, ;. To achieve symmetry

(L (K) . we shall assume
where0 < ¢, ..., ¢ < 1 are arbitrary, and wherg(-, -)

is defined in (2.5). Pl = q(m—i—l modK)
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so that the signaling schemes are cyclically shifted from slot ts]
slot. Decoding is assumed to be single-user decoding treating
other users as noise. [19]

Using a random coding argument one can demonstrate that
for the purposes of computing the achievable rates for
given user one can treat all other active users in the sl[glg]
as background radiation. Since the scheme is symmetric #2¢&
can obtain the maximum throughput by summing over t}r;]
achievable rates of the active users in a given slot to yied2
(5.2).

Throughput is maximized by optimizing ovég®}. In the  [2]
two-user case, and in the absence of dark current, the optimal
parameter vector i§l/e, 0) corresponding to regular TDMA. [24]
However, when dark current is high and many users access
the channel the vectdn/2, - - -, 1/2) outperforms TDMA to [25]
achieve a throughput ol /4 in the limit of high dark current

and many users. [26]
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