
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000 755

Efficient Universal Lossless Data Compression
Algorithms Based on a Greedy Sequential Grammar

Transform—Part One: Without Context Models
En-hui Yang, Member, IEEE,and John C. Kieffer, Fellow, IEEE

Abstract—A grammar transform is a transformation that
converts any data sequence to be compressed into a grammar
from which the original data sequence can be fully reconstructed.
In a grammar-based code, a data sequence is first converted into
a grammar by a grammar transform and then losslessly encoded.
In this paper, a greedy grammar transform is first presented;
this grammar transform constructs sequentially a sequence of
irreducible grammars from which the original data sequence can
be recovered incrementally. Based on this grammar transform,
three universal lossless data compression algorithms, a sequential
algorithm, an improved sequential algorithm, and a hierarchical
algorithm, are then developed. These algorithms combine the
power of arithmetic coding with that of string matching. It is
shown that these algorithms are all universal in the sense that
they can achieve asymptotically the entropy rate of any stationary,
ergodic source. Moreover, it is proved that their worst case
redundancies among all individual sequences of length are
upper-bounded by log log log , where is a constant.
Simulation results show that the proposed algorithms outperform
the Unix Compress and Gzip algorithms, which are based on
LZ78 and LZ77, respectively.

Index Terms—Arithmetic coding, entropy, grammar-based
source codes, redundancy, string matching, universal sequential
and hierarchical data compression.

I. INTRODUCTION

UNIVERSAL data compression theory aims at designing
data compression algorithms, whose performance is

asymptotically optimal for a class of sources. The field of
universal data compression theory can be divided into two
subfields: universal lossless data compression and universal
lossy data compression. In this paper, we are concerned with
universal lossless data compression. Our goal is to develop
new practical lossless data compression algorithms which are
asymptotically optimal for a broad class of sources, including
stationary, ergodic sources.

Manuscript received December 30, 1998; revised July 7, 1999. This work was
supported in part by the Natural Sciences and Engineering Research Council of
Canada under Grant RGPIN203035-98, by the Communications and Informa-
tion Technology Ontario, and by the National Sciences Foundation under Grant
NCR-9627965.

E.-h. Yang is with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (e-mail:
ehyang@bbcr.uwaterloo.ca).

J. C. Kieffer is with the Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN 55455 USA (e-mail: kieffer@ece.
umn.edu).

Communicated by N. Merhav, Associate Editor for Source Coding.
Publisher Item Identifier S 0018-9448(00)00067-5.

To put things into perspective, let us first review briefly, from
the information-theoretic point of view, the existing universal
lossless data compression algorithms. So far, the most widely
used universal lossless compression algorithms are arithmetic
coding algorithms [1], [20], [22], [23], [29], Lempel–Ziv
algorithms [16], [35], [36], and their variants. Arithmetic
coding algorithms and their variants are statistical model-based
algorithms. To use an arithmetic coding algorithm to encode a
data sequence, a statistical model is either built dynamically
during the encoding process, or assumed to exist in advance.
Several approaches have been proposed in the literature to build
dynamically a statistical model. These include the prediction
by partial match algorithm [4], dynamic Markov modeling
[5], context gathering algorithm [24], [26], and context-tree
weighting method [27], [28]. Typically, in all these methods,
the next symbol in the data sequence is predicted by a proper
context and coded by the corresponding estimated conditional
probability. Good compression can be achieved if a good
tradeoff between the number of contexts and the conditional
entropy of the next symbols given contexts is maintained during
the encoding process. Arithmetic coding algorithms and their
variants are universal only with respect to the class of Markov
sources with Markov order less than some designed parameter
value. Note that in arithmetic coding, the original data sequence
is encoded letter by letter. In contrast, no statistical model is
used in Lempel–Ziv algorithms and their variants. During the
encoding process, the original data sequence is parsed into
nonoverlapping, variable-length phrases according to some
kind of string matching mechanism, and then encoded phrase
by phrase. Each parsed phrase is either distinct or replicated
with the number of repetitions less than or equal to the size
of the source alphabet. Phrases are encoded in terms of their
positions in a dictionary or database. Lempel–Ziv algorithms
are universal with respect to a class of sources which is broader
than the class of Markov sources of bounded order; the incre-
mental parsing Lempel–Ziv algorithm [36] is universal for the
class of stationary, ergodic sources.

Other universal compression algorithms include the dynamic
Huffman algorithm [10], the move to front coding scheme
[3], [9], [25], and some two-stage compression algorithms
with codebook transmission [17], [19]. These algorithms are
either inferior to arithmetic coding algorithms and Lempel–Ziv
algorithms, or too complicated to implement.

Very recently, a new type of lossless source code called
a grammar-based code was proposed in [12]. The class
of grammar-based codes is broad enough to include block

0018–9448/00$10.00 © 2000 IEEE

756 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

codes, Lempel–Ziv types of codes, multilevel pattern
matching (MPM) grammar-based codes [13], and other
codes as special cases. To compress a data sequence, each
grammar-based code first transforms the data sequence
into a context-free grammar, from which the original data
sequence can be fully reconstructed by performing parallel
substitutions, and then uses an arithmetic coding algorithm
to compress the context-free grammar. It has been proved
in [12] that if a grammar-based code transforms each data
sequence into an irreducible context-free grammar, then the
grammar-based code is universal for the class of stationary,
ergodic sources. (For the definition of grammar-based codes
and irreducible context free grammars, please see Section II.)
Each irreducible grammar also gives rise to a nonoverlapping,
variable-length parsing of the data sequence it represents.
Unlike the parsing in Lempel–Ziv algorithms, however, there
is no upper bound on the number of repetitions of each
parsed phrase. More repetitions of each parsed phrase imply
that now there is room for arithmetic coding, which operates
on phrases instead of letters, to kick in. (In Lempel–Ziv
algorithms, there is not much gain from applying arithmetic
coding to parsed phrases since each parsed phrase is either
distinct or replicated with the number of repetitions less than
or equal to the size of the source alphabet.) The framework
of grammar-based codes suggests that one should try to
optimize arithmetic coding and string matching capability
by properly designing grammar transforms. We address this
optimization problem in this paper.

Within the design framework of grammar-based codes,
we first present in this paper an efficient greedy grammar
transform that constructs sequentially a sequence of irre-
ducible context-free grammars from which the original data
sequence can be recovered incrementally. Based on this
greedy grammar transform, we then develop three universal
lossless data compression algorithms: a sequential algorithm,
an improved sequential algorithm, and a hierarchical algo-
rithm. These algorithms combine the power of arithmetic
coding with that of string matching in a very elegant way
and jointly optimize in some sense string matching and arith-
metic coding capability. It is shown that these algorithms are
universal in the sense that they can achieve asymptotically
the entropy rate of any stationary, ergodic source. More-
over, it is proved that their worst case redundancies among
all individual sequences of length are upper-bounded by

, where is a constant. These algorithms
have essentially linear computation and storage complexity.
Simulation results show that these algorithms outperform the
Unix Compress and Gzip algorithms, which are based on
LZ78 and LZ77, respectively.

The paper is organized as follows. In Section II, we briefly
review grammar-based codes. In Section III, we present our
greedy grammar transform and discuss its properties. Section
IV is devoted to the description of the sequential algorithm, im-
proved sequential algorithm, and hierarchical algorithm. In Sec-
tions V and VI, we analyze the performance of the hierarchical
algorithm and that of the sequential and improved sequential al-
gorithms, respectively. Finally, we show some simulation results
in Section VII and draw some conclusions in Section VIII.

Fig. 1. Structure of a grammar-based code.

II. REVIEW OF GRAMMAR-BASED CODES

The purpose of this section is to briefly review grammar-
based codes so that this paper is self-contained and to provide
some additional insights into grammar-based codes. For the de-
tailed description of grammar-based codes, please refer to [12].

Let be our source alphabet with cardinality greater than or
equal to . Let be the set of all finite strings drawn from

, including the empty string , and the set of all finite
strings of positive length from . The notation stands for
the cardinality of , and for any , denotes the length
of . For any positive integer , denotes the set of all se-
quences of length from . Similar notation will be applied
to other finite sets and finite strings drawn from them. To avoid
possible confusion, a sequence fromis sometimes called an

-sequence. Let be a sequence to be compressed. As
shown in Fig. 1, in a grammar-based code, the sequenceis first
transformed into a context-free grammar (or simply a grammar)

from which can be fully recovered, and then compressed in-
directly by using a zero-order arithmetic code1 to compress .
To get an appropriate , string matching is often used in some
manner. It is clear that to describe grammar-based codes, it suf-
fices to specify grammar transforms. We begin with explaining
how context-free grammars are used to represent sequences
in .

A. Context-Free Grammars

Fix a countable set of symbols, dis-
joint from . Symbols in will be calledvariables; symbols in

will be calledterminal symbols. For any , let
. For our purpose, a context-free grammar

is a mapping from to for some . The set
shall be called the variable set ofand, to be specific, the

elements of shall be called sometimes-variables. To de-
scribe the mapping explicitly, we shall write, for each
the relationship as , and call it a produc-
tion rule. Thus the grammar is completely described by the
set of production rules2 . Start with
the variable . Replacing in parallel each variablein
by , we get another sequence from . If we keep
doing this parallel replacement procedure, one of the following
will hold:

1) After finitely many parallel replacement steps, we obtain
a sequence from .

2) The parallel replacement procedure never ends because
each string so obtained contains an entry which is a

-variable.
For the purpose of data compression, we are interested only in
grammars for which the parallel replacement procedure ter-

1This term is an abbreviation for “an arithmetic code with a zero-order statis-
tical model.”

2There are many other ways to describeG. For example,G is described by a
substitution table in [14] and by a directed graph in [15].

