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Efficient Universal Lossless Data Compression
Algorithms Based on a Greedy Sequential Grammar
Transform—Part One: Without Context Models

En-hui Yang Member, IEEEand John C. KiefferFellow, IEEE

Abstract—A grammar transform is a transformation that To put things into perspective, let us first review briefly, from
converts any data sequence to be compressed into a grammarthe information-theoretic point of view, the existing universal
from which the original data sequence can be fully reconstructed. lossless data compression algorithms. So far, the most widely

In a grammar-based code, a data sequence is first converted into sed universal lossless comoression algorithms are arithmetic
a grammar by a grammar transform and then losslessly encoded. u univ P ' gori ' '

In this paper, a greedy grammar transform is first presented; coding algorithms [1], [20], [22], [23], [29], Lempel-Ziv
this grammar transform constructs sequentially a sequence of algorithms [16], [35], [36], and their variants. Arithmetic
irreducible grammars from which the original data sequence can coding algorithms and their variants are statistical model-based
be recovered incrementally. Based on this grammar transform, g4qrithms. To use an arithmetic coding algorithm to encode a

three universal lossless data compression algorithms,asequentiald t tatistical del is either built d icall
algorithm, an improved sequential algorithm, and a hierarchical ala Sequence, a statstcal model IS either bUlit dynamicaily

algorithm, are then developed. These algorithms combine the during the encoding process, or assumed to exist in advance.
power of arithmetic coding with that of string matching. It is  Several approaches have been proposed in the literature to build

shown that these algorithms are all universal in the sense that dynamically a statistical model. These include the prediction
they can achieve asymptotically the entropy rate of any stationary, by partial match algorithm [4], dynamic Markov modeling

ergodic source. Moreover, it is proved that their worst case . .
regundancies among all individugl sequences of lengtm are [5], context gathering algorithm [24], [26], and context-tree

upper-bounded by cloglogn/logn, where ¢ is a constant. Weighting method [27], [28]. Typically, in all these methods,
Simulation results show that the proposed algorithms outperform the next symbol in the data sequence is predicted by a proper

the Unix Compress and Gzip algorithms, which are based on context and coded by the corresponding estimated conditional
LZ78 and LZ77, respectively. probability. Good compression can be achieved if a good
Index Terms—Arithmetic coding, entropy, grammar-based tradeoff between the number of contexts and the conditional
source codes, redundancy, string matching, universal sequential entropy of the next symbols given contexts is maintained during
and hierarchical data compression. the encoding process. Arithmetic coding algorithms and their
variants are universal only with respect to the class of Markov

|. INTRODUCTION sources with Markov order less than some designed parameter

. . .. value. Note that in arithmetic coding, the original data sequence
NIVERSAL data compression theory aims at demgnmg encoded letter by letter. In contrast, no statistical model is

d"tﬂ? cltl)mpr?_ssmlnf algonlthms, fwhose pegﬁrmfgnlge Lfed in Lempel-Ziv algorithms and their variants. During the
asymp OI'%a ty optimal for a tc;]ass 0 SOlgrced;. id g .'? to ncoding process, the original data sequence is parsed into
universal data compression theory can be divided into V}ﬁ%?overlapping, variable-length phrases according to some

subfields: universal lossless data compression and univerﬁad of string matching mechanism, and then encoded phrase

Ios_sy data compression. In this paper, we are cqncerned phrase. Each parsed phrase is either distinct or replicated
universal lossless data compression. Our goal is to deve R

. : i _ h the number of repetitions less than or equal to the size
new practical lossless data compression algorithms which €he source alphabet. Phrases are encoded in terms of their
asymptotically optimal for a broad class of sources, includi

. ) rl%sitions in a dictionary or database. Lempel-Ziv algorithms
stationary, ergodic sources. are universal with respect to a class of sources which is broader
than the class of Markov sources of bounded order; the incre-
mental parsing Lempel-Ziv algorithm [36] is universal for the
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codes, Lempel-Ziv types of codes, multilevel pattern nPutdatal gp.pyma, | Context-free | o yihmetic| Binary
matching (MPM) grammar-based codes [13], and other X transform | grammar G | °der [ codeword
codes as special cases. To compress a data sequence, each

grammar-based code first transforms the data sequefel. Structure of agrammar-based code.

into a context-free grammar, from which the original data

sequence can be fully reconstructed by performing parallel Il. REVIEW OF GRAMMAR -BASED CODES
substitutions, and then uses an arithmetic coding algorithm_l_

to compress the context-free grammar. It has been proved he purpose of this section is to briefly review grammar-

in [12] that if a grammar-based code transforms each dab[%tlsed codes so that this paper is self-contained and to provide

sequence into an irreducible context-free arammar. then FA"€ additional insights into grammar-based codes. For the de-
d g ' tta‘ﬁed description of grammar-based codes, please refer to [12].

grammar-based code is universal for the class of St"jltiomeetA be our source alphabet with cardinality greater than or
ergodic sources. (For the definition of grammar-based codes b Y9

) . : ual to2. Let A* be the set of all finite strings drawn from
and irreducible context free grammars, please see Section T}.). : . n .
. . . . - A’ including the empty string\, and.A™* the set of all finite
Each irreducible grammar also gives rise to a nonoverlf:lpplnsgﬂr,i

variable-length parsing of the data sequence it represen Sngs of positive length fror. The notation|.A| stands for
gih p 9 q P the cardinality of4, and for anyz € .A*, || denotes the length

Unlike the parsing in Lempel-Ziv algorithms, however, theref 2. For any positive integen, A" denotes the set of all se-

is no upper bound on the number of repetitions of ea(% ences of lengtlh from 4. Similar notation will be applied

parsed phrase.'More repetltlgns Of. each 'parsed. phrase m{%lﬂ%ther finite sets and finite strings drawn from them. To avoid
that now there is room for arithmetic coding, which operates

on phrases instead of letters, to kick in. (In Lem eI_Zieossible confusion, a sequence frotris sometimes called an
P ' ’ b A-sequence. Let € AT be a sequence to be compressed. As

algorithms, there is not much gain from applying ar'thmeniﬂown in Fig. 1, in a grammar-based code, the sequeisdirst

cpd_mg to pars_ed phra_ses since each parseq .phrase 'S C i Hsformed into a context-free grammar (or simply a grammar)
distinct or replicated with the number of repetitions less tha(gfrom whichz can be fully recovered, and then compressed in-

or equal to the size of the source alphabet.) The framewocghectly by using a zero-order arithmetic code compresss.

of t.grgmmart—rt;)as?q CO?;.:"S suggesttg, that ?nﬁ should btrIytT Oget an appropriaté, string matching is often used in some
Ep imize ?”dm? IC_coding an ts rlng ma CV\'/ng dc;lpa "t}%anner. Itis clear that to describe grammar-based codes, it suf-
Y Properly designing grammar fransiorms. We address lﬁ'ées to specify grammar transforms. We begin with explaining

opt|m|;at|on problgm in this paper. how context-free grammars are used to represent sequences
Within the design framework of grammar-based codeg, A+

we first present in this paper an efficient greedy grammar

tran.sform that constructs sequentially a sequence of irgg_— Context-Free Grammars

ducible context-free grammars from which the original data

sequence can be recovered incrementally. Based on thi§iX & countable sef = {so, s1, sz, ---} of symbols, dis-
greedy grammar transform, we then develop three univerd@int from A. Symbols inS will be calledvariables symbols in
lossless data compression algorithms: a sequential algorithfhWill be calledterminal symbolsFor any;j > 1, let S(j) =

an improved sequential algorithm, and a hierarchical alg(ﬁSOa s1, -+, sj—1}. Forour purpose, a context-free gramréar
rithm. These algorithms combine the power of arithmeti§ @ mapping frons(j) to (S(j)U.A)* for somej > 1. The set
coding with that of string matching in a very elegant wa§(j) shall be called the variable set@fand, to be specific, the
and jointly optimize in some sense string matching and aritBlements of5(j) shall be called sometimes-variables. To de-
metic coding capability. It is shown that these algorithms afétibe the mapping explicitly, we shall write, for eagki <),
universal in the sense that they can achieve asymptoticdfi relationshigs;, G(s;)) ass; — G(s;), and callit a produc-
the entropy rate of any stationary, ergodic source. MorfOn rule. Thus the grammaf is completely described by the
over, it is proved that their worst case redundancies amo®@f of production rulés{s; — G(s;): 0 < i < j}. Start with

all individual sequences of length are upper-bounded by the variableso. Replacing in parallel each variabien G(so)
cloglogn/logn, where ¢ is a constant. These algorithms?y G(s), we get another sequence fragj) U A. If we keep
have essentially linear computation and storage complexifiing this parallel replacement procedure, one of the following
Simulation results show that these algorithms outperform tMall hold:

Unix Compress and Gzip algorithms, which are based on1) After finitely many parallel replacement steps, we obtain
LZ78 and LZ77, respectively. a sequence fromd.

The paper is organized as follows. In Section Il, we briefly 2) The parallel replacement procedure never ends because
review grammar-based codes. In Section Ill, we present our each string so obtained contains an entry which is a
greedy grammar transform and discuss its properties. Section G-variable.

IV is devoted to the description of the sequential algorithm, infFor the purpose of data compression, we are interested only in
proved sequential algorithm, and hierarchical algorithm. In Segrammars for which the parallel replacement procedure ter-
tions_V and Vi, we analyze the p(_arforma_nce of the hierarc-hicallThis term is an abbreviation for “an arithmetic code with a zero-order statis-
algorithm and that of the sequential and improved sequential gl- ..

gorithms, respectively. Finally, we ShOV_V some Simu_lation resultSerhere are many other ways to descrieFor exampleG is described by a
in Section VII and draw some conclusions in Section VIII.  substitution table in [14] and by a directed graph in [15].
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minates after finitely many steps and evéiyariables; (i < 7) a.2) A-strings represented by distinct variablegtdre dis-

is replaced at least once 6 s;) in the whole parallel replace- tinct.

ment process. Such grammaksare calledadmissible gram- a.3) The frequency distribution of variables and terminal
marsand the unique sequence frathresulting from the par- symbols ofG in the range of& should be such that
allel replacement procedure is called a sequence represented by  effective arithmetic coding can be accomplished later
G or by sqg. Since each variable; is replaced at least once by on.

G(s;), itis easy to see that each variabl¢ # 0) represents a Starting with an admissible grammér that represents, one
substring of thed-sequence represented &y as shown in the can apply repeatedly a set of reduction rules to get another ad-
following example. missible gramma¢?’ which represents the samend satisfies
Properties a.1)—-a.3) in some sense. This set of reduction rules is

Example 1:Let A = {0, 1}. Below is an example of an | X X X
P {0. 1} s introduced in [12] and will be described next.

admissible grammaf with variable sef sg, s1, s2, s3}
B. Reduction Rules

So —>0838281818310 ) . ..
Reduction Rule 1:iLet s be a variable of an admissible

s1 =01 grammar(G that appears only once in the range @f Let
sz = s1l s’ — asf be the unique production rule in whichappears
83 — 8189. on the right. Lets — ~ be the production rule corresponding
) to s. Reduce@ to the admissible gramma#’ obtained by
Perform the following parallel replacemerits: removing the production rule — ~ from & and replacing the

production rules’ — as/3 with the production rule’ — a~43.

G
S0 = 0535281515310 The resulting admissible grammas” represents the same

G
0535251515310 — 051525110101515210 sequence; as doegs.
G
0s1525110101s15210 = 0015, 10110101015, 110 Example 2:Consider the gramma¢ with variable set
001s5,1011010101s1110 E>00101101101010101110. {so, 81, 32} given by
In the above, we start witky and then repeatedly apply the par- {80 — 5181, 81 — s21, so — 010}.

allel replacement procedure. We see that after four steps—each _ _ _
appearance of the notatiéh represents one step of parallel re/APPlying Reduction Rule 1, one gets the grammiawith vari-
placements—we get a sequence frdrand the parallel replace- 2P1€ S€{so, 51} given by
ment procedure terminates. Also, each variah(@ < ¢ < 4)
is replaced at least once I¥(s;) in the whole parallel replace-
ment process. Therefore, in this exampig(or &) represents
the sequence = 00101101101010101110. Each of the other ~ Reduction Rule 2:Let G be an admissible grammar pos-
G-variables represents a substring:of, representsl, s, rep- S€ssing a production rule of form— «, fasSas, where the
resent)11, ands; represent§1011. length of 3 is at least2. Let s € S be a variable which is
Let G be an admissible grammar with variable §¢§). The ot aG-variable. Reducé to the grammat:” obtained by re-
size|G| of G is defined as the sum of the lengii(s)| over Placing the production rule — oo of G with s —

{80 — 8181, §1 — 0101}.

S(5) a1 s’ azs’as, and by appending the production réle— 3. The
resulting gramma¢?’ includes a new variable€ and represents
G| 2 Z |G(s)] (2.1) the same sequenaeas doeg.
5€S(5) Example 3:Consider the gramma¢; with variable set

where|G(s)| denotes the length of thé(j) U.A-sequencé(s).  {so, s1} given by
For example, the size of the admissible gramdan Example
1 is equal tol4. Given any sequence from A, if the length
|z| of = is large, then there are many admissible grammhrSApplying Reduction Rule 2, one gets the gramiwith vari-
that represent. Some of these grammars will be more compac},| setfso, s1, 52} given by

than others in the sense of having smaller $&g Since in a R

grammar-based code, the sequende compressed indirectly {50 — 51528180, 51 — 11, 59 — 01}.

by using a zero-order arithmetic code to compress an admissible

grammard that represents, the size ofG is quite influential
in the performance of the grammar-based code. In principle,
admissible gramma® that represents should be designed SOy _, csfrs, whereg is of length at least two, either, or vy

that the following properties hold: is not empty, and eithers or o4 is not empty. Lets” € S be
a.1) The sizdG| of G should be small enough, compared, yariaple which is not &-variable. Reducé to the grammar
to the length ofz. @ obtained by doing the following: replace rule— «; Scs

" / / "
30ne can also perform serial replacements. However, the parallel replacenf®its — 15" a2, replace rules’ — azfay by ' — ass’ay,
procedure makes things look simple. and append the new ru¥ — 2.

{80 — 31018101, S1 — 11}.

Reduction Rule 3:Let G be an admissible grammar pos-
sing two distinct production rules of fosn— «;8as and
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Example 4:Consider the gramma¢; with variable set  Anirreducible grammar satisfies Properties a.1)—a.3) in some

{s0, s1, s2} given by sense, as shown in the next subsection.
{s9 — $10s2, 51 — 10, sy — 0s,0}. C. Grammar Transforms
Applying Reduction Rule 3, one gets the grami@awith vari- ~ Let = be a sequence froml which is to be compressed.
able set{sq, s1, 52, s3} given by A grammar transform converts into an admissible grammar
that represents. In this paper, we are interested particularly
{s0 — s3s2, 51 — 10, s2 — O0s3, s3 — 5,0}. in a grammar transform that starts from the grami@acon-

sisting of only one production rulg, — x, and applies repeat-

Reduction Rule 4:Let G be an admissible grammar pos-€dly Reduction Rules 1-5 in some order to redGtento an
sessing two distinct production rules of the fosm— «;/3a,  irreducible grammag’. Such a grammar transform is called
ands’ — /3, whereg is of length at least two, and eithe; ~anirreducible grammar transform. To compress the corre-
or a is not empty. Reducé& to the grammars’ obtained by sponding grammar-based code then uses a zero-order arithmetic
replacing the production rule — «;3a- with the production code to compress the irreducible gramnidr After receiving
rule s — ays’as. the codeword ofZ’, one can fully recovers’ from which x
can be obtained via parallel replacement. Different orders via
which the reduction rules are applied give rise to different ir-
reducible grammar transforms, resulting in different grammar-
based codes. No matter how the reduction rules are applied, all
these grammar-based codes are universal, as guaranteed by the
Applying Reduction Rule 4, one gets the gramm@axvith vari-  following results, which were proved in [12].
able set{sg, s1, s2} given by Result 1: Let G be an irreducible grammar representing a
sequence from A. The sizg G| of G divided by the lengthz|
of = goes ta0 uniformly as|z| increases. Specifically

Example 5:Consider the grammaé; with variable set
{80, S1, 82} given by

{s0 — s201s1, 51 — 20, s — 11}.

{so — s1ls1, 51 — 20, so — 11}.

Reduction Rule 5:Let G be an admissible grammar in whichmax{|G|: G is an irreducible grammar representingr € A™ }
two variabless ands’ represent the same substring of fhese- = O(n/logn). (2.2)
guence represented B Reduce? to the gramma¢’ obtained
by rep]acing each appearancesbin the range of 7 by s and Result 2: Any grammar-based code with an irreducible
deleting the production rule correspondingstoThe grammar grammar transform is universal in the sense that for any sta-
G’ may not be admissible since sorGévariables may not be tionary, ergodic sourcgX;; }72,, the compression rate resulting
involved in the whole parallel replacement process&ifif so, from using the grammar-based code to compress the initial
further reduce® to the admissible grammag#” obtained by SsegmentX; X5 ---X,, of lengthn converges, with probability
deleting all production rules corresponding to variablegi6f One, to the entropy rate of the sourcenagoes to infinity.

that are not involved in the whole parallel replacement processClearly, Reduction Rules 2—4 are string matching reduction
of . BothG and@” represent the same sequence frdm rules. The reason that grammar-based codes with irreducible

An admissible gramme@’ is said to barreducibleif none of grammar transforms are universal lies in the fact that such codes
Reduction Rules 1-5 can be applieddao get a new admis- combine the power of string matching with that of arithmetic
sible grammar. The admissible grammar shown in Example 16@ding. The above results, however, do not say how to con-
irreducible. Clearly, an irreducible gramm@rsatisfies the fol- struct explicitly such codes or irreducible grammar transforms
lowing properties: although there are many of them to choose from. Also, within

b.1) EachG-variables other thans, appears at least twice the framework of grammar-based codes, it needs to be deter-
in the range of. mined how one can design irreducible grammar transforms that

b.2) There is no nonoverlapping repeated pattern of lendtf” in some sense jointly optimize arithmetic coding and string

greater than or equal @in the range of3. matching capability. o _
b.3) Each distinctG-variable represents a distingt-se- In this paper, we address the concerns raised in the preceding
quence. paragraph. In the next section, we shall present a greedy

Property b.3) is due to Reduction Rule 5 and very importaﬂlf"’.lmm""r .transform that can con'struct seqqentlally a sequence
of jrreducible grammars from which the original data sequence

to the compression performance of a grammar-based code: Al

grammar-based code for which the transformed grammar d &0 he recovered incrementally. This greedy grammar trans-

not satisfy Property b.3), may give poor compression perfolQrm then enables us to develop three universal lossless data

mance and cannot be guaranteed to be universal. The reasghpPression algorithms.

for this is that once different variables of a grammar represent
the sameA-sequence, the empirical entropy of the grammar
gets expanded. Since the compression performance of the coiAs mentioned at the end of the last section, the purpose of this
responding grammar-based code is related to the empirical saetion is to describe our greedy irreducible grammar transform.
tropy of the grammar, the entropy expansion translates into pooiThe Proposed Irreducible Grammar Transforrhet
compression performance. x = xix2--+ Ty be a sequence from which is to be com-

I1l. A GREEDY GRAMMAR TRANSFORM
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pressed. The proposed irreducible grammar transform isp@nding the symbdil to the end of7; (¢ ), we get an admissible
greedy one. It parses the sequencgequentially into nonover- grammarG~ given by

lapping  substrings {z1, 2 Tny, - 5 Toy_ 141 Tn, | 50— 5,0115,0
and builds sequentially an irreducible grammar for each
x1 Ty, Wwherel < ¢ < ¢, ny = 1, andn, = n. The first s1 — 10.

substring isr; and the corresponding irreducible gramniar G is not irreducible. Applying Reduction Rule 2 once, which is
consists of only one production ruly — z;. Suppose that the only applicable reduction rule at this point, we get a grammar
T1, T2+ Tpy, " 75 Tn,_y+1 """ Tp, have been parsed off anng
the corresponding irreducible gramm@s for z; -- - z,,, has
been built. Suppose that the variable se€gfis equal to

S(Jz) = {307 S1, "ty Sji—l} so — 510.

where j; = 1. The next substringe,, +1---z»,,, IS the |n the above, the variable appears only once in the range of

longest prefix ofxy, 41 2, that can be represented byG”. Applying Reduction Rule 1 once, we get our irreducible
s; for some0 < j < j; if such a prefix exists. Otherwise, grammarGs:

Tpi41 Tpy = Tpapr With g = ng + 1.1 niyg —n > 1
andzy, 1 -+ wp,,, is represented by;, then append; to the
right end of G;(so); otherwise, append the symbo},.;; to s1 — 100.

the right end ofG;(sg). The resulting grammar is admissible,:romG7 to G, we have applied Reduction Rule 2 followed by

but not necessarily irreducibl_e. App_ly Reduction Rules 1-Rqquction Rule 1. Based Ofis, the next two parsed phrases
to reduce the grammar to an irreducible gram@ar,. Then  gee.0 —  andzygz; 212 = 100, respectively. The irreducible
Giq1 representse; - - -z, ., . Repeat this procedure until thegrammarGg is given by

whole sequence: is processed. Then the final irreducible
grammarG, represents:. s0 — $111510
Since only one symbol frorfi(j;) U.A is appended to the end 51 — 100

of G;(sp), not all reduction rules can be applied to gét, ;. N
Furthermore, the order via which reduction rules are appliedE}Qd the gramma, is given by

S0 — 821182

s1 — 10

so — s11lsy

unique. Before we see why this is the case, let us look at an s0 — s111810s1
example first. s1 — 100.
Example 6: Let A = {0, 1} and Note that fromGg to G1g, we simply append the symbe] to

the end ofGy(sp) since the phrase; gz 212 is represented by
s1. The eleventh parsed phraserig = 0. Appending0 to the

Apply the above irreducible grammar transfornetdtis easy to €Nd 0fG1o(s0) and then applying Reduction Rule 2 once, we

see that the first three parsed substrings (or phrases)@rand getGuy

0. The corresponding irreducible gramméis, Gz, andG; are so — 51118255

given by{sp — 1}, {so — 10}, and{so — 100}, respectively. s — 100

Sincejz = 1, the fourth parsed phraseis = 1. Appending the

symbol1 to the end of75(s0), we get an admissible grammar sz — 510.

G given by {sy — 1001}. Gy itself is irreducible; so none The twelfth parsed phrase is. = 1 and G is obtained by

of Reduction Rules 1-5 can be applied aRdis equal toG;.  simply appending to the end of711 (s0). The thirteenth parsed

Similarly, the fifth and sixth parsed phrases are = 1 and phrase isr;5 = 1. Appendingl to the end of712(s) and then

¢ = 1, respectively;Gs and G are given, respectively, by applying Reduction Rule 2 once, we géts

{so — 10011} and{sy — 100111}. The seventh parsed phrase

is zz = 0. Appending the symbd) to the end ofGs(so), we

get an admissible grammé¥; given by s1 —100
S9 — 810

z = 10011100010001110001111111000.

S0 — 5153525253

so — 1001110.
S3 — 11.

Gy is not irreducible any more since there is a nonoverlappip[q]e fourteenth parsed phraserigz172 15219 = 1000, which

repeated patterhO in the range of7;. At this point, only Re- is represented by,. Appendingss to the end ofG13(so) and

duction Rule 2 is applicable. Applying Reduction Rule 2 once, oy applying Reduction Rule 2 followed by Reduction Rule 1
we get the irreducible grammé#-; given by '

we getGa
sg — $1011s, S0 — §1535283
s1 — 10. s — 100
Since the sequence fros represented by, is not a prefix of s2 — 510

the remaining part of, the next parsed phraseds = 0. Ap- s3 — 11so.
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The fifteenth parsed phraseis, = 1, andG,; is obtained  Case 3: The pattern/ appears in two nonoverlapping po-

by appendingl to the end ofG14(so). The sixteenth parsed sitions in the range of¥;, and(¢) = 1. In this case,
phrase isc2; = 1. Appendingl to the end of715(so) and then apply Reduction Rule 2 followed by Reduction Rule 1
applying Reduction Rule 3 once, we dg&tg if the patterna/3 repeats itself in7,(so), and Reduc-
tion Rule 3 followed by Reduction Rule 1 otherwise.
S0 7 5153525384 The resulting grammar is irreducible and hence equal
s1 — 100 to G;41. The variable set off;,; is the same as that of
s3 — 510 G; with ji11 = j;, andGiy1(sj,,, 1) is obtained by
53— 515 apper-1d|ngB tp t.he enq oGi.((?ji,l). .
sy 11, Proof: SinceG; is irreducible, it is easy to see that in the

range of}, the patterny/3 is the only possible nonoverlapping

The seventeenth parsed phrasedses; = 11 andGy7 is ob- repeated pa?tern of_ Igngtg2. If a3 does not_ appear in two
tained by appending; to the end o716 (so). The final parsed Nonoverlapping positions in the range@, as in Case 1, then
phrase isros - - 729 = 111000 and Gys is obtained by ap- & itself is irreducible. Therefore, in Case &, is equal to

pendings; to the end ofGy7(so). In summary, our proposed G; and no action needs to be taken. _
irreducible grammar transform parsejnto Let us now look at Cases 2 and 3(”3 IS a nonoverlap-

ping repeated pattern in the range @f, then«g3 repeats it-
{1,0,0,1,1,1,0,0,0,100,0,1,1,1000,1,1,11,111000} self only once in the range &¥; sinceG; is irreducible. (When
« = f3, however, there might be an exception. This exception
occurs if the pattermvacr appears somewhere in the range of
G!. Nonetheless, the following argument applies to this case
as well. To avoid ambiguity, we shall replaagr on the right

and transforms: into the irreducible gramma®, g

S0 — 515352535454853

s1— 100 by a new variable when Reduction Rule 2 or 3 is applied and
52 — 510 this exception occurs. Also, in this case, we still consider that
S3 — 8482 af3 repeats itself only once.) In Case Zz) = 0 implies that
sy —11. the symbola represents théth phraser,,, |41 ---z,,. Since

2 represents théi + 1)th phrase, it is not hard to see that
In Example 6, we see that to g&t., from the appended’;, Reduction Rule 4 is not applicable in this case. To see this is
only Reduction Rules 1-3 are possibly involved. Furthermongue, suppose that there is a production ryle— «/3 for some
the order via which these rules are applied is unique, and e j < j; in G. Sincel(s) = 0, G;_1, G;, andG; all have
number of times these rules need to be applied is at most 2. Tihis same variable set, and for asyother thansy, G;_1 (s;),
phenomenonis true not only for Example 6, but also for all oth€¥, (s, ), andG,(s;) are all the same. In view of the greedy na-
sequences, as shown in Theorem 1 below. ture of the proposed irreducible grammar transform, the produc-
Before we state Theorem 1, we define a function tion rules; — «f in G;_; then implies that théth phrase is
Ty 417" T Ty 1~ " Ty, INStEAd ofe,,, 41 --- 2y, This
is a contradiction. Thus at this point, only Reduction Rule 2 or 3
as follows: I(1) = 0, and for anyi > 1, I(4) is equal to is appllicabltle. A/pply Reductipn Rule 2 once ift.he patterhre-
0 if @ is equal to the appended;_;, and1 otherwise. Ac- peats |tself iNG%(so); otherwise, apply Red'uctlon Rule 3 once.
cording to this definition, the sequen#(i) 115, in Example 6 1€ resulting grammar has a variable 8¢j; + 1) and a new

is 000000110010110100. Note that we assume that the variab|@"oduction rules;, — a/3. We claim that the resuilting grammar
set ofG; is S(ji) = {50, 51, -+, 55,11, is irreducible and hence equal €_,. To see this is true, first

note that there is no nonoverlapping repeated pattern of length
Theorem 1: Let« be the last symbol off;(so). Let 3 be the  >2 any more in the resulting grammar, singg is the only
symbols; that represents,,, 11 - - - @, if n;41 —n; >1,and nonoverlapping repeated pattern of length in the range of
@, 1 itself otherwise. Let] be the admissible grammar ob-¢;/ and repeats itself only once in the rangejf Second, ifv
tained by appending to the end of;(so). Then the following s a variable, thed (i) = 0 implies thate appears in the range
steps specify how to g&t; ., from G;: of G; at least three times. tf = /3, thena appears in the range
Case 1: The patterng does not appear in two nonoverlap-of ( at least four times; as a result, when a new production
ping positions in the range @¥,. In this case(F, is rules; — «f (Whichiss;, — a« in this special case) is intro-
irreducible and hencé€;, is equal toG,. duced, each variablee S(j; + 1) other thans, still appears at
Case 2: The pattera/3 appears in two nonoverlapping po-least twice in the range of the resulting grammar. On the other
sitions in the range of¥;, and(:) = 0. In this case, hand, ifa # 5 andj is a variable, thei appears in the range
apply Reduction Rule 2 once if the pattet repeats of (7, at least three times; as a result, when a newsple- «f
itself in G;(s¢), and Reduction Rule 3 once otherwiseis introduced, each variablee S(j; + 1) other thans still ap-
The resulting grammar is irreducible and hence equpgars at least twice in the range of the resulting grammar. The
to G;41. The variable set of7,1; is S(j;+1) with resultalso holds in all other cases: neitheror 3 is a variable or
Jixr = Ji + 1, and the newly created production ruleonly one of them is a variable. Finally, the new variabjerep-
iss;, — af. resents the sequenas,,_, 1 - Tn, Tn, 41" - Tn,,, Which is

{1, 2 ---,t} — {0, 1}



YANG AND KIEFFER: EFFICIENT DATA COMPRESSION ALGORITHMS BASED ON A GREEDY SEQUENTIAL GRAMMAR TRANSFORM—PART | 761

distinct from all other sequences representedhp < j < j;. rulesg — s;,s;,. This variant was first described by the authors
To see this is true, note that otherwise, one gets the contradicfl14]. All the results in this paper hold as well for this variant.
tion that theith parsed phraseis,,_, 11 Tn,Tn,+1- - Tn,,, We shall notuse this variant as our grammar transform since, in
instead ofr,,, , 41 ---z,,. Therefore, the resulting grammar ispractice, itis highly unlikely that the entire previously processed
indeed irreducible and hence equaldg,; . string will occur again right away (except near the beginning of

In Case 3/(i) = 1 implies that is equal to the newly intro- the data).