YANG AND KIEFFER: EFFICIENT DATA COMPRESSION ALGORITHMS BASED ON A GREEDY SEQUENTIAL GRAMMAR TRANSFORM—PART I 757

minates after finitely many steps and every-variable
is replaced at least once by in the whole parallel replace-
ment process. Such grammarsare calledadmissible gram-
marsand the unique sequence fromresulting from the par-
allel replacement procedure is called a sequence represented by

or by . Since each variable is replaced at least once by
, it is easy to see that each variable() represents a

substring of the -sequence represented by, as shown in the
following example.

Example 1: Let . Below is an example of an
admissible grammar with variable set

Perform the following parallel replacements:3

In the above, we start with and then repeatedly apply the par-
allel replacement procedure. We see that after four steps—each
appearance of the notation represents one step of parallel re-
placements—we get a sequence fromand the parallel replace-
ment procedure terminates. Also, each variable()
is replaced at least once by in the whole parallel replace-
ment process. Therefore, in this example,(or) represents
the sequence . Each of the other

-variables represents a substring of: represents , rep-
resents , and represents .

Let be an admissible grammar with variable set . The
size of is defined as the sum of the length over

(2.1)

where denotes the length of the -sequence .
For example, the size of the admissible grammarin Example
1 is equal to . Given any sequence from , if the length

of is large, then there are many admissible grammars
that represent. Some of these grammars will be more compact
than others in the sense of having smaller size. Since in a
grammar-based code, the sequenceis compressed indirectly
by using a zero-order arithmetic code to compress an admissible
grammar that represents, the size of is quite influential
in the performance of the grammar-based code. In principle, an
admissible grammar that represents should be designed so
that the following properties hold:

a.1) The size of should be small enough, compared
to the length of .

3One can also perform serial replacements. However, the parallel replacement
procedure makes things look simple.

a.2) -strings represented by distinct variables ofare dis-
tinct.

a.3) The frequency distribution of variables and terminal
symbols of in the range of should be such that
effective arithmetic coding can be accomplished later
on.

Starting with an admissible grammar that represents, one
can apply repeatedly a set of reduction rules to get another ad-
missible grammar which represents the sameand satisfies
Properties a.1)–a.3) in some sense. This set of reduction rules is
introduced in [12] and will be described next.

B. Reduction Rules

Reduction Rule 1:Let be a variable of an admissible
grammar that appears only once in the range of. Let

be the unique production rule in whichappears
on the right. Let be the production rule corresponding
to . Reduce to the admissible grammar obtained by
removing the production rule from and replacing the
production rule with the production rule .
The resulting admissible grammar represents the same
sequence as does .

Example 2: Consider the grammar with variable set
given by

Applying Reduction Rule 1, one gets the grammarwith vari-
able set given by

Reduction Rule 2:Let be an admissible grammar pos-
sessing a production rule of form , where the
length of is at least . Let be a variable which is
not a -variable. Reduce to the grammar obtained by re-
placing the production rule of with

, and by appending the production rule . The
resulting grammar includes a new variable and represents
the same sequenceas does .

Example 3: Consider the grammar with variable set
given by

Applying Reduction Rule 2, one gets the grammarwith vari-
able set given by

Reduction Rule 3:Let be an admissible grammar pos-
sessing two distinct production rules of form and

, where is of length at least two, either or
is not empty, and either or is not empty. Let be
a variable which is not a -variable. Reduce to the grammar

obtained by doing the following: replace rule
by , replace rule by ,
and append the new rule .

758 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

Example 4: Consider the grammar with variable set
given by

Applying Reduction Rule 3, one gets the grammarwith vari-
able set given by

Reduction Rule 4:Let be an admissible grammar pos-
sessing two distinct production rules of the form
and , where is of length at least two, and either
or is not empty. Reduce to the grammar obtained by
replacing the production rule with the production
rule .

Example 5: Consider the grammar with variable set
given by

Applying Reduction Rule 4, one gets the grammarwith vari-
able set given by

Reduction Rule 5:Let be an admissible grammar in which
two variables and represent the same substring of the-se-
quence represented by. Reduce to the grammar obtained
by replacing each appearance ofin the range of by and
deleting the production rule corresponding to. The grammar

may not be admissible since some-variables may not be
involved in the whole parallel replacement process of. If so,
further reduce to the admissible grammar obtained by
deleting all production rules corresponding to variables of
that are not involved in the whole parallel replacement process
of . Both and represent the same sequence from.

An admissible grammar is said to beirreducibleif none of
Reduction Rules 1–5 can be applied toto get a new admis-
sible grammar. The admissible grammar shown in Example 1 is
irreducible. Clearly, an irreducible grammarsatisfies the fol-
lowing properties:

b.1) Each -variable other than appears at least twice
in the range of .

b.2) There is no nonoverlapping repeated pattern of length
greater than or equal toin the range of .

b.3) Each distinct -variable represents a distinct-se-
quence.

Property b.3) is due to Reduction Rule 5 and very important
to the compression performance of a grammar-based code. A
grammar-based code for which the transformed grammar does
not satisfy Property b.3), may give poor compression perfor-
mance and cannot be guaranteed to be universal. The reason
for this is that once different variables of a grammar represent
the same -sequence, the empirical entropy of the grammar
gets expanded. Since the compression performance of the cor-
responding grammar-based code is related to the empirical en-
tropy of the grammar, the entropy expansion translates into poor
compression performance.

An irreducible grammar satisfies Properties a.1)–a.3) in some
sense, as shown in the next subsection.

C. Grammar Transforms

Let be a sequence from which is to be compressed.
A grammar transform converts into an admissible grammar
that represents. In this paper, we are interested particularly
in a grammar transform that starts from the grammarcon-
sisting of only one production rule , and applies repeat-
edly Reduction Rules 1–5 in some order to reduceinto an
irreducible grammar . Such a grammar transform is called
an irreducible grammar transform. To compress, the corre-
sponding grammar-based code then uses a zero-order arithmetic
code to compress the irreducible grammar. After receiving
the codeword of , one can fully recover from which
can be obtained via parallel replacement. Different orders via
which the reduction rules are applied give rise to different ir-
reducible grammar transforms, resulting in different grammar-
based codes. No matter how the reduction rules are applied, all
these grammar-based codes are universal, as guaranteed by the
following results, which were proved in [12].

Result 1: Let be an irreducible grammar representing a
sequence from . The size of divided by the length
of goes to uniformly as increases. Specifically

is an irreducible grammar representing

(2.2)

Result 2: Any grammar-based code with an irreducible
grammar transform is universal in the sense that for any sta-
tionary, ergodic source , the compression rate resulting
from using the grammar-based code to compress the initial
segment of length converges, with probability
one, to the entropy rate of the source asgoes to infinity.

Clearly, Reduction Rules 2–4 are string matching reduction
rules. The reason that grammar-based codes with irreducible
grammar transforms are universal lies in the fact that such codes
combine the power of string matching with that of arithmetic
coding. The above results, however, do not say how to con-
struct explicitly such codes or irreducible grammar transforms
although there are many of them to choose from. Also, within
the framework of grammar-based codes, it needs to be deter-
mined how one can design irreducible grammar transforms that
can in some sense jointly optimize arithmetic coding and string
matching capability.

In this paper, we address the concerns raised in the preceding
paragraph. In the next section, we shall present a greedy
grammar transform that can construct sequentially a sequence
of irreducible grammars from which the original data sequence
can be recovered incrementally. This greedy grammar trans-
form then enables us to develop three universal lossless data
compression algorithms.

III. A G REEDY GRAMMAR TRANSFORM

As mentioned at the end of the last section, the purpose of this
section is to describe our greedy irreducible grammar transform.

The Proposed Irreducible Grammar Transform:Let
be a sequence from which is to be com-

YANG AND KIEFFER: EFFICIENT DATA COMPRESSION ALGORITHMS BASED ON A GREEDY SEQUENTIAL GRAMMAR TRANSFORM—PART I 759

pressed. The proposed irreducible grammar transform is a
greedy one. It parses the sequencesequentially into nonover-
lapping substrings
and builds sequentially an irreducible grammar for each

, where , , and . The first
substring is and the corresponding irreducible grammar
consists of only one production rule . Suppose that

have been parsed off and
the corresponding irreducible grammar for has
been built. Suppose that the variable set ofis equal to

where . The next substring is the
longest prefix of that can be represented by

for some if such a prefix exists. Otherwise,
with . If

and is represented by , then append to the
right end of ; otherwise, append the symbol to
the right end of . The resulting grammar is admissible,
but not necessarily irreducible. Apply Reduction Rules 1–5
to reduce the grammar to an irreducible grammar . Then

represents . Repeat this procedure until the
whole sequence is processed. Then the final irreducible
grammar represents .

Since only one symbol from is appended to the end
of , not all reduction rules can be applied to get .
Furthermore, the order via which reduction rules are applied is
unique. Before we see why this is the case, let us look at an
example first.

Example 6: Let and

Apply the above irreducible grammar transform to. It is easy to
see that the first three parsed substrings (or phrases) are, , and
. The corresponding irreducible grammars, , and are

given by , , and , respectively.
Since , the fourth parsed phrase is . Appending the
symbol to the end of , we get an admissible grammar

given by . itself is irreducible; so none
of Reduction Rules 1–5 can be applied andis equal to .
Similarly, the fifth and sixth parsed phrases are and

, respectively; and are given, respectively, by
and . The seventh parsed phrase

is . Appending the symbol to the end of , we
get an admissible grammar given by

is not irreducible any more since there is a nonoverlapping
repeated pattern in the range of . At this point, only Re-
duction Rule 2 is applicable. Applying Reduction Rule 2 once,
we get the irreducible grammar given by

Since the sequence from represented by is not a prefix of
the remaining part of , the next parsed phrase is . Ap-

pending the symbol to the end of , we get an admissible
grammar given by

is not irreducible. Applying Reduction Rule 2 once, which is
the only applicable reduction rule at this point, we get a grammar

In the above, the variable appears only once in the range of
. Applying Reduction Rule 1 once, we get our irreducible

grammar :

From to , we have applied Reduction Rule 2 followed by
Reduction Rule 1. Based on , the next two parsed phrases
are and , respectively. The irreducible
grammar is given by

and the grammar is given by

Note that from to , we simply append the symbol to
the end of since the phrase is represented by

. The eleventh parsed phrase is . Appending to the
end of and then applying Reduction Rule 2 once, we
get

The twelfth parsed phrase is and is obtained by
simply appending to the end of . The thirteenth parsed
phrase is . Appending to the end of and then
applying Reduction Rule 2 once, we get

The fourteenth parsed phrase is , which
is represented by . Appending to the end of and
then applying Reduction Rule 2 followed by Reduction Rule 1,
we get

760 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

The fifteenth parsed phrase is , and is obtained
by appending to the end of . The sixteenth parsed
phrase is . Appending to the end of and then
applying Reduction Rule 3 once, we get

The seventeenth parsed phrase is and is ob-
tained by appending to the end of . The final parsed
phrase is and is obtained by ap-
pending to the end of . In summary, our proposed
irreducible grammar transform parsesinto

and transforms into the irreducible grammar

In Example 6, we see that to get from the appended ,
only Reduction Rules 1–3 are possibly involved. Furthermore,
the order via which these rules are applied is unique, and the
number of times these rules need to be applied is at most 2. This
phenomenon is true not only for Example 6, but also for all other
sequences, as shown in Theorem 1 below.

Before we state Theorem 1, we define a function

as follows: , and for any , is equal to
if is equal to the appended , and otherwise. Ac-

cording to this definition, the sequence in Example 6
is Note that we assume that the variable
set of is .

Theorem 1: Let be the last symbol of . Let be the
symbol that represents if , and

itself otherwise. Let be the admissible grammar ob-
tained by appending to the end of . Then the following
steps specify how to get from :

Case 1: The pattern does not appear in two nonoverlap-
ping positions in the range of . In this case, is
irreducible and hence is equal to .

Case 2: The pattern appears in two nonoverlapping po-
sitions in the range of , and . In this case,
apply Reduction Rule 2 once if the pattern repeats
itself in , and Reduction Rule 3 once otherwise.
The resulting grammar is irreducible and hence equal
to . The variable set of is with

, and the newly created production rule
is .

Case 3: The pattern appears in two nonoverlapping po-
sitions in the range of , and . In this case,
apply Reduction Rule 2 followed by Reduction Rule 1
if the pattern repeats itself in , and Reduc-
tion Rule 3 followed by Reduction Rule 1 otherwise.
The resulting grammar is irreducible and hence equal
to . The variable set of is the same as that of

with , and is obtained by
appending to the end of .

Proof: Since is irreducible, it is easy to see that in the
range of , the pattern is the only possible nonoverlapping
repeated pattern of length . If does not appear in two
nonoverlapping positions in the range of, as in Case 1, then

itself is irreducible. Therefore, in Case 1, is equal to
and no action needs to be taken.

Let us now look at Cases 2 and 3. If is a nonoverlap-
ping repeated pattern in the range of, then repeats it-
self only once in the range of since is irreducible. (When

, however, there might be an exception. This exception
occurs if the pattern appears somewhere in the range of

. Nonetheless, the following argument applies to this case
as well. To avoid ambiguity, we shall replace on the right
by a new variable when Reduction Rule 2 or 3 is applied and
this exception occurs. Also, in this case, we still consider that

repeats itself only once.) In Case 2, implies that
the symbol represents theth phrase . Since

represents the th phrase, it is not hard to see that
Reduction Rule 4 is not applicable in this case. To see this is
true, suppose that there is a production rule for some

in . Since , , , and all have
the same variable set, and for anyother than , ,

, and are all the same. In view of the greedy na-
ture of the proposed irreducible grammar transform, the produc-
tion rule in then implies that theth phrase is

instead of . This
is a contradiction. Thus at this point, only Reduction Rule 2 or 3
is applicable. Apply Reduction Rule 2 once if the patternre-
peats itself in ; otherwise, apply Reduction Rule 3 once.
The resulting grammar has a variable set and a new
production rule . We claim that the resulting grammar
is irreducible and hence equal to . To see this is true, first
note that there is no nonoverlapping repeated pattern of length

any more in the resulting grammar, since is the only
nonoverlapping repeated pattern of length in the range of

and repeats itself only once in the range of. Second, if
is a variable, then implies that appears in the range
of at least three times. If , then appears in the range
of at least four times; as a result, when a new production
rule (which is in this special case) is intro-
duced, each variable other than still appears at
least twice in the range of the resulting grammar. On the other
hand, if and is a variable, then appears in the range
of at least three times; as a result, when a new rule
is introduced, each variable other than still ap-
pears at least twice in the range of the resulting grammar. The
result also holds in all other cases: neithernor is a variable or
only one of them is a variable. Finally, the new variablerep-
resents the sequence which is

YANG AND KIEFFER: EFFICIENT DATA COMPRESSION ALGORITHMS BASED ON A GREEDY SEQUENTIAL GRAMMAR TRANSFORM—PART I 761

distinct from all other sequences represented by, .
To see this is true, note that otherwise, one gets the contradic-
tion that the th parsed phrase is
instead of . Therefore, the resulting grammar is
indeed irreducible and hence equal to .

In Case 3, implies that is equal to the newly intro-
duced variable in and appears only twice in the range
of . Using mathematical induction, one can show that in this
case, represents the substring obtained by concatenating the
th parsed phrase, the th parsed phrase, , and up to

the th parsed phrase for some . Note that in Case
3, , and repeats itself only once in the range of.
A similar argument to that in the above paragraph can be used
to show that at this point, Reduction Rule 4 is not applicable.
Apply Reduction Rule 2 once if the pattern repeats itself in

; otherwise, apply Reduction Rule 3 once. The resulting
grammar, which is denoted by , has a variable set
and a new production rule . However, the resulting
grammar is not irreducible since appears only twice in
the range of and as a result, appears only once in the
range of . In fact, appears only in the newly introduced
rule . Apply Reduction Rule 1 to and change
back to . The resulting grammar has the same variable set

as does , and the production rule corresponding to
is obtained by appending to the end of . We now
claim that the resulting grammar is irreducible and hence equal
to . To see that this is true, first note that since both
and are irreducible and since is the only repeated pattern
of length and repeats itself only once in the range of,
there is no nonoverlapping repeated pattern of lengthin the
range of the resulting grammar. (Note that the irreducibility of

guarantees that the pattern consisting of the last symbol
of and in the range of the resulting grammar is not
a nonoverlapping repeated pattern.) Second, ifis a variable,
then appears at least three times in the range of; as a result,
every variable other than in the resulting grammar appears at
least twice in the range of the resulting grammar. Finally, due
to the greedy nature of the proposed irreducible grammar trans-
form, the variable in the resulting grammar represents the
sequence obtained by concatenating the th parsed phrase,
the th parsed phrase, , and up to the th parsed phrase,
which is distinct from all other sequences represented by,

. Therefore, the resulting grammar is irreducible
and equal to .

Finally, note that there is no other case other than Cases 1–3.
This completes the proof of Theorem 1.

From Theorem 1, we see that once the th phrase is
parsed off, it is pretty fast to get from the appended .

Remark 1: There is a variant of the proposed irreducible
grammar transform in which the next substring
is the longest prefix of that can be represented by

for some if such a prefix exists, and otherwise,
with . In other words,

the symbol now is also involved in the parsing. To get
from the appended , special attention must be paid to the case
where is appended to the end of ; in this case, one
changes in to a new variable and introduces a new

rule . This variant was first described by the authors
in [14]. All the results in this paper hold as well for this variant.
We shall not use this variant as our grammar transform since, in
practice, it is highly unlikely that the entire previously processed
string will occur again right away (except near the beginning of
the data).

Remark 2: In their recent paper [18], Nevill-Manning and
Witten presented independently a grammar transform that
constructs sequentially a sequence of grammars. However, the
grammars constructed by their transform are not necessarily
irreducible because they do not satisfy Property b.3). As a
result, the corresponding grammar code may not be universal.

IV. UNIVERSAL ALGORITHMS

Having described our irreducible grammar transform, we now
describe our compression algorithms: a hierarchical algorithm,
a sequential algorithm, and an improved sequential algorithm.
They share the common greedy grammar transform, but have
different encoding strategies. We first describe the hierarchical
algorithm which consists of the greedy irreducible grammar
transform followed by the arithmetic coding of the final irre-
ducible grammar .

The Hierarchical Algorithm: Let be an sequence which
is to be compressed. Let be the final irreducible grammar for

furnished by our irreducible grammar transform. In the hier-
archical algorithm, we use a zero-order arithmetic code with a
dynamic alphabet to encode (or its equivalent form). After
receiving the binary codeword, the decoder recovers(or its
equivalent form) and then performs the parallel replacement
procedure mentioned in Section II to get.

To illustrate how to encode the final irreducible grammar,
let us look at Example 6 again. The final irreducible grammar
for the sequence in Example 6 is given by

The above form of , however, is not convenient for trans-
mission. To encode efficiently, we first convert into its
canonical form given by

To get from , we simply rename the variable in
as in and the variable in as in . The differ-
ence between and is that the following property holds
for , but not for :

c.1) If we read from left to right and from top (
) to bottom (), then for any , the first

appearance of always precedes that of .