duced variables;, - in G; and appears only twice in the range Remark 2: In their recent paper [18], Nevill-Manning and

of G;. Using mathematical induction, one can show that in thigjitten presented independently a grammar transform that

case represents the substring obtained by concatenating hstructs sequentially a sequence of grammars. However, the
ith parsed phrase, thg — 1)th parsed phrase, ., and up 0 grammars constructed by their transform are not necessarily
the (z — {)th parsed phrase for somde> 1. Note that in Case jrreducible because they do not satisfy Property b.3). As a

3, a # A3, andag repeats itself only once in the range@f.  result, the corresponding grammar code may not be universal.
A similar argument to that in the above paragraph can be used

to show that at this point, Reduction Rule 4 is not applicable. IV. UNIVERSAL ALGORITHMS
Apply Reduction Rule 2 once if the pattesus repeats itself in
Gl (sq); otherwise, apply Reduction Rule 3 once. The resultin
grammar, which is denoted I8y, has a variable s&t(j; + 1)
and a new production rule;, — «/3. However, the resulting
grammarG? is not irreducible sincer appears only twice in

Having described our irreducible grammar transform, we now
escribe our compression algorithms: a hierarchical algorithm,
a sequential algorithm, and an improved sequential algorithm.
They share the common greedy grammar transform, but have
the range ofG/, and as a resulix appears only once in thed|1‘ferent encoding strategies. We first describe the hierarchical

range ofG”. In fact, « appears only in the newly introducedalgorithm which consists of the greedy irreducible grammar

rule s;, — af. Apply Reduction Rule 1 t&/ and change;, %t?;?)flgr;r;om"r%gre::d by the arithmetic coding of the final irre-
te

back tos;, _i. The resulting grammar has the same variable s ? ; o .
S(j;) as does?;, and the production rule correspondingta; . The Hierarchical Algorithm: Let_ N b? anA sequence which
is obtained by appending to the end ofG;(s;._1). We now IS tobecompressed. L&, be the final irreducible grammar for
i(85.-1). . : . .

claim that the resulting grammar is irreducible and hence eqlTaiur_mShed by our irreducible grammar tra_nsform. In the h_ler-
to Gy41. To see that this is true, first note that since b6t ; archlcgl algorithm, we use a zero_—order _arlthmetlc code with a
andG; are irreducible and sinaes is the only repeated patterndyna.”.]IC alphapet to encodg, (or its equivalent form). After
of length>2 and repeats itself only once in the rangecf receiving the binary codeword, the decoder recogérgor its
there is no nonoverlapping repeated pattern of leixlin the equivalent form) and Fhen p(_arforms the parallel replacement
range of the resulting grammar. (Note that the irreducibilit (Rroce_dure mentioned in Section ”. to gzet :

9 99 ( y [To illustrate how to encode the final irreducible gramryar

(;_1 guarantees that the pattern consisting of the last symbol . o )
of Gy(s,,_1) andg3 in the range of the resulting grammar is no et us look at Example 6 again. The final irreducible grammar
N or the sequence in Example 6 is715 given by

a nonoverlapping repeated pattern.) Secong,ig a variable,
thens appears at least three times in the rang@’ofas a result, S0 — 518535253545453
every variable other thag in the resulting grammar appears at s; — 100

least twice in the range of the resulting grammar. Finally, due

to the greedy nature of the proposed irreducible grammar trans- s2 = 510
form, the variables;, _; in the resulting grammar represents the §3 = 5452
sequence obtained by concatenatingthiel)th parsed phrase, sq4 — 11,

theith parsed phrase, ., and up to the: — [)th parsed phrase,
which is distinct from all other sequences represented by
0 < j < j; — 1. Therefore, the resulting grammar is irreducibl
and equal ta7; 4.

The above form of#;5, however, is not convenient for trans-
5nission. To encodé& g efficiently, we first convertz,g into its
canonical form@/, given by

Finally, note that there is no other case other than Cases 1-3. 80 — 8152838284542
This completes the proof of Theorem 1. 51 — 100
From Theorem 1, we see that once thet 1)th phrase is S —»
.. 2 54853
parsed off, it is pretty fast to g€¥;,, from the appended;.
Sz — 810
Remark 1: There is a variant of the proposed irreducible sy — 11,

grammar transform in which the next substring 1 - - -z, ,

is the longest prefix of,,, 1 - - - 2, that can be represented byT0 getGys from G13, we simply rename the variablg in G1s
s; for some0 < j < j; if such a prefix exists, and otherwise,ass2 in G and the variable, in G5 asss in Gis. The differ-
Tyl iy = Tp41 With ni41 = n; + 1. In other words, €nce betweer?, andGi5 is that the following property holds
the symbols, now is also involved in the parsing. To g8y, for Gis, but not forG s:

from the appended’;, special attention must be paid to the case c¢.1) If we read{(s;) from left to right and from top«(=
wheresq is appended to the end ¢;(s); in this case, one 0) to bottom ¢ = 4), then for any; > 1, the first
changessg in G; to a new variables;, and introduces a new appearance of; always precedes that ef ;.
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In Gig, the first appearance of; precedes that of,; this is Repeat the above procedure until the whole generated sequence
why we need to rename these two variables to@gt Note is encoded. For the generated sequence given by (4.2), the
that bothGG1s andGY, represent the same sequencéVe now product of the probabilities used in the arithmetic coding
encode and transmit{, instead ofG;s. To do so, we concate- process is

nateGYs(so), Gig(s1), -+, Gis(s4) inthe indicated order, in- 1231 41 2 1 1 112 22 1132 3

sert symbot at the end of#Y,(s¢), and for anyi > 1 satisfying S :

1G9, (s;)| > 2, insert symbob at the beginning of¥,(s;) and In generalZ tp enpode the .f|nal wredgmble gramrigr we
symbole at the end of3%4(s;), where symbol$ ande are as- first convert it into its canonical fornd?{, then construct the

sumed not to belong t§ U A. This gives rise to the following S€quénce generated frai, and finally use a zero-order arith-
sequence from the alphab8tU A U {b, ¢}: metic code with a dynamic alphabet to encode the generated

sequence.
51525352545452¢0100es4535,011 4.1
Remark 3: It should be pointed out that in practice, there is
Mo need to write down explicitly the canonical for&{ and
the generated sequence before embarking on arithmetic coding.
: . o ) . The converting ofG; into G, constructing of the generated
g . g . to
Gs(si) with [G5(s;)| > 2 can be identified by looking at palrssequence, and encoding of the generated sequence can all be

(b, ¢). Finally, all the OIherGi%(si) have lengtie. (One may done simultaneously in one pass, assuming thahas been
wonder why we need to introduce both symhodedb; after all, furnished by our irreducible grammar transform.

we can insert at the end of eact#{(s;) to identify G{s(s;).
The reason is that moét,; (s;) of any G, furnished by our irre-  Remark 4: A different method for encoding canonical gram-
ducible grammar transform have len@thAs a result, by using mars has been presented in [12]; it is based on the concept of
the pair(b, ¢) to isolateG,(s;) with |G:(s;)| > 2, we actually enumerative coding [6]. The method presented here is intuitive
get a shorter concatenated sequence and hence better compragmore efficient.

sion performance.) Sinc&Y, is canonical, i.e.(?Y, satisfies The sequential nature of our greedy irreducible grammar
Property c.1), the first appearancespffor any: > 1, precedes transform makes it possible to parse and encodeltsequence

that ofs;,; in the sequence given by (4.1). To take advantage ofsimultaneously.

this in order to get better compression performance, we go onélhe Sequential Algorithmin the sequential algorithm, we
step further. Let be a symbol which is notis U AU {b, ¢}. encode the data sequenceequentially by using a zero-order
Foreach > 1, replace the first appearancespin the sequence arithmetic code with a dynamic alphabet to encode the se-
given by (4.1) bys. Then we get the following sequence fronfjuence of parsed phrases, =2 -+ Tn,, - *» Tn,_ 41" Tn,-
SUAUAD, e, s} Specifically, we associate each symbble S U A with a
counterc(3). Initially, ¢(53) is settol if 3 € A and0 otherwise.

At the beginning, the alphabet used by the arithmetic codk is
which will be called the sequence generated frGfiy or its  The first parsed phrase is encoded by using the probability
canonical formGY{g. Clearly, from the sequence given by (4.2)¢(z; )/ Y scac(B). Then the counter(z;) increases byl.

we can get the sequence given by (4.1) back by simply replaci8gppose thatry, @3- 2n,, -+, Tn, ,4+1---2n, have been

the ith s in (4.2) by s;. Therefore, from the sequence generparsed off and encoded and that all corresponding counters have
ated fromG s, we can gets{; and hencer. To compres€+{;  been updated. Le¥; be the corresponding irreducible grammar
or z, we now use a zero-order arithmetic code with a dynamier z; - - - z,,.. Assume that the variable set 6f; is equal to

where4 = {0, 1} in this example. From the sequence given b
(4.1), one can easily g€tf, back. FirstGY4(so) can be identi-
fied by looking at the first appearance of symboBSecond, all

5555255452eb100es,535,011 (4.2)

alphabet to encode the sequence generated o Specifi-  S(j;) = {so, s1, -+, s;,-1}. Let @, 41 -+ - 2,,, be parsed
cally, we associate each symbdle SU.AU{b, ¢, s} witha off as in our irreducible grammar transform and represented by
counterc(f3). Initially, ¢() is settol if € AU{b, e, sfand 3 € {s1, ---, s;,_1} U A Encoder,, 41 - -z, (or 3) and

0 otherwise. The initial alphabet used by the arithmetic codeiipdate the relevant counters according to the following steps:

AUA{D, ¢, s}. Encode each symbglin the sequence generated giep1: The alphabet used at this point by the arithmetic code
from G5 and update the related counters according to the fol- is {s1 sj_1} U A. Encodex,, 41 -« by
5 s 84— . n; 41

lowing steps: using the probability
Step 1: Encodg by using the probability
B) Z (). (4.3)

e(B) /Z ela) €Sy UA

Step 2: Increase(3) by 1.
where the summatiop | is taken overdU{b, e, s}U Step 3: Getd,; 4, from the appended; as in our irreducible