762 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

In , the first appearance of precedes that of ; this is
why we need to rename these two variables to get. Note
that both and represent the same sequence. We now
encode and transmit instead of . To do so, we concate-
nate in the indicated order, in-
sert symbol at the end of , and for any satisfying

, insert symbol at the beginning of and
symbol at the end of , where symbols and are as-
sumed not to belong to . This gives rise to the following
sequence from the alphabet :

(4.1)

where in this example. From the sequence given by
(4.1), one can easily get back. First, can be identi-
fied by looking at the first appearance of symbol. Second, all

with can be identified by looking at pairs
. Finally, all the other have length . (One may

wonder why we need to introduce both symbolsand ; after all,
we can insert at the end of each to identify .
The reason is that most of any furnished by our irre-
ducible grammar transform have length. As a result, by using
the pair to isolate with , we actually
get a shorter concatenated sequence and hence better compres-
sion performance.) Since is canonical, i.e., satisfies
Property c.1), the first appearance of, for any , precedes
that of in the sequence given by (4.1). To take advantage of
this in order to get better compression performance, we go one
step further. Let be a symbol which is not in .
For each , replace the first appearance ofin the sequence
given by (4.1) by . Then we get the following sequence from

:

(4.2)

which will be called the sequence generated from or its
canonical form . Clearly, from the sequence given by (4.2),
we can get the sequence given by (4.1) back by simply replacing
the th in (4.2) by . Therefore, from the sequence gener-
ated from , we can get and hence . To compress
or , we now use a zero-order arithmetic code with a dynamic
alphabet to encode the sequence generated from. Specifi-
cally, we associate each symbol with a
counter . Initially, is set to if and

otherwise. The initial alphabet used by the arithmetic code is
. Encode each symbolin the sequence generated

from and update the related counters according to the fol-
lowing steps:

Step 1: Encode by using the probability

where the summation is taken over
, and is the number of times that oc-

curs before the position of this. Note that the al-
phabet used at this point by the arithmetic code is

.
Step 2: Increase the counter by .
Step 3: If , increase the counter from to ,

where is defined in Step 1.

Repeat the above procedure until the whole generated sequence
is encoded. For the generated sequence given by (4.2), the
product of the probabilities used in the arithmetic coding
process is

In general, to encode the final irreducible grammar, we
first convert it into its canonical form , then construct the
sequence generated from, and finally use a zero-order arith-
metic code with a dynamic alphabet to encode the generated
sequence.

Remark 3: It should be pointed out that in practice, there is
no need to write down explicitly the canonical form and
the generated sequence before embarking on arithmetic coding.
The converting of into , constructing of the generated
sequence, and encoding of the generated sequence can all be
done simultaneously in one pass, assuming thathas been
furnished by our irreducible grammar transform.

Remark 4: A different method for encoding canonical gram-
mars has been presented in [12]; it is based on the concept of
enumerative coding [6]. The method presented here is intuitive
and more efficient.

The sequential nature of our greedy irreducible grammar
transform makes it possible to parse and encode the-sequence

simultaneously.
The Sequential Algorithm:In the sequential algorithm, we

encode the data sequencesequentially by using a zero-order
arithmetic code with a dynamic alphabet to encode the se-
quence of parsed phrases .
Specifically, we associate each symbol with a
counter . Initially, is set to if and otherwise.
At the beginning, the alphabet used by the arithmetic code is.
The first parsed phrase is encoded by using the probability

. Then the counter increases by .
Suppose that have been
parsed off and encoded and that all corresponding counters have
been updated. Let be the corresponding irreducible grammar
for . Assume that the variable set of is equal to

. Let be parsed
off as in our irreducible grammar transform and represented by

. Encode (or) and
update the relevant counters according to the following steps:

Step 1: The alphabet used at this point by the arithmetic code
is . Encode by
using the probability

(4.3)

Step 2: Increase by .
Step 3: Get from the appended as in our irreducible

grammar transform.
Step 4: If , i.e., includes the new variable ,

increase the counter by .
Repeat this procedure until the whole sequenceis processed
and encoded.

Note that is always . Thus the summation over
in (4.3) is equivalent to the summation over

YANG AND KIEFFER: EFFICIENT DATA COMPRESSION ALGORITHMS BASED ON A GREEDY SEQUENTIAL GRAMMAR TRANSFORM—PART I 763

. From Step 4, it follows that each time
when a new variable is introduced, its counter increases
from to . Therefore, in the entire encoding process, there is
no zero-frequency problem. Also, in the sequential algorithm,
the parsing of phrases, encoding of phrases, and updating of
irreducible grammars are all done in one pass. Clearly, after
receiving enough codebits to recover the symbol, the decoder
can perform the update operation in the exact same way as does
the encoder.

Remark 5: It is interesting to compare the sequential algo-
rithm with LZ78. In LZ78, the parsed phrases are all distinct.
As a result, there is no room for arithmetic coding, which oper-
ates on phrases rather than on symbols from, to kick in. On
the other hand, in our sequential compression algorithm, parsed
phrases are of variable length and allowed to repeat themselves.
Moreover, there is no upper bound on the number of repetitions
of each parsed phrase. As a result, there is room for arithmetic
coding, which operates on phrases, to kick in. Our irreducible
grammar update mechanism acts like a string-matching mech-
anism and provides candidates for new parsed phrases. One of
the important roles of our irreducible grammar update mecha-
nism is to maintain a good tradeoff among the length, the
number of parsed phrases, and the numberof variables so
that good compression performance can be obtained. In Section
VI, we will show that the sequential algorithm is universal for
the class of stationary, ergodic sources and has the worst case
redundancy upper bound . Although both
our sequential algorithm and LZ78 are universal for the class
of stationary, ergodic sources, the simulation results presented
in Section VII show that our sequential algorithm is better than
Unix Compress, which is based on LZ78.

Example 7: We apply our sequential algorithm to compress
the sequence

shown in Example 6. It follows from Example 6 thatis parsed
into

The product of the probabilities used to encode these parsed
phrases is

Careful examination of the above sequential algorithm re-
veals that the encoding of the sequence of parsed phrases does
not utilize the structure of the irreducible grammars,

. Since is known to the decoder before encoding the
th parsed phrase, we can use the structure ofas con-

text information to reduce the codebits for the th parsed
phrase. To this end, we associate each symbol with
two lists and . The list consists of all sym-
bols such that the following properties are satisfied:

d.1) The pattern appears in the range of .
d.2) The pattern is not the last two symbols of .

d.3) There is no variable of such that is equal
to .

The list consists of all symbols such that Prop-
erties d.1) and d.2) hold. The elements in (or) can
be arranged in some order. We can use the lists and
to facilitate the process of updating to and to improve
the encoding process in the above sequential algorithm. Let
be the last symbol of . Let the th parsed phrase

be represented by .
Then it follows from Theorem 1 and its proof that the pattern

appears in two nonoverlapping positions in the range of the
appended if and only if appears in the list . To see
how to use the lists and to improve the encoding
process in the sequential algorithm, we recall from Section III
that is equal to if is equal to the appended , and
otherwise. From Theorem 1 and its proof, it follows that when

and , the symbol appears in the list
, and hence one can simply send the index ofin

to the decoder. When and , is the only
element in the list and thus no information needs to be
sent. Therefore, if we transmit the bit to the decoder,
then we can use the bit and the structure of to im-
prove the encoding of. This suggests the following improved
sequential compression algorithm.

The Improved Sequential Algorithm:In the improved se-
quential algorithm, we use an orderarithmetic code to encode
the sequence , and then use the sequence
and the structures of to improve the encoding of the se-
quence of parsed phrases .
In addition to the counters , , we now define
new counters , , , , and .
The counters , , , and are used
to encode the sequence ; initially, they are all
equal to . The th parsed phrase is encoded by the
counters whenever and and by
the counters whenever . As in the case
of , initially is if and if . The
first three parsed phrases are encoded as in the sequential
algorithm since they are , , and . Also, , ,
and are all and hence there is no need to encode them.
Starting from the fourth phrase, we first encode ,
and then use as side information and the structure
of as context information to encode the th parsed
phrase. Suppose that and

have been encoded and that all corresponding
counters have been updated. Let be the corresponding
irreducible grammar for . Assume that the variable
set of is equal to . Let be
the last symbol of . Let be parsed off
as in our irreducible grammar transform and represented by

. Encode and , and update
the relevant counters according to the following steps:

Step 1: Encode by using the probability

Step 2: Increase by .

764 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

Step 3: If , encode by using the probability

(4.4)

and then increase by . If and
encode by using the probability

(4.5)

and then increase by . On the other hand, if
and , no information is sent

since contains only one element and the decoder
knows what is.

Step 4: Get from the appended as in our irreducible
grammar transform. Update and accord-
ingly, where .

Step 5: If , i.e., includes the new variable ,
increase both and by .

Repeat this procedure until the whole sequenceis processed
and encoded.

Note that in view of Theorem 1 and its proof, one can de-
termine by examining whether or not is in .
Therefore, one can perform the encoding operation ofbefore
updating to . In Step 3, when , cannot be
from ; when , is from . Once again,
this follows from Theorem 1 and its proof. The alphabet used
in the arithmetic coding is when

, and when and .

Example 7′: We apply the improved sequential algorithm to
compress the sequence

shown in Example 6. It follows from Example 6 thatis parsed
into

The corresponding sequence is

The product of the probabilities used to encode the sequence
is

The product of the probabilities used to encode the parsed
phrases is

Note that the th parsed phrase need not be encoded when-
ever and .

Remark 6: Assume that exact arithmetic is used. Then for the
binary sequence shown in Example 6, the compression rates
in bits per letter given by the hierarchical algorithm, sequential
algorithm, and improved sequential algorithm are , ,
and , respectively. In this particular case, instead of having
compression, we get rather expansion. The reason for this is, of
course, that the length of the sequenceis quite small. We use

this sequence only for the purpose of illustrating how these al-
gorithms work. For long data sequences, simulation results pre-
sented in Section VII and in [31] show that the improved se-
quential algorithm is the best and yields very good compression
performance
.

V. PERFORMANCE OF THEHIERARCHICAL ALGORITHM

In this section, we analyze the performance of the hierarchical
compression algorithm and provide some insights into its work-
ings. Some of the results presented in this section will be used
to analyze the performance of the sequential and improved se-
quential algorithms.

Let be a sequence from. Let be any
irreducible grammar that represents. Our methodology is to
identify a proper parsing of induced by and then relate the
compression rate of the hierarchical algorithm to the empirical
entropy of the induced parsing of. To ultimately evaluate the
compression performance of the hierarchical algorithm against
the -context empirical entropy of, which is defined later in
this section, several bounds on the number of phrases in the
induced parsing of are essential. These bounds are established
via Lemmas 1–4.

Assume that the variable set of is

for some . We first explain how induces a partition
of . Let denote a dynamically changing subset of ;
initially, is empty. Let ; is a sequence
from . If , or equivalently if there is no variable
in , then itself is called thepartition sequenceinduced
by . Otherwise, do the following.

Step 1: Set .
Step 2: For , read from left to right. Replace the first

variable which is not in by . The resulting
sequence is denoted by .

Step 3: Update by inserting the variable into .
Step 4: Repeat Steps 2 and 3 for so

that each variable is replaced
by exactly once.

In the final sequence , every variable is from . The
final sequence is called thepartition sequenceinduced
by . Recall from Section II that each variable rep-
resents a distinct substring of. The partition sequence
induces a parsing of if each symbol in is replaced with
the corresponding substring of. The given sequence is the
concatenation of the phrases in this parsing.

To illustrate the above idea, let us revisit Example 6.

Example 8: In Example 6, the sequence

is represented by the irreducible grammar

YANG AND KIEFFER: EFFICIENT DATA COMPRESSION ALGORITHMS BASED ON A GREEDY SEQUENTIAL GRAMMAR TRANSFORM—PART I 765

In this example, . The five sequences
are

and

The dynamic set goes from the empty set to the set
, as shown below

Note that represents , represents , represents
, and represents . The partition sequence par-

titions into

It is easy to see that the concatenation of the above phrases is
equal to . Also, note that the length of the partition sequence
is , which is equal to .

In the case where happens to be the irreducible grammar
furnished by our irreducible grammar transform, the parsing

of induced by the partition sequence is related, but not equal,
to that furnished by our irreducible grammar transform. This can
be seen by comparing Example 8 with Example 6. The parsing
of induced by the partition sequence can be used to eval-
uate the performance of the hierarchical compression algorithm
while the parsing of furnished by our irreducible grammar
transform can be used to evaluate the performance of the se-
quential algorithm. The number of phrases in the parsing of
induced by the partition sequence is less than the number of
phrases in the parsing offurnished by our irreducible grammar
transform; the improved sequential algorithm tries to encode di-
rectly the parsing of induced by the partition sequence.

The following lemma relates the length of the partition se-
quence to the size of .

Lemma 1: Let be an irreducible grammar with variable set
. Then the length of the partition

sequence induced by is equal to .
Proof: Lemma 1 follows immediately from the observa-

tion that in the whole process of deriving the partition sequence
, each , , is replaced only once.

From now on, we concentrate on irreducible gram-
mars furnished by our irreducible grammar transform. Let

be a sequence from . Let be the final
irreducible grammar with variable set resulting from
applying our irreducible grammar transform to. Then we
have the following lemma.

Lemma 2: In the partition sequence induced by
, there is no repeated pattern of length, where patterns are

counted in the sliding-window, overlapping manner.

Proof: We prove Lemma 2 by induction. Clearly, Lemma
2 is true for any with since in this case, the ir-
reducible grammar consists of only one production rule

. Suppose now that Lemma 2 is true for
with . We next want to show that it is also true for .
In view of Theorem 1, different reduction rules need to be
applied in order to get from the appended . It is easy
to see that in Case 3 of Theorem 1, the partition sequence

is the same as . (For example, the
irreducible grammars and in Example 6 induce the
same partition sequence .) Thus in this case, our
assumption implies that Lemma 2 is true for . In Case 2 of
Theorem 1, the partition sequence is the same
as except the last symbol; in ,
the last symbol is equal to the newly introduced variable

which appears in only in the last
position. (For example, in Example 6, induces a partition
sequence while induces a partition sequence

.) Therefore, in this case, there is no repeated
pattern of length in and hence Lemma 2 is
true for . In Case 1 of Theorem 1, the partition sequence

is obtained by appending the last symbol in
to the end of . To show that there is no

repeated pattern of length in in this case,
we distinguish between several subcases. We need to look
at how and are constructed from and ,
respectively. If , then the last symbol in
is equal to which appears only once in .
Clearly, in this case, there is no repeated pattern of length

in . If and , then
is obtained by appending the last symbol in

to the end of and the last symbol
in is equal to which appears only
once in . Once again, in this case, there is
no repeated pattern of length in since

is obtained by appending the last symbol in
to the end of . The only case left is the

case in which and . It is easy to see
that in this case, is obtained from by appending
the three recent parsed symbols to the end of ,
and is obtained by appending the last three
symbols in to the end of . Let

be the last four symbols in . Clearly,
is the only possible repeated pattern of lengthin

. Note that for any irreducible grammar, the
last symbol in the partition sequence induced byis the same
as the last symbol in . Thus is also the last symbol
in and hence yields the last four symbols
in . From this, it follows that cannot repeat
itself in a overlapping position in since
is irreducible. On the other hand, for any substring
of length of , either or appears
in for some . Since is obtained
from by appending to the end of and

is irreducible, it follows that cannot repeat itself
in . Thus there is no repeated pattern of length

in . This completes the proof of Lemma 2.

766 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

Remark 7: From the proof of Lemma 2, it follows that with
the help of our irreducible grammar transform, the partition se-
quence can be constructed sequentially in one pass.

Lemma 2 enables us to establish useful upper bounds on the
size of the final irreducible grammar and the length of the
induced partition sequence in terms of the length. These
bounds are stated in Lemma 3 and will be proved in Appendix A.

Lemma 3: Let be a sequence from. Let be the final
irreducible grammar with variable set resulting from ap-
plying our irreducible grammar transform to. Let
be the partition sequence induced by. Then

and

(5.1)

whenever

and , where stands
for the logarithm with base.

The following lemma, which will be proved in Appendix B,
gives a lower bound to the average length of the-sequences
represented by , .

Lemma 4: Let be a sequence from. Let be the final
irreducible grammar with variable set resulting from ap-
plying our irreducible grammar transform to. Then

whenever , where denotes the length
of the -sequence represented by .

We are now in position to evaluate the compression perfor-
mance of the hierarchical data compression algorithm. We com-
pare the compression performance of the hierarchical algorithm
with that of the best arithmetic coding algorithm withcontexts
which operates letter by letter, rather than phrase by phrase. Let

be a finite set consisting ofelements; each element is
regarded as an abstract context. Let be
a transition probability function from to , i.e., satisfies

for any . Note that random transitions between contexts
are allowed. For any sequence from , the
compression rate in bits per letter resulting from using the arith-
metic coding algorithm with transition probability functionto
encode is given by

where is the initial context, and stands for the loga-
rithm with base throughout this paper. Let

(5.2)
where the outer maximization varies over every transition prob-
ability function from to . The quantity represents
the smallest compression rate in bits per letter among all arith-
metic coding algorithms with contexts which operate letter by
letter. It should be, however, emphasized that there is no single
arithmetic coding algorithm with contexts which can achieve
the compression rate for everysequence .
When , is equal to the traditional empirical entropy
of . For this reason, we call the -context empirical en-
tropy of .

Let be the compression rate in bits per letter resulting
from using the hierarchical compression algorithm to compress

. We are interested in the difference between and .
Let

The quantity is called theworst case redundancyof the
hierarchical algorithm against the-context empirical entropy.

Theorem 2: There is a constant , which depends only on
and , such that

Remark 8: Worst case redundancy is a rather strong notion
of redundancy. For probabilistic sources, there are two other
notions of redundancy: average redundancy [8] and pointwise
redundancy [21]. It is expected that the average and pointwise
redundancies of the hierarchical, sequential, and improved se-
quential algorithms are much smaller. The exact formulas of
these redundancies, however, are unknown at this point, and left
open for future research.

Proof of Theorem 2:Let be a sequence to be
compressed. Let be the final irreducible grammar with vari-
able set resulting from applying our irreducible grammar
transform to . Let be the parti-
tion sequence induced by . Recall that the hierarchical com-
pression algorithm compressesby first converting into its
canonical form , then constructing the sequence generated
from , and finally using a zero-order arithmetic code with
a dynamic alphabet to encode the generated sequence. In the
process of converting into its canonical form , one gets
a permutation over such that is obtained from

by renaming each symbol as . For example, for the
final irreducible grammar in Example 6, the permutation
is given by , , and for any
other symbol . Let be the sequence generated
from . Note that is from . Strike out
symbols , , and in . The resulting sequence is called the
content sequencegenerated from and denoted by . (For ex-
ample, the content sequence generated fromin Example 6 is

YANG AND KIEFFER: EFFICIENT DATA COMPRESSION ALGORITHMS BASED ON A GREEDY SEQUENTIAL GRAMMAR TRANSFORM—PART I 767

.) It is easy to see that the content sequence
and the partition sequence have the same length

. Furthermore, for each symbol ,
the frequency of in is the same as that of
in . Thus and have the same first-order unnor-
malized empirical entropy, that is,

(5.3)

where is defined as

and is defined similarly. Below we will upper–bound the
total number of bits in terms of .