{s1, --+, s;}, and¢ is the number of times that oc- grammar transform.
curs before the position of thi§. Note that the al-  Step4: Ifj;11 > j;,i.e.,G;41 includes the new variable;,
phabet used at this point by the arithmetic codé is increase the countefs;, ) by 1.
{b, e, stU{s1, -, si}. Repeat this procedure until the whole sequenég processed
Step 2: Increase the count&y?) by 1. and encoded.
Step 3: If3 = s, increase the countefs;;,) from 0 to 1, Note thatc(sp) is always 0. Thus the summation over

wheres is defined in Step 1. S(;) U A in (4.3) is equivalent to the summation over
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{s1, -+, 85,1} U A. From Step 4, it follows that each time  d.3) There is no variable; of G; such that7;(s;) is equal
when a new variable;, is introduced, its counter increases to .

from 0 to 1. Therefore, in the entire_ encoding process, thgrefshe listL,(+) consists of all symbolg € SUA such that Prop-
no zero—frequency problem. AI;o, in the sequential algo”_th"@rties d.1) and d.2) hold. The elementsir(+) (or L»(7)) can
_the parsing of phrases, encoding o_f phrases, and Updat'”goefarranged in some order. We can use thelists) andLa ()
|rred_U(_:|bIe grammars are all done in one pass. Clearly, aftgffacilitate the process of updatii@ to G, and to improve
receiving enough codebits to recover the symiidhe decoder e encoding process in the above sequential algorithmaLet
can perform the update operation in the exact same way as dgg$he |ast symbol of¥;(so). Let the(i + 1)th parsed phrase
the encoder. Tni41-"-Tn,,, be represented by € {s1, - -, s;,_1} U A.
Remark 5: It is interesting to compare the Sequentia| a|g0Then it follows from Theorem 1 and its prOOf that the pattern
rithm with LZ78. In LZ78, the parsed phrases are all distince:? appears in two nonoverlapping positions in the range of the
As a result, there is no room for arithmetic coding, which opepPpended?; if and only if 3 appears in the list («). To see
ates on phrases rather than on symbols frénto kick in. On how to use the listd.; () and Lz (v) to improve the encoding
the other hand, in our sequential compression algorithm, paré¥@cess in the sequential algorithm, we recall from Section III
phrases are of variable length and allowed to repeat themselyBat! (%) is equal ta) if G; is equal to the appendéd,_, , and1
Moreover, there is no upper bound on the number of repetitiop1erwise. From Theorem 1 and its proof, it follows that when
of each parsed phrase. As a result, there is room for arithmeti¢) = 0 andI(i + 1) = 1, the symbol3 appears in the list
coding, which operates on phrases, to kick in. Our irreducibfe.(r), and hence one can simply send the indeg of L, («)
grammar update mechanism acts like a string-matching meéthe decoder. Whef(i) = 1 andI(i + 1) = 1, 3 is the only
anism and provides candidates for new parsed phrases. Onglefent in the listL; () and thus no information needs to be
the important roles of our irreducible grammar update mechgent. Therefore, if we transmit the Wit + 1) to the decoder,
nism is to maintain a good tradeoff among the length the then we can use the bi(i + 1) and the structure of; to im-
numbert of parsed phrases, and the numpeof variables so Prove the encoding g8. This suggests the following improved
that good compression performance can be obtained. In Sec§fuential compression algorithm.
VI, we will show that the sequential algorithm is universal for The Improved Sequential Algorithmin the improved se-
the class of stationary, ergodic sources and has the worst c@idential algorithm, we use an ordearithmetic code to encode
redundancy upper bour@(log log ||/ log |z|). Although both the sequencg(i)};_,, and then use the sequenfcki)}i_,
our sequential algorithm and LZ78 are universal for the claggd the structures di; }{_, to improve the encoding of the se-

of stationary, ergodic sources, the simulation results presenfbt?nC(?_Of parsed phrases, z2 - Tp,, ", Tn,_ 41° T Ty
in Section VII show that our sequential algorithm is better thafl 2ddition to the counters(y), v € S U A, we now define
Unix Compress, which is based on LZ78. new countersc(0, 0), <(0, 1), c(1, 0), (1, 1), and &(v).

i ) The counterse(0, 0), ¢(0, 1), ¢(1, 0), and¢(1, 1) are used

Example 7: We apply our sequential algorithm to compresg, encode the sequencgl(i)}t_,; initially, they are all
the sequence equal tol. The (¢ + 1)th parsed phrase is encoded by the
countersé(y) wheneverI(¢) = 0 andI(¢ + 1) = 1 and by
the countersz(y) wheneverI(i + 1) = 0. As in the case
of ¢(v), initially é(y)is1if v € Aand0if v € S. The
first three parsed phrases are encoded as in the sequential
algorithm since they arey, 2, and z3. Also, I(1), 1(2),
andI(3) are all0 and hence there is no need to encode them.
Starting from the fourth phrase, we first encode + 1),

and then usd (i + 1) as side information and the structure

The product of the probabilities used to encode these par%qdai as context information to encode tie+ 1)th parsed
phrases is

z =10011100010001110001111111000

shown in Example 6. It follows from Example 6 thats parsed
into

{1,0,0,1,1,1,0,0,0,100,0,1,1,1000,1,1,11,111000}.

phrase. Suppose that, x2- - Tp,, "+, Tn,_,+1 " Tn, and
11223434 5 165 6178 1 1 1(4), ---, I(¥) have been encoded and that all correspopding
P=73%335678101I 12 13 15 16 18 19 20 22 23" counters have been updated. L@ be the corresponding
irreducible grammar for - - - x,,,. Assume that the variable

Careful examination of the above sequential algorithm r et of &; is equal t0S(j;) = {so, s1, -+, s;_1}. Let« be
veals that the encoding of the sequence of parsed phrases Hgﬁastzsymbol OG(QOZ) Let ,xo,+11j o Ji_k;é.parsed off
. . . (3 . i i+l
hot ut|I|z_e the S'Fructure of the irreducible grammafs 1, < as in our irreducible grammar transform and represented by
i < t. SinceG; is known to the decoder before encoding th% € {s1,---, 5;, 1} UA. Encodel(i + 1) and, and update
’ ? i . ’

(i + .1)th par;ed phrase, we can use the strqctu@iais €ON" " the relevant counters according to the following steps:
text information to reduce the codebits for tfiet- 1)th parsed

phrase. To this end, we associate each symboIlS U A with Step 1: Encodd(i + 1) by using the probability
two lists L (v) and L(v). The listL; () consists of all sym- . . . .
bolsn € & U A such that the following properties are satisfied: c(I(2), I(i +1))/(c(I(2), 0) + c(I(), 1))

d.1) The patterny appears in the range of;.
d.2) The patterny is not the last two symbols &F;(so). Step 2: Increase(I(i), I(i + 1)) by 1.
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Step 3: If(: + 1) = 0, encodes by using the probability  this sequence only for the purpose of illustrating how these al-
gorithms work. For long data sequences, simulation results pre-

c(B) Z c(v) (4.4) sented in Section VIl and in [31] show that the improved se-
~CS(UA—La () guential algorithm is the best and yields very good compression

and thenincreas€3) by 1. If I(¢)=0andI(i+1)=1, performance
encodef by using the probability V. PERFORMANCE OF THEHIERARCHICAL ALGORITHM
&) Z &) (4.5) Inthis section, we analyze the performance of the hierarchical
~ELL(a) compression algorithm and provide some insights into its work-
and then increasé(3) by 1. On the other hand, if ings. Some of the results presented in thls_sectlon_ will be used
I(i) = 1andI(i + 1) = 1, no information is sent to anglyze thg performance of the sequential and improved se-
sinceL; («) contains only one element and the decodec}uentlal algorithms.
knows what3 is. . Let T = LTy Ty be a sequence from. Let G be any
irreducible grammar that representsOur methodology is to
Step4: Getd,;4, from the appended; as in our irreducible identify a proper parsing of induced by and then relate the
grammar transform. Update, () and L. () accord- compression rate of the hierarchical algorithm to the empirical
ingly, wherey € S(j; 1) U A. entropy of the induced parsing of To ultimately evaluate the
compression performance of the hierarchical algorithm against
the k-context empirical entropy of, which is defined later in
) . . this section, several bounds on the number of phrases in the
Repeat this procedure until the whole sequente processed induced parsing aof are essential. These bounds are established

an’tilI inCtC;]de- o of Th Land it . gJia Lemmas 1-4.
ote that in view of Theorem 1 and its proof, one can de-" oo T i

termine(i 4+ 1) by examining whether or ngt is in L;(«).
Therefore, one can perform the encoding operatiof b&fore S(4) = {s0, 51, ---, sj-1}
updatingGs; to Gi41. In Step 3, wherd (i +1) = 0, 7 cannotbe  for somej > 1. We first explain howG induces a partition
from Lo(); whenl(i + 1) = 1, B is from L (). Once again, of 5 | et S denote a dynamically changing subsetSff);
this follows from Theorem 1 and its proof. The alphabet useftially, S is empty. Letu® = G(so); u(? is a sequence
in the arithmetic coding igsi, - --, sj,—1} UA = La(e) When  from S(5) U A. If j = 1, or equivalently if there is no variable
I(¢+1) = 0, andLy (o) whenl(i) = 0 and/(: + 1) = 1. in ©(©, thenw(? itself is called thepartition sequencenduced
Example 7 We apply the improved sequential algorithm tdy G- Otherwise, do the following.
compress the sequence Step1: Set = 0.
B Step 2: Foi > 0, readu(”) from left to right. Replace the first
@ = 100111000100011100011 11111000 variables which is not inS¢ by G(s). The resulting

Step 5: Ifj;4+1 > Jj;, i.e.,Gi41 includes the new variable;,,
increase botl(s;,) andé(s;, ) by 1.

shown in Example 6. It follows from Example 6 thats parsed sequence is denoted 1),
into Step 3: Update& by inserting the variable into Sg;.
{1,0,0,1,1,1,0,0,0,100,0,1,1,1000, 1,1,11,111000}. Step4: Repeat Steps 2 and 3 o= 0, 1, ---, (j — 2) SO
) . that each variable € {s, s2, -+, s;_1} is replaced
The corresponding sequeng&:)} is by G(s) exactly once.
000000110010110100. In the final sequence“—1), every variable is fromSs. The

,ﬁié‘g" sequence:~1) is called thepartition sequencénduced
(1S, is by'G. Recall from Section 1 that each variablee S(j) rep-
=4 resents a distinct substring of The partition sequenae’—1)
induces a parsing of if each symbol ins“ 1) is replaced with
to encode the parst&? corresp.onding substring mf Thg given sequence is the
concatenation of the phrases in this parsing.
To illustrate the above idea, let us revisit Example 6.