Assume that exact arithmetic is used. In view of the encoding
process of the hierarchical algorithm, the probability used to
encode the symbol in is

where is the number of in the prefix and
is the number of in the prefix . Thus the number of
bits needed to encode is

The above inequality is due to the fact that for all
positions . This implies that the total number of bits is
upper-bounded by

(5.4)

In the above, denotes, for each ,
the number of in , denotes the first-order unnormalized
empirical entropy of , and

denotes the Shannon entropy of the distribution

The inequality is due to the well-known inequality on the
size of a type class [7, Theorem 12.1.3, p. 282]. The equality
follows from the entropy identity saying that the joint entropy
of two random variables is equal to the marginal entropy of the
first random variable plus the conditional entropy of the second
random variable given the first random variable. The inequality

follows from the fact that

Finally, the equality follows from (5.3).
To complete the proof, we next upper-bound

in terms of . To this end, let be a transition probability
function from to for which the maximum on the
right-hand side of (5.2) is achieved. Note that suchexists and
generally depends on the sequenceto be compressed. Let
be the probability distribution on such that for any positive
integer and any

(5.5)
In (5.5), the constant is selected so that is a proba-
bility distribution on ; it is easy to check that .
Recall that the partition sequence partitions
into nonoverlapping, variable-length phrases; each symbol in

represents a substring of, and the concatenation
of all these substrings is equal to. Think of each symbol

as a sequence from. Then it makes sense to
write for any . From (5.2) and (5.5), it
then follows that

(5.6)

where denotes the length of the-sequence represented by
. In view of the information inequality [7, Theorem 2.6.3, p.

26]

which, together with (5.4) and (5.6), implies

768 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

(5.7)

In the above, the inequality is due to Lemma 1 and the fact
that . The inequality is attributable to the concavity
of the logarithm function. Note that (5.7) holds for any sequence

. Dividing both sides of (5.7) by and applying Lemma
3, we then get

This completes the proof of Theorem 2.

Corollary 1: For any stationary, ergodic source
with alphabet

with probability one as , where is equal to the
entropy rate of .

Proof: Let . For any -sequence with length
, let be the frequency of in

, computed in a cyclic manner

where, as a convention, whenever .
Consider the th-order traditional empirical entropy defined by

where . It is easy to verify that

Thus from Theorem 2

Letting and invoking the ergodic theorem, we get

almost surely

and

almost surely.

In the above inequality, letting yields

almost surely.

This, together with sample converses in source coding theory
[2], [11], [34], implies

almost surely.

VI. PERFORMANCE OF THESEQUENTIAL AND IMPROVED

SEQUENTIAL ALGORITHMS

In this section, we analyze the performance of the sequential
and improved sequential compression algorithms and provide
some insights into their workings. We take an approach similar
to that of Section V.

Let be a sequence to be compressed. Letbe the
final irreducible grammar with variable set furnished by
the proposed irreducible grammar transform. Recall thatis
the number of phrases parsed off by the proposed irreducible
grammar transform. The next lemma, which will be proved in
Appendix C, upper-boundsin terms of a function of .

Lemma 5: There is a constant , which depends only on
, such that for any with ,

Lemma 5 enables us to evaluate the compression performance
of the sequential and improved sequential compression algo-
rithms. Let be a sequence from to be com-
pressed. Let be the compression rate in bits per letter re-
sulting from using the sequential algorithm to compress. Let

be defined as in Section V. We are interested in the differ-
ence between and . Let

The quantity is called the worst case redundancy of the
sequential algorithm against the-context empirical entropy.
Using a similar argument to the proof of Theorem 2, one can
show the following theorem.

Theorem 3: There is a constant , which depends only on
and , such that

Proof: In the sequential algorithm, we encode the data
sequence sequentially by using a zero-order arith-
metic code with a dynamic alphabet to encode the sequence
of parsed phrases . Assume
that exact arithmetic is used. The probability used to encode
the th parsed phrase, which is represented by a symbol

, is

where is the number of times the phrase
appears in . Thus the
number of bits needed to encode the th parsed phraseis

YANG AND KIEFFER: EFFICIENT DATA COMPRESSION ALGORITHMS BASED ON A GREEDY SEQUENTIAL GRAMMAR TRANSFORM—PART I 769

This implies that the total number of bits is
upper-bounded by

(6.1)

In the above derivation, , for each , denotes
the number of times the -sequence represented byappears
in the sequence of parsed phrases

The quantity denotes the unnormalized empirical en-
tropy of the sequence of parsed phrases, i.e.,

A similar argument to the derivation of (5.6) and (5.7) can then
lead to

which, coupled with (6.1), implies

(6.2)

Dividing both sides of (6.2) by and applying Lemma 5, we get

This completes the proof of Theorem 3.

Corollary 2: For any stationary, ergodic source
with alphabet

with probability one as , where is equal to the
entropy rate of .

Proof: It follows immediately from Theorem 3 and the
proof of Corollary 1.

For any -sequence , let be the com-
pression rate in bits per letter resulting from using the improved
sequential algorithm to compress. Let

The quantity is called the worst case redundancy of the
improved sequential algorithm against the-context empirical
entropy. Using similar arguments to the proofs of Theorems 2
and 3, one can show the following theorem.

Theorem 4: There is a constant , which depends only on
and , such that

The following corollary follows immediately from Theorem
4 and the proof of Corollary 1.

Corollary 3: For any stationary, ergodic source
with alphabet

with probability one as , where is equal to the
entropy rate of .

VII. SIMULATION RESULTS

To keep the information-theoretic flavor of this paper, this
section presents only simulation results on random binary se-
quences. For extensive simulation results on other types of prac-
tical data, see [31].

Before presenting our simulation results, let us say a few
words about the computational complexity of our compression
algorithms. Let be a sequence to be compressed. From
Section III, it follows that our compression algorithms have
only three major operations: the parsing ofinto nonover-
lapping substrings the
updating of into , , and
the encoding either of or of the parsed substrings

In view of Lemmas 3
and 5, it is easy to see that the encoding operation has linear
computational complexity with respect to the length. By
virtue of Lemmas 4 and 5, one can show that the average
computational complexity of the parsing operation is linear
with respect to if is drawn from a stationary source
satisfying some mixing condition. To update into , it
follows from Theorem 1 that at most two reduction rules are
involved. Therefore, the major computational complexity of
the updating operation lies in finding the location at which
these reduction rules are applied. Letbe the last symbol
in and let be the symbol representing the th
parsed phrase. As demonstrated in the proof of Theorem 1,

is the only possible nonoverlapping repeated pattern of
length in the appended , and repeats itself at most once
in the range of the appended . Since is irreducible,
one can show, by using a proper tree structure, that the total
computational complexity of finding the repetition locations for
all is linear. Hence the updating operation
also has linear computational complexity with respect to

. Therefore, our compression algorithms, the hierarchical
algorithm, sequential algorithm, and improved sequential algo-
rithm, all have linear average computational complexity with
respect to . In passing, our compression algorithms are also
linear in space. The argument just completed is rather brief; the
implementation details of our compression algorithms, their
complexity analysis, and extensive simulation results will be
reported in [31]. (Experimental results [31] show that for a
variety of files, the improved sequential algorithm significantly

770 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

TABLE I
RESULTS FORMEMORYLESSBINARY SOURCES OFLENGTH 10000

TABLE II
RESULTS FORFIRST-ORDER MARKOV BINARY SOURCES OFLENGTH 10000

TABLE III
RESULTS FORSECOND-ORDER MARKOV BINARY SOURCES OFLENGTH 10000

outperforms the Unix Compress and Gzip algorithms. For
example, for some binary files with alphabet ,
the improved sequential algorithm is 255% better than the
Gzip algorithm and 447.9% better than the Unix Compress
algorithm. Moreover, unlike previous compression algorithms,
the improved sequential algorithm can also compress short data
sequences like packets moved around networks by the Internet
Protocol very well.)

To see how close the compression rates given by our algo-
rithms are to the entropy rate of a random source, we present
below some simulation results for random binary sequences.
In our simulation, our algorithms, like the Unix Compress and
Gzip algorithms, were implemented to compress any files.

Table I lists some simulation results for memoryless binary
sources of length . The quantity represents the proba-
bility of symbol ; the Shannon entropy represents the entropy
rate of each binary source. The notation denotes the size
of the final irreducible grammar;is the number of nonoverlap-
ping phrases parsed off by our irreducible grammar transform;
and is the number of distinct phrases. From Table I, one
can see that our algorithms are all better than the Unix Com-
press and Gzip algorithms. For example, on average, the im-
proved sequential algorithm is roughly 26% more efficient than
Unix Compress and 37% more efficient than Gzip. (It should
be pointed out that for text files, Gzip often outperforms Unix
Compress. On the other hand, for binary sequences, Unix Com-
press often outperforms Gzip.) Here, the efficiency of a data
compression algorithm is defined as the ratio of the compres-
sion rate of the algorithm to the Shannon entropy rate of the

source. Also, the numberis only slightly larger than ; this
means that the length of most is .

Table II lists some simulation results for first-order Markov
binary sources of length . The transition matrix of each
Markov source is

and the initial distribution is uniform. Once again, our algo-
rithms are all better than the Unix Compress and Gzip algo-
rithms. In this case, the improved sequential algorithm is, on
average, roughly 19% more efficient than Unix Compress and
25% more efficient than Gzip.

Table III lists some simulation results for second-order
Markov binary sources of length . The second-order
Markov binary sources are generated by using the following
model:

where is an independent and identically distributed (i.i.d.)
sequence with the probability of symbolbeing , and de-
notes modulo- addition. Once again, our algorithms are all
better than the Unix Compress and Gzip algorithms. In this case,
the improved sequential algorithm is, on average, roughly 26%
more efficient than Unix Compress and 27% more efficient than
Gzip.