The product of the probabilities used to encode the seque

IS

3 7
The product of the probabilities used
phrases is

2345342463125135 1516 Example 8: In Example 6, the sequence
Note that th&i+ 1)th parsed phrase need not be encoded when-
everI(i) = 1andI(i + 1) = 1. z = 10011100010001110001111111000
Remark 6: Assume that exact arithmetic is used. Then for tHg represented by the irreducible gramntigg
binary sequence shown in Example 6, the compression rates SQ — 51535253545453
in bits per letter given by the hierarchical algorithm, sequential 51 — 100

algorithm, and improved sequential algorithm ar&79, 1.179,
and1.383, respectively. In this particular case, instead of having
compression, we get rather expansion. The reason for this is, of 83 77 8482
course, that the length of the sequerds quite small. We use s4 — 11.

so — 510
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In this examplej = 5. The five sequences®, w1 ... ¥ Proof: We prove Lemma 2 by induction. Clearly, Lemma
are 2 is true for anyG; with ¢ < 3 since in this case, the ir-
reducible grammax3; consists of only one production rule
w9 = s1535053545453, so — x1---x;. Suppose now that Lemma 2 is true f6¥;
1) =100838283545453, with ¢ > 3. We next want to show that it is also true fG%, ;.

In view of Theorem 1, different reduction rules need to be

) =100
“ 4525253545453, applied in order to gef+;1 from the appended;;. It is easy

(3) — . .
w” =10011s25253545453, to see that in Case 3 of Theorem 1, the partition sequence
and w0 1=D(G, 1) is the same as¥: ~1)(G;). (For example, the
u® = 1001151 05283548453 irreducible grammar7;3 and G145 in Example 6 induce the

same partition sequend®011s;0s2s3.) Thus in this case, our
The dynamic setSg goes from the empty set to the se@ssumptionimplies that Lemma 2 is true &gy, ;. In Case 2 of
{s1, s3, s4, s2}, as shown below Theorem 1, the partition sequeng€:+1 =1 (G, ;) is the same
' ' as uVi—1(G;) except the last symbol; imt1=1(G,41),
{} = {s1} — {51, s3} — {s1, 53, 54} — {51, 53, 54, 52}.  the last symbol is equal to the newly introduced variable
sj,.,—1 Which appears inuUi+1=1(G,41) only in the last
Note thats; representd00, s, representd000, s3 represents position. (For example, in Example &, induces a partition
111000, ands, representd 1. The partition sequence® par- sequence0011s;0s; while Gy; induces a partition sequence

titions z into 10011s10s2.) Therefore, in this case, there is no repeated
pattern of lengtts in »i+1=1(G; 1) and hence Lemma 2 is
1, 0,0, 1, 1, 100, 0, 1000, 111000, 11, 11, 111000. true forG,41. In Case 1 of Theorem 1, the partition sequence

ul+1=1(G,41) is obtained by appending the last symbol in
It is easy to see that the concatenation of the above phrase&isi(so) to the end oful’s~1)(G;). To show that there is no
equal toz. Also, note that the length of the partition sequencepeated pattern of lengthin «+1=1(G;,,) in this case,
is 12, which is equal tdGys| — (5 — 1). we distinguish between several subcases. We need to look
In the case wheré& happens to be the irreducible grammaat how G; and G;_; are constructed frond;_; and G;_»,
G, furnished by our irreducible grammar transform, the parsingspectively. If(i) = 1, then the last symbol in: =1 (G;)
of = induced by the partition sequence is related, but not equial,equal tos;,_, which appears only once im0 —(G,).
to that furnished by our irreducible grammar transform. This caliearly, in this case, there is no repeated pattern of length
be seen by comparing Example 8 with Example 6. The parsiggn «i+1=D(G,4,). If I(i) = 0 andI(i — 1) = 1, then
of = induced by the partition sequence can be used to eval¥i—1)(G,) is obtained by appending the last symbol in
uate the performance of the hierarchical compression algoritl®(s,) to the end ofu@'f—l*l)(Gi_l) and the last symbol
while the parsing ofc furnished by our irreducible grammarin +Ui-1=9(G, ) is equal tos;_, ; which appears only
transform can be used to evaluate the performance of the sgee inu(ﬂ'ffl—U(Gi_l). Once again, in this case, there is
quential algorithm. The number of phrases in the parsing ofno repeated pattern of length in u<jf+1*1)(Gi+1) since
induced by the partition sequence is less than the numberqpff+1—1)(Gi+l) is obtained by appending the last symbol in
phrases in the parsing offurnished by our irreducible grammarg; . ,(s,) to the end Ofu(ji—l)(Gi)_ The only case left is the
transform; the improved sequential algorithm tries to encode @ise in whichI(i) = 0 andI(i — 1) = 0. It is easy to see
rectly the parsing of induced by the partition sequence.  that in this case(?;, is obtained fromG;_, by appending
The following lemma relates the length of the partition sghe three recent parsed symbols to the endGof(so),
quence to the size d. and uYi+1-1(@G,,,) is obtained by appending the last three

Lemma L: Let G be an irreducible grammar with variable seBYmbols in Gi11(s0) to the end ofut—>=Y(G,_,). Let
S(j) = {50, 51, -+, 5;_1}. Then the length of the partition #1/5%20304 be the last four symbols ini+:=1(G;,.1). Clearly,
sequence:’ Y induced byG is equal toG| — 5 + 1. B2f304 is the only possible repeated pattern of lengtin

Proof: Lemma 1 follows immediately from the observa''+' =" (Giy1). Note that for any irreducible grammé, the

tion that in the whole process of deriving the partition sequent&st symbol in the partition sequence inducedcbis the same
u(jfl)' eachs;, 0 < i < 7 is rep|aced 0n|y once. as the last Symbol IG(S()) ThUSﬁl is also the last symbol
, , in G;_2(so) and henced, 323334 yields the last four symbols
From now on, we _concen_trate on irreducible grampy, G;11(so). From this, it follows that3,/33/3, cannot repeat
mars furnished by our irreducible grammar transfor.m. Letalfin a overlapping position inUi+1 =1 (G, 1) sinceG;.
¢ = w122 Iy bE a sequence from. Let G, be the final o504 cible. On the other hand, for any substringacs
|rredu_0|ble grammar with variable set(j;) resulting from of length3 of u(ji_z,l)(qu)’ eitherayay OF asas appears
applying our |r_redUC|bIe grammar transform 10 Then we in Gi_a(s;) for somes; € S(ji_2). SinceG,4. is obtained
have the following lemma. from G,;_» by appending’s/33/3. to the end ofG;_»(sq) and
Lemma 2: In the partition sequencg’*~Y)(G,) induced by G4, is irreducible, it follows thatd; 533, cannot repeat itself
G,, there is no repeated pattern of lengttwhere patterns are in «¥—>=(G;_,). Thus there is no repeated pattern of length
counted in the sliding-window, overlapping manner. 3in uY+1=U(G,41). This completes the proof of Lemma 2.
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Remark 7: From the proof of Lemma 2, it follows that with whereCy € C is the initial context, antbg stands for the loga-
the help of our irreducible grammar transform, the partition sethm with base2 throughout this paper. Let
quencex*~D(G,) can be constructed sequentially in one pass.

Lemma 2 enables us to establish useful upper bounds on tl}g ) 2 _ 1 log max max Z H p(zi, Ci|Ciy)
size of the final irreducible gramma¥, and the length of the n poCheC L T sl
induced partition sequence in terms of the length These (5.2)
bounds are stated in Lemma 3 and will be proved in Appendix &here the outer maximization varies over every transition prob-
ability functionp from C to .4 x C. The quantity; (x) represents
the smallest compression rate in bits per letter among all arith-
metic coding algorithms witk contexts which operate letter by
letter. It should be, however, emphasized that there is no single
arithmetic coding algorithm withk contexts which can achieve

Lemma 3: Let z be a sequence frord. Let G, be the final
irreducible grammar with variable s&t{j;) resulting from ap-
plying our irreducible grammar transformaoLet« V=2 (G,)
be the partition sequence induced®@y. Then

|u<ﬂ't—1>(Gt)| 3log | A| the compression ratg (z) for everysequence = z1xz - -z,
7] = log [z|—3loglog |z|—2—8log | 4] Whenk = 1, 75 (z) is equal to the traditional empirical entropy
and of . For this reason, we caflf;(x) the k-context empirical en-
|G| 6log | Al tropy of z.

| (5.1) Let 7"(z) be the compression rate in bits per letter resulting
from using the hierarchical compression algorithm to compress
x. We are interested in the difference betwebr) andr ().

27: n—1 Let
o] > n( )|A|" N
SN Rl 2 max ['(2) - ri()]

|z| ~ log|z| — 3loglog|z| — 2 — 8log|A
whenever

andlog |z| — 3loglog |z| — 2 — 8log|.A| > 0, wherelog stands

Lo
for the logarithm with base. The quantityR;, , is called theworst case redundanayf the

hierarchical algorithm against tikecontext empirical entropy.

The following lemma, which will be proved in Appendix B,
gives a lower bound to the average length of #hsequences
represented by; € S(5;),i =1, -+, jr — 1.

Theorem 2: There is a constant;,, which depends only on
|A] andk, such that
log log
Lemma 4: Let x be a sequence frord. Let G, be the final Rn < dg 208081
irreducible grammar with variable s&{j,) resulting from ap-
plying our irreducible grammar transform 1o Then

logn

Remark 8: Worst case redundancy is a rather strong notion
ji—1 of redundancy. For probabilistic sources, there are two other
] Z |5 notions of redundancy: average redundancy [8] and pointwise
Jr redundancy [21]. It is expected that the average and pointwise
> 31 [log || — 3loglog |z| — 3 — 9log | A| — log 3] redun_dancies_of the hierarchical, sequential, and improved se-
|A| guential algorithms are much smaller. The exact formulas of
h these redundancies, however, are unknown at this point, and left

wheneverz| > 3(].A| + |.A]?)3, wherels;| denotes the lengt
open for future research.

of the A-sequence represented bye S(j:).
We are now in position to evaluate the compression perfor-  Proof of Theorem 2:Let = € A™ be a sequence to be
mance of the hierarchical data compression algorithm. We cosbmpressed. Le®, be the final irreducible grammar with vari-
pare the compression performance of the hierarchical algoritfale setS(5,) resulting from applying our irreducible grammar
with that of the best arithmetic coding algorithm witlontexts  transform toz. Let u*~(G,) = uyuy - - - u,, be the parti-
which operates letter by letter, rather than phrase by phrase. tieéh sequence induced Iy,. Recall that the hierarchical com-
C be afinite set consisting éfelements; each elemefitc Cis pression algorithm compressedy first convertingG, into its
regarded as an abstract context. hef x (A x C) — [0, 1] be canonical formGY, then constructing the sequence generated
atransition probability function froito A x C, i.e.,p satisfies from &,, and finally using a zero-order arithmetic code with
, a dynamic alphabet to encode the generated sequence. In the
Z pla, CC7) =1 process of converting’, into its canonical formG?, one gets
acA, cce a permutationr over A U S(j,) such that?¢ is obtained from
for anyC’ € C. Note that random transitions between contexts; by renaming each symbgl as~(/3). For example, for the
are allowed. For any sequenge= z;x2---x, from A, the finalirreducible gramma¢¥;s in Example 6, the permutation
compression rate in bits per letter resulting from using the aritis- given byz(s3) = sz, w(s2) = s3, andw(3) = g for any
metic coding algorithm with transition probability functiprio  other symbol3. Letv = v w5 - - - v; be the sequence generated

encoder is given by from G;. Note thatv is from S(j:) U.A U {b, e, s}. Strike out
1 symbolss, b, ande in v. The resulting sequence is called the
—— log Z H p(z;, C;|Ci_1) content sequengenerated frond?; and denoted by’. (For ex-
n

S, eC =1 ample, the content sequence generated feagin Example 6 is
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$25452100s45351011.) It is easy to see that the content sequende the above¢s denotes, for each € S(j:) U AU {s, b, e},

+' and the partition sequene#’ ) (G,) have the same length the number of3 in v, H(v) denotes the first-order unnormalized
|G+| — j: + 1. Furthermore, for each symbgl € S(j;) U.A, empirical entropy ofs, and

the frequency of3 in »\:=Y(G,) is the same as that af(3)

inv’. Thusu*—Y(G,) andv’ have the same first-order unnor- <

€s Cp Ce l—cS—cb—ce>
malized empirical entropy, that is,

A A {

denotes the Shannon entropy of the distribution

H (x5 Y(a)) = Hv 5.3
(979(G) = HW) ®3) (e /1, e/l o]l (L— s — e — ) /1),
whereH (v~ (G,)) is defined as The inequalityl) is due to the well-known inequality on the
size of a type class [7, Theorem 12.1.3, p. 282]. The equallity
H (48D g)) 2 =B, 1<i< follows from the entropy identity saying that the joint entropy
(u ( t)) acs%:)w iz =, 1< i s mi of two random variables is equal to the marginal entropy of the

o) first random variable plus the conditional entropy of the second
log |“ ’ (Gt)| random variable given the first random variable. The inequality
[{i:u; = 8,1 <i<m} 3) follows from the fact that

andH (v') is defined similarly. Below we will upper—bound the PG+ 1420 - 1) < 2/Gi].

total number of bitsir"(z) in terms of H(v'). Finally, the equalityt) follows from (5.3).
Assume that exact arithmetic is used. In view of the encodingTo complete the proof, we next upper-bouu: —1(G,))
process of the hierarchical algorithm, the probability used Ig terms ofr (). To this end, lep be a transition probability

encode the symbal; in v is function fromC to A x C for which the maximum on the
right-hand side of (5.2) is achieved. Note that spaxists and
c(vi) generally depends on the sequerd® be compressed. Let
Al +2 4+ c(s) be the probability distribution ot such that for any positive

integerr and anyy =y -+ -y, € A"
wherec(v;) is the number of; in the prefixvy v, - - - v; ande(s) .
is the number of in the prefixvvs - - - v;. Thus the number of P () = Quk =t~ max Z H (i, Ci|Cis).

bits needed to encodg is CoeC [ = L
. o . (5.5)
log <|A| +2+i+ c(s)) <log <|A| +1+41 +Jt> ' In '(5.5.), t'he constant); 'is. selected so that* is a proba-
c(v;) c(v;) bility distribution on.A™; it is easy to check tha, > 1/2.

Recall that the partition sequenegi*—1)(G,) partitions «
The above inequality is due to the fact that) < j. — 1 forall into nonoverlapping, variable-length phrases; each symbol in
positionsi. This implies that the total number of biﬁB’h(x) is u(jtfl)(Gt) represents a substring of and the concatenation
upper-bounded by of all these substrings is equal to Think of each symbol

B € S8(j:) U A as a sequence from. Then it makes sense to

! o write p*(3) for any 8 € S(j;) U A. From (5.2) and (5.5), it
h 711;[1 (A1 e +4) then follows that
nr'*(z) < log H (C@)! .
BES( )UAU s, b, e} Z —log p*(w;)
=1
‘ m
= log i ) < nrp(x) —mlog Qr + mlogk + 2 Z log |u;| (5.6)
BES( VAU, b, e} i=1
los I+ Al +1+ 7 where|u;| denotes the length of thé-sequence represented by
+ log |A| + 1+, u;. In view of the information inequality [7, Theorem 2.6.3, p.
26]
1)
< Hw) + 1+ A + 1+ .
2 g @ e tme-a-c H (u99(G) < 3 ~logp"(w1)
17101 l i=1
+H (W) + 1+ A+ 145, which, together with (5.4) and (5.6), implies

<3+ Al +1+5,+H) . . .
3) nr'*(x) <6|Gy| + |A| + 1 + i + nrp(x) — mlog Qr
< 6|Gy| + A+ 144 + H(V) m

n ) S —i—mlogk—i—ZZ log |u;]

= 6|Gy| + A + 144, + HuY =D(Gy)).  (5.4) —
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1)
<TG + | A + 2+ nrg(x) +mlogk
+ 22103‘ |24
i=1

2)
<TG + | A+ 2+ nrg(x) +mlogk
+ 2m10g( ) .

n
m

(5.7)

In the above, the inequality) is due to Lemma 1 and the fact
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This, together with sample converses in source coding theory
[2], [11], [34], implies
r"(X™) — H(X) almost surely.

VI. PERFORMANCE OF THESEQUENTIAL AND IMPROVED
SEQUENTIAL ALGORITHMS

In this section, we analyze the performance of the sequential
and improved sequential compression algorithms and provide
some insights into their workings. We take an approach similar

that@;. > 1/2. The inequality2) is attributable to the concavity iy 4+ of Section V.

of the logarithm function. Note that (5.7) holds for any SeqUeNnCe| ot « A+ pe a sequence to be compressed.@ebe the
a € A". Dividing both sides of (5.7) by and applying Lemma o) jrreducible grammar with variable s&(j,) furnished by

3, we then get

R <o(tYro(L) po(loslen)
' n logn logn

This completes the proof of Theorem 2.

Corollary 1: For any
X = {X;}2, with alphabet4

stationary, ergodic

MX1 Xy X)) — H(X)

the proposed irreducible grammar transform. Recall thiat

the number of phrases parsed off by the proposed irreducible
grammar transform. The next lemma, which will be proved in
Appendix C, upper-boundsin terms of a function ofx|.

Lemma 5: There is a constant;, which depends only on

o
source‘AL such that for any: € At with |z| > 3,

]

t<d .
= Mlogla]

Lemma5 enables us to evaluate the compression performance

with probability one asi — oo, whereH(X) is equal to the of the sequential and improved sequential compression algo-

entropy rate ofX.

Proof: Letk = |A|7. For any.A-sequenceg with length
ly] < m, let f(y|z™) be the frequency of in 2™ = 21 -+ -z, €
A™, computed in a cyclic manner

IS iS i amimipn @iy 1 = Y

flylz™) =

n

where, as a conventios; = z,; wheneveri = j (mod n).

rithms. Letz = x122 - - - z,, be a sequence frotd to be com-
pressed. Let*(z) be the compression rate in bits per letter re-
sulting from using the sequential algorithm to compresket
r1(x) be defined as in Section V. We are interested in the differ-
ence between’(z) andr}(z). Let

R} 2 max [r*(x) —ri(x)].

meAn

The quantityR;, , is called the worst case redundancy of the

Consider theyth-order traditional empirical entropy defined bysequential algorithm against tiecontext empirical entropy.

_ 2l X Log fly|X™)
Hy= 3 3 flyalx™)1 g(if@am))

yeEAI acA

whereX™ = X1 X5 ... X,,. Itis easy to verify that
ri(X™) < Hy.

Thus from Theorem 2

loglog n
I n

M XYW < H,+d——>—.
&) < H, logn

Lettingn — oo and invoking the ergodic theorem, we get
lim H,=H(X,41|X:1---X,) almostsurely

and
limsup " (X™) < H(X,41]|X1---X,) almost surely.

n—oo

In the above inequality, letting — oc yields

limsup " (X™) < H(X) almost surely.

n—o0

Using a similar argument to the proof of Theorem 2, one can
show the following theorem.

Theorem 3: There is a constanf],, which depends only on
|A] andk, such that

5
n,k —

J log logn

K logn

Proof: In the sequential algorithm, we encode the data
sequencer € A™ sequentially by using a zero-order arith-
metic code with a dynamic alphabet to encode the sequence
of parsed phrases, 2 - &n,, * "+, Tn,_ 41" * Ln, - ASSUME
that exact arithmetic is used. The probability used to encode
the (¢ + 1)th parsed phrase, which is represented by a symbol
B eS)UA,Is

o(B)
Al +i+j; — 1

wherec(f3) is the number of times the phrasg, 11 --- .., ,
appears in{xi, xo-- Tp,, ***, Tn;41° Ty, b THUs the
number of bits needed to encode the- 1)th parsed phrasgis

(A i+ 1 (A F i+ -1
k’g( (5) )SlOg’( (5) )
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This implies that the total number of bitsr®(z) is Theorem 4: There is a constant;,, which depends only on

upper-bounded by |A| and%, such that
L o , ~ loglogn
(Al +i+35:—2) oy S di————.
s | =1 ' logn
nri(x) < log T o)
Ccg3).
BeS(iHUA s The following corollary follows immediately from Theorem
4 and the proof of Corollary 1.
= log t! Corollary 3: For any stationary, ergodic source
IT () X = {X,}52, with alphabetA
BES(j1)UA
+log <<t A 2)) PO (X, X - X)) — H(X)
|A| + je — 2 ) . .
<Hp(z)+t+| A+, — 2. (6.1) With probability one as. — oo, whereH(X) is equal to the

entropy rate ofX.
In the above derivation;g, for each3 € S(j;) U A, denotes
the number of times thgl-sequence represented Byappears VII. SIMULATION RESULTS

In the sequence of parsed phrases To keep the information-theoretic flavor of this paper, this

section presents only simulation results on random binary se-

quences. For extensive simulation results on other types of prac-
The quantityH,(x) denotes the unnormalized empirical entical data, see [31].