Similar phenomena hold as well for sources of length .
Tables IV–VI list some simulation results for memoryless,

YANG AND KIEFFER: EFFICIENT DATA COMPRESSION ALGORITHMS BASED ON A GREEDY SEQUENTIAL GRAMMAR TRANSFORM—PART I 771

TABLE IV
RESULTS FORMEMORYLESSBINARY SOURCES OFLENGTH 65536

TABLE V
RESULTS FORFIRST–ORDER MARKOV BINARY SOURCES OFLENGTH 65536

TABLE VI
RESULTS FORSECOND-ORDER MARKOV BINARY SOURCES OFLENGTH 65536

first-order Markov, and second-order Markov binary sources
of length

VIII. C ONCLUSIONS

Within the design framework of grammar-based codes, we
have presented a greedy irreducible grammar transform that
constructs sequentially a sequence of irreducible context-free
grammars from which the original data sequence can be
recovered incrementally. Based on this grammar transform, we
have developed three efficient universal lossless compression
algorithms: the hierarchical algorithm, sequential algorithm,
and improved sequential algorithm. These algorithms combine
the power of arithmetic coding with that of string matching in
a very elegant way and jointly optimize in some sense string
matching and arithmetic coding capability. It has been shown
that these algorithms are all universal in the sense that they
can achieve asymptotically the entropy rate of any stationary,
ergodic source. Moreover, it has been proved that their worst
case redundancies among all individual sequences of length
are upper-bounded by , where is a constant.
These algorithms have essentially linear computation and
storage complexity. Simulation results show that these algo-
rithms outperform the Unix Compress and Gzip algorithms,
which are based on LZ78 and LZ77, respectively.

Many problems concerning these algorithms remain open,
however. To conclude this paper, in the following paragraphs,
we discuss some of these problems.

1) The technique we have adopted to analyze these algo-
rithms is a combinatorial one. It is certainly desirable to

have a probabilistic analysis of these algorithms. In par-
ticular, what are the average and pointwise redundancies
of these algorithms? How does the irreducible grammar

evolve? What properties does the set consisting of
substrings represented by all -variables have asgets
larger and larger?

2) As the length of the data sequenceincreases, the size
of gets larger and larger so that at some point, it will
reach the memory limit that software and hardware de-
vices can handle. If this happens, one certainly needs to
modify the proposed algorithms in this paper. One so-
lution is to freeze at this point and reuse to en-
code the remaining data sequence; we call this version
the fixed-database version. Obviously, the fixed-database
version is applicable only to the sequential and improved
sequential algorithms. Another solution is to discard
and restart these algorithms for the remaining sequence.
These two solutions represent two extreme cases. One
may expect that to get better compression performance,
it should be arranged that should be changed gradu-
ally.

3) Analyze the performance of the fixed-database version.
4) Extend these algorithms to high-dimensional data and an-

alyze compression performance accordingly.

APPENDIX A

In this appendix, we prove Lemma 3. Since each variable
represents a distinct -sequence, in this proof we

shall identify each symbol with the -sequence rep-

772 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

resented by . Accordingly, will denote the length of that
-sequence. Let be the partition

sequence induced by , where for
any . Assume that ; this is certainly true
whenever . Since is the partition sequence
induced by , it follows that

(A.1)

Let

Clearly, (A.1) implies that

(A.2)

In view of Lemma 2, , , are
all distinct as sequences of lengthfrom . Since
each represents an -sequence, then represents
the concatenation of the-sequences represented by, ,
and , respectively. Note that the-sequences represented
by , , may not necessarily be
distinct. Nonetheless, we can upper-bound the multiplicity. The
number of integersfor which represents the same

-sequence of length, is less than or equal to since
each symbol represents a distinct -sequence and
all , as sequences of lengthfrom , are
distinct. Thus for any

(A.3)

Clearly

and

Of course, may be for some . Now it is easy to see that
given , is maximized when all are as
small as possible, subject to the constraints given by (A.3). For
any , let

and

It is easy to verify that

and

(A.4)

where the inequality is true for any , and the last in-
equality is due to the fact that . If happens to be
for some , then . In view of (A.4), we then
have

(A.5)

If , we write , where
. Then

This, together with (A.5), implies that

(A.6)

whenever for some . We next bound
in terms of . Since

it follows that

(A.7)

and whenever for some

(A.8)

YANG AND KIEFFER: EFFICIENT DATA COMPRESSION ALGORITHMS BASED ON A GREEDY SEQUENTIAL GRAMMAR TRANSFORM—PART I 773

On the other hand,

From this

which, combined with (A.7), implies that

(A.9)

Combining (A.9) with (A.8) yields

This, coupled with (A2), implies that

(A.10)

whenever

and

To upper-bound , note that each variable in
other than appears at least once in the partition sequence

. Thus from Lemma 1

which, together with (A.10), implies that

whenever

and

From this and (A.10), Lemma 3 follows.

APPENDIX B

In this appendix, we prove Lemma 4. We use the same nota-
tion as in the proof of Lemma 3. Let
be the partition sequence induced by, where

for any . As mentioned in Sec-
tion V, each variable other than appears at least

once in . Let consist of all that ap-
pear in . Assume that ; this is certainly true
whenever . Recall from the proof of Lemma 3 that

and

(B.1)

In view of Lemma 2, , , are all
distinct as sequences of lengthfrom .
From this, it follows that

(B.2)

where denotes the summation over
for any . In view of (B.1) and (B.2), we have

(B.3)

To estimate the average length of the-sequences represented
by , , we first evaluate

Note that each represents a distinct
-sequence. Standard techniques can be used to show that

whenever . This, together with (B.3), implies
that

(B.4)

whenever . Note that must be if
. Since the length of the -sequence represented

by each , , is , it follows from (B.4) that

whenever . This completes the proof of
Lemma 4.

APPENDIX C

In this Appendix, we prove Lemma 5.
We first establish a relationship betweenand . Recall

from Section III that the proposed irreducible grammar trans-
form parses the sequencesequentially into nonoverlapping

774 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

substrings and builds
sequentially an irreducible grammar with variable set
for each , where , , and . From
Theorem 1, it follows that the size of increases
by in Cases 1 and 2 of Theorem 1 and remains the same as

in Case 3 of Theorem 1. Thus the numberis equal to
plus the number of times Case 3 of Theorem 1 appears in

the entire irreducible grammar transform process. Recall that
, and for any , is equal to if is equal

to the appended , and otherwise. One can determine the
number of times Case 3 of Theorem 1 appears by looking at the
runs of ’s in the binary sequence . In view of
Theorem 1, it is easy to see that the total number of runs of’s
in the binary sequence is ; each run of
’s is corresponding to a variable for some .

Let be the interval corresponding to theth run of ’s,
that is, is the th run of ’s. This, of
course, implies that and if .
The variable is introduced at the stage, and Case 3 of
Theorem 1 holds for if . Then one
can see that the number of times Case 3 of Theorem 1 appears
in the entire irreducible grammar transform process is equal to

where the summation is taken over all satisfying
. Thus we get the following identity:

(C.1)

In view of Lemma 3, it now suffices to upper-bound the
sum in (C.1). To this end, let us reveal a hierarchical structure
among the intervals satisfying . An interval

with is called atop interval if is
a substring of . In other words, for a top interval

, is read off directly from , and
is obtained from by repeatedly applying Reduc-

tion Rules 2 and 1. Note that the first interval with
is a top interval. Assume that there are a total of

top intervals , where
. Since is irreducible

for any and since is a substring of , a
similar argument to the proof of Lemma 2 can be used to show
that there is no repeated pattern of lengthin the sequences

, where patterns are
counted in the sliding-window, overlapping manner and in all
the sequences. All other intervals with are
related to top intervals. To show this, we introduce a new con-
cept. An interval with is said to besubordinate
directly to an interval , where ,
if is a substring of . An interval
with is said to besubordinate toan interval ,
where , if there is a sequence of intervals

such that is subordinate
directly to for , where
and . It is easy to see that every interval with

is subordinate to a top interval. Furthermore, for any
interval with , we have

where denotes the length of , which is a se-
quence from . This implies that

(C.2)

We next upper-bound the sum on the right-hand side of (C.2).
Let us focus on a particular top interval, say, . Con-

sider all intervals that are subordinate to the top interval
. Note that even though is subordinate directly

to , the sequence is not necessarily a sub-
string of . The reason is as follows: 1)
is a sequence from ; 2) by the defini-
tion given in the above paragraph, ; and 3) before the
stage , the production rule corresponding to may be
changed, and as a result, may contain some variables

, where . Nonetheless, as long as is sub-
ordinate to , the sequence is indeed gener-
ated from . By applying a procedure similar to the
parallel replacement procedure mentioned in Section II, the se-
quence can be expanded so that the expanded sequence

is a substring of . Using the tree structure
implied implicitly by the subordinate relation, one can verify
that the expanded sequences corresponding to all inter-
vals subordinate to the top interval satisfy the
following properties.

e.1) Every expanded sequence is a substring of
.

e.2) , where de-
notes the length of as a sequence from

.

e.3) All expanded sequences are distinct.

e.4) For any two expanded sequences and
, which correspond, respectively, to two

intervals and that are subordinate to
, either is a substring of ,

or is a substring of , or
and are nonoverlapping substrings of

.

e.5) For any three expanded sequences , ,
and , which correspond, respectively, to
three distinct intervals subordinate to ,
if both and are substrings of

and if neither nor is a
substring of the other, then and are
nonoverlapping substrings of .

In view of these properties and the fact that there is no repeated
pattern of length in , these expanded sequences
can be arranged in a hierarchical way, as shown in Fig. 2. The
top line segment in Fig. 2 represents the sequence .
Each of the other line segments in Fig. 2 represents a different

YANG AND KIEFFER: EFFICIENT DATA COMPRESSION ALGORITHMS BASED ON A GREEDY SEQUENTIAL GRAMMAR TRANSFORM—PART I 775

Fig. 2. Hierarchical representation of expanded sequences related to a top
interval.

Fig. 3. Hierarchical representation of expanded sequences.

expanded sequence . For each line segment, the line
segments underneath it are its nonoverlapping substrings. From
Property e.3), it follows that if for some line segment, there is
only one line segment underneath it, then the length of the line
segment underneath it is strictly less than its own length. Here
by the length of a line segment, we mean the length of the se-
quence from it represents.

The argument in the above paragraph applies equally well
to all other top intervals. Since there is no repeated pattern of
length in the sequences

the expanded sequences corresponding to all intervals
with can be arranged in a similar fashion to

Fig. 2, as shown in Fig. 3. Once again, the topline segments
in Fig. 3 represent the sequences

Each of the other line segments in Fig. 3 represents a different
expanded sequence . Line segments in Fig. 3 have a
similar interpretation to line segments in Fig. 2.

Let us now go back to (C.2). In view of Property e.2)

(C.3)

where is the same as whenever is a top
interval. Since there is no repeated pattern of lengthin the
sequences

it follows that there is no repeated pattern of lengthin each row
of Fig. 3 either. This implies that is equal to the
number of patterns of length appearing in the line segment
corresponding to . Let be the set consisting of all
patterns of length appearing in Row of Fig. 3. Then we have

(C.4)

and

(C.5)

where denotes the cardinality of . Furthermore,

(C.6)

For each , let

where () denotes the length of the-sequence
represented by . (Note that each itself is a symbol in

.) Let

At this point, we invoke the following result, which will be
proved in Appendix D.

Lemma 6: There is a constant , which depends only on
, such that

It is easy to see that

where denotes the length of the-sequence represented by
the variable . This, together with Lemma 6, implies

(C.7)

Putting (C.2), (C.3), (C.6), and (C.7) together, we get

which, coupled with (C.1) and Lemma 3, implies

for some constant . This completes the proof of Lemma 5.

APPENDIX D

In this appendix, we prove Lemma 6. Recall that eachis a
subset of and the sequence satisfies (C.4)
and (C.5). For convenience, we also write a pattern of length,

, as a vector . As in the
proof of Lemma 3, since each symbol represents
a distinct -sequence, we shall identify with the

-sequence represented by. It is easy to see that for any

(D.1)

where denotes the length of the-sequence
represented by . The number is defined as

776 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

Fig. 4. Triangle structure of the setsV in the worst case.

We want to show that is upper-bounded by
multiplied by some constant. Since the function is
strictly increasing for , it is enough for us to consider
worst cases. Clearly, given , is minimized when all

and are as
small as possible, subject to the constraints (C.4), (C.5), and
(D.1). For any , let

and

Note that is equal to the number of string vectors
, where , , such that

. From the proof of Lemma 3, it follows
that

(D.2)

and

(D.3)

If happens to be equal to , then

(D.4)

where is set to as a convention. In (D.4), the equality holds
when , consists of all string vectors ,
where , , such that ,
and , for , is obtained from by deleting a
string vector with the largest . In
other words, is minimized when the sets are packed into a
tight triangle, as shown in Fig. 4. In Fig. 4, theth line segment
counted from the top represents the set. Denote the sum on
the right-hand side of (D.4) by . It follows from (D.4) that

(D.5)

Clearly, is strictly greater than if

Thus whenever

one has

where and are some constants depending only on. The
inequality is due to (D.5). The inequality follows from
the observation that from (D.2), , and, as a
result,

The inequality is due to the fact that .
Finally, the last inequality follows from the fact that the function

is increasing and . This completes the proof
of Lemma 6.

REFERENCES

[1] N. Abramson,Information Theory and Coding. New York: McGraw-
Hill, 1963.

[2] A. Barron, “Logically smooth density estimation,” Ph.D. dissertation,
Stanford University, Stanford, CA, 1985.

[3] J. Bentley, D Sleator, R. Tarjan, and V. K. Wei, “A locally adaptive data
compression scheme,”Commun. Assoc. Comput. Mach., vol. 29, pp.
320–330, 1986.

[4] J. G. Cleary and I. H. Witten, “Data compression using adaptive coding
and partial string matching,”IEEE Trans. Commun., vol. COM-32, pp.
396–402, 1984.

[5] G. V. Cormack and R. N. S. Horspool, “Data compression using dynamic
Markov modeling,”Computer J., vol. 30, pp. 541–550, 1987.

[6] T. M. Cover, “Enumerative source encoding,”IEEE Trans. Inform.
Theory, vol. IT-19, pp. 73–77, 1973.

[7] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[8] L. D. Davisson, “Universal noiseless coding,”IEEE Trans. Inform.
Theory, vol. IT-19, pp. 783–795, 1973.

[9] P. Elias, “Interval and recency rank source coding: Two on-line adaptive
variable length schemes,”IEEE Trans. Inform. Theory, vol. IT-33, pp.
1–15, 1987.

[10] R. G. Gallager, “Variations on a theme by Huffman,”IEEE Trans. In-
form. Theory, vol. IT-24, pp. 668–674, 1978.

[11] J. C. Kieffer, “Sample converses in source coding theory,”IEEE Trans.
Inform. Theory, vol. 37, pp. 263–268, 1991.

YANG AND KIEFFER: EFFICIENT DATA COMPRESSION ALGORITHMS BASED ON A GREEDY SEQUENTIAL GRAMMAR TRANSFORM—PART I 777

[12] J. C. Kieffer and E.-H. Yang, “Grammar based codes: A new class of
universal lossless source codes,”IEEE Trans. Inform. Theory, submitted
for publication.

[13] J. C. Kieffer, E.-H. Yang, G. Nelson, and P. Cosman, “Universal loss-
less compression via multilevel pattern matching,”IEEE Trans. Inform.
Theory, submitted for publication.

[14] J. C. Kieffer and E.-H. Yang, “Lossless data compression algorithms
based on substitution tables,” inProc. IEEE 1998 Canadian Conf. Elec-
trical and Computer Engineering, Waterloo, Ont., Canada, May 1998,
pp. 629–632.

[15] , “Ergodic behavior of graph entropy,”ERA Amer. Math. Soc., vol.
3, no. 1, pp. 11–16, 1997.

[16] A. Lempel and J. Ziv, “On the complexity of finite sequences,”IEEE
Trans. Inform. Theory, vol. IT-22, pp. 75–81, 1976.

[17] D. L. Neuhoff and P. C. Shields, “Simplistic universal coding,”IEEE
Trans. Inform. Theory, vol. 44, pp. 778–781, Mar. 1998.

[18] C. Nevill-Manning and I. H. Witten, “Compression and explanation
using hierarchical grammars,”Computer J., vol. 40, pp. 103–116, 1997.

[19] D. S. Ornstein and P. C. Shields, “Universal almost sure data compres-
sion,” Ann. Probab., vol. 18, pp. 441–452, 1990.

[20] R. Pasco, “Source coding algorithms for fast data compression,” Ph.D.
dissertation, Stanford Univ., Stanford, CA, 1976.

[21] E. Plotnik, M. Weinberger, and J. Ziv, “Upper bounds on the probability
of sequences emitted by finite-state sources and on the redundancy of
the Lempel–Ziv algorithm,”IEEE Trans. Inform. Theory, vol. 38, pp.
66–72, 1992.

[22] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,”IBM
J. Res. Develop., vol. 20, pp. 198–203, 1976.

[23] J. Rissanen and G. G. Langdon, “Arithmetic coding,”IBM J. Res. De-
velop., vol. 23, pp. 149–162, 1979.

[24] J. Rissanen, “A universal data compression system,”IEEE Trans. In-
form. Theory, vol. IT-29, no. 5, pp. 656–664, Sept. 1983.

[25] B. Y. Ryabko, “Data compression by means of a ‘book stack’,”Probl.
Inform. Transm., vol. 16, no. 4, pp. 16–21, 1980.

[26] M. J. Weinberger, A. Lempel, and J. Ziv, “A sequential algorithm for
the universal coding of finite memory sources,”IEEE Trans. Inform.
Theory, vol. 38, pp. 1002–1014, May 1992.

[27] F. M. J. Willems, “The context-tree weighting method: Extensions,”
IEEE Trans. Inform. Theory, vol. 44, pp. 792–798, Mar. 1998.

[28] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree
weighting method: Basic properties,”IEEE Trans. Inform. Theory, vol.
41, pp. 653–664, May 1995.

[29] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,”Commun. Assoc. Comput. Mach., vol. 30, pp. 520–540,
1987.

[30] E.-h. Yang, “Universal almost sure data compression for abstract alpha-
bets and arbitrary fidelity criterions,”Probl. Contr. Inform. Theory, vol.
20, pp. 397–408, 1991.

[31] E.-h. Yang and Y. Jia, “Efficient grammar-based data compression algo-
rithms: Complexity, implementation, and simulation results,” paper, in
preparation.

[32] E.-h. Yang and J. C. Kieffer, “On the redundancy of the fixed data-
base Lempel-Ziv algorithm forφ-mixing sources,”IEEE Trans. Inform.
Theory, vol. 43, pp. 1101–1111, July 1997.

[33] , “On the performance of data compression algorithms based upon
string matching,”IEEE Trans. Inform. Theory, vol. 44, pp. 47–65, Jan.
1998.

[34] E.-h. Yang and S. Shen, “Chaitin complexity, Shannon information con-
tent of a single event and infinite random sequences (I),”Science in
China, ser. A, vol. 34, pp. 1183–1193, 1991.

[35] J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,”IEEE Trans. Inform. Theory, vol. IT-23, pp. 337–343, 1977.

[36] , “Compression of individual sequences via variable rate coding,”
IEEE Trans. Inform. Theory, vol. IT-24, pp. 530–536, 1978.