L1, X2 Tpgy "t Loy 4177 Ty

tropy of the sequence of parsed phrases, i.e., Before presenting our simulation results, let us say a few
+ words about the computational complexity of our compression
Hy(z) = Z cglog <c—> . algorithms. Letr € AT be a sequence to be compressed. From
BES()UA s Section I, it follows that our compression algorithms have
A similar argument to the derivation of (5.6) and (5.7) can thq%nly_three major operations: the parsing :ofinto nonover-
apping substrings{xi, 22 Tpyy -+ Tny_y+1 T, ythe
lead to . : Eng -1 ¢
updating of G, into G441, ¢ = 1,2,---,t — 1, and
H,(x) < nrf(x) +t + tlogk + 2tlog (ﬁ) the encoding either ofG, or of the parsed substrings
t {z1, T2 Tpyy 5 Ty 41"~ Tp, p- IN view of Lemmas 3
which, coupled with (6.1), implies and 5, it is easy to see that the encoding operation has linear

n computational complexity with respect to the lengit. By
nr®(z) < nri(x) + 3t + |A] + tlogk + 2t log (;) (6.2) virtue of Lemmas 4 and 5, one can show that the average
computational complexity of the parsing operation is linear
with respect to|z| if = is drawn from a stationary source
s <o <10g10gn) satisfying some mixing condition. To updatg into G4, it

Dividing both sides of (6.2) byt and applying Lemma 5, we get

follows from Theorem 1 that at most two reduction rules are
involved. Therefore, the major computational complexity of

n,k =

logn

This completes the proof of Theorem 3. the updating operation lies in finding the location at which
Corollary 2: For any stationary, ergodic sourcénese reduction rules are applied. Letbe the last symbol
X = {X,}2°, with alphabet4 in G;(s0) and let3 be the symbol representing tiie+ 1)th
parsed phrase. As demonstrated in the proof of Theorem 1,
rI (X1 Xe - X)) — H(X) af is the only possible nonoverlapping repeated pattern of

length >2 in the appended;, and repeats itself at most once
in the range of the appended;. Since G; is irreducible,
one can show, by using a proper tree structure, that the total
computational complexity of finding the repetition locations for
alli =1, 2, ---, ¢t — 1islinear. Hence the updating operation
For any.A-sequence = x5 - - - &, letr**(x) be the com- also has linear computational complexity with respect to
pression rate in bits per letter resulting from using the improvéd|- Therefore, our compression algorithms, the hierarchical

with probability one ast — oo, where H(X) is equal to the
entropy rate ofX.

Proof: It follows immediately from Theorem 3 and the
proof of Corollary 1.

sequential algorithm to compressLet algorithm, sequential algorithm, and improved sequential algo-
N ‘ rithm, all have linear average computational complexity with
R?. = max [r"* () — ri(x)]. respect tdz|. In passing, our compression algorithms are also
; e An

linear in space. The argument just completed is rather brief; the
The quantityR:®, is called the worst case redundancy of themplementation details of our compression algorithms, their
improved sequéntial algorithm against theontext empirical complexity analysis, and extensive simulation results will be
entropy. Using similar arguments to the proofs of Theoremsr@ported in [31]. (Experimental results [31] show that for a
and 3, one can show the following theorem. variety of files, the improved sequential algorithm significantly
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TABLE |
RESULTS FORMEMORYLESSBINARY SOURCES OFLENGTH 10000

g |Shannon | |G| | ¢t [ji—1] (=) | r*(z) | r(z) Unix Gezip

entropy Compress

0.6 | 09710 |1809 | 1815 | 244 | 1.1165 | 1.1278 | 1.2041 1.3032 1.3496

0.7 0.8813 | 1667|1676 | 238 | 1.0314 | 1.0436 | 1.1076 1.2080 1.2920

0.8 | 0.7219 | 1427 | 1434 | 207 | 0.8428 | 0.8564 | 0.9206 1.0400 1.1312

09| 04690 | 996 | 1001 | 149 | 0.5564 | 0.5645 | 0.6142 | 0.7312 | 0.8128
Entropy and rates are expressed in terms of bits per letter.

TABLE I
RESULTS FORFIRST-ORDER MARKOV BINARY SOURCES OFLENGTH 10000

g [Shannon | [Gy] | ¢t [g—1] @) | r(z) | r(z) Unix Gzip

entropy Compress

0.6 0.9710 | 1833|1841 | 253 |1.1574|1.1692 | 1.2318 \ 1.3072 | 1.3456

0.7 0.8813 | 1665|1671 | 214 | 1.0337 | 1.0445 | 1.1048 | 1.2072 | 1.2576

0.8 | 0.7219 | 1475|1483 | 205 | 0.9075 | 0.9177 | 0.9687 | 1.0440 | 1.1016

0.9 04690 |1043 | 1050 | 159 | 0.6248 | 0.6327 | 0.6643 | 0.7360 | 0.7656
Entropy and rates are expressed in terms of bits per letter.

TABLE Il
RESULTS FORSECOND-ORDER MARKOV BINARY SOURCES OFLENGTH 10000

g | Shannon | |G| t Jg—1]7r%0) [ r(x) | r(z) Unix Gzip

entropy Compress

0.6 | 0.9710 | 1835|1843 | 247 |1.1526 | 1.1648 | 1.2335 | 1.3128 | 1.3432

0.7 | 0.8813 | 1672 | 1681 | 235 | 1.0331 | 1.0436 | 1.1035 1.2280 1.2688

0.8 ] 0.7219 | 1459 | 1466 | 201 | 0.8864 | 0.8963 | 0.9512 | 1.0752 | 1.1064

0.9 0.4690 | 1041 | 1045 | 153 | 0.6159 | 0.6215 | 0.6562 | 0.7976 | 0.7696
Entropy and rates are expressed in terms of bits per letter.

outperforms the Unix Compress and Gzip algorithms. Feource. Also, the numbeiis only slightly larger thanG,|; this
example, for some binary files with alphalqét 1, ---, 255}, means that the length of moSt(s;) is 2.

the improved sequential algorithm is 255% better than theTable Il lists some simulation results for first-order Markov
Gzip algorithm and 447.9% better than the Unix Compressnary sources of length0000. The transition matrix of each
algorithm. Moreover, unlike previous compression algorithmb)arkov source is

the improved sequential algorithm can also compress short data

sequences like packets moved around networks by the Internet { 4 1- q}

Protocol very well.) l-q¢ ¢

_ To see how close the compression rates given by our alggyq the initial distribution is uniform. Once again, our algo-
rithms are to the entropy rate of a random source, we presgfims are all better than the Unix Compress and Gzip algo-
below some simulation results for random binary sequenc@gams. In this case, the improved sequential algorithm is, on

In our simulation, our algorithms, like the Unix Compress a”Qverage, roughly 19% more efficient than Unix Compress and
Gzip algorithms, were implemented to compress any files. 5504 more efficient than Gzip.

Table | lists some simulation results for memoryless binary taple 111 lists some simulation results for second-order
sources of length0000. The quantityg represents the proba-15rkov binary sources of length0000. The second-order

bility of symbol 1; the Shannon entropy represents the entroRyarkoy binary sources are generated by using the following
rate of each binary source. The notatig# | denotes the size \,qqgel:

of the final irreducible grammat;is the number of nonoverlap-

ping phrases parsed off by our irreducible grammar transform; X, =X, 19X, .Y,

andj, — 1 is the number of distinct phrases. From Table |, one

can see that our algorithms are all better than the Unix Comhere{Y;} is an independent and identically distributed (i.i.d.)
press and Gzip algorithms. For example, on average, the isequence with the probability of symbblbeingq, and® de-
proved sequential algorithm is roughly 26% more efficient thamtes modul@ addition. Once again, our algorithms are all
Unix Compress and 37% more efficient than Gzip. (It shouldetter than the Unix Compress and Gzip algorithms. In this case,
be pointed out that for text files, Gzip often outperforms Unithe improved sequential algorithm is, on average, roughly 26%
Compress. On the other hand, for binary sequences, Unix Camere efficient than Unix Compress and 27% more efficient than
press often outperforms Gzip.) Here, the efficiency of a da@zip.

compression algorithm is defined as the ratio of the compres-Similar phenomena hold as well for sources of lergith36.

sion rate of the algorithm to the Shannon entropy rate of tHables IV-VI list some simulation results for memoryless,
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TABLE IV
RESULTS FORMEMORYLESSBINARY SOURCES OFLENGTH 65536
g [Shannon | |Gy] | t [g~1]7%@) | r(x) | (=) Unix Gzip
entropy Compress
0.6 | 0.9710 | 9028 | 9038 | 993 | 1.0634 | 1.0705 | 1.1203 1.1694 1.2858
0.7 0.8813 | 8307 | 8323 | 938 | 0.9713 | 0.9781 | 1.0227 | 1.0747 1.2291
0.8 0.7219 | 6977 | 6987 | 819 | 0.7916 | 0.7974 | 0.8385 | 0.9000 1.0712
0.9 | 0.4690 | 4764 | 4773 | 578 | 0.5222 | 0.5266 | 0.5520 | 0.6111 0.7609
Entropy and rates are expressed in terms of bits per letter.
TABLE V
RESULTS FORFIRST-ORDER MARKOV BINARY SOURCES OFLENGTH 65536
g [Shannon | |G| | ¢t [j—1]r%(@) | r(=) | r*(z) Unix Gzip
entropy Compress
0.6 | 0.9710 |9137 | 9152 | 1056 | 1.0862 | 1.0934 | 1.1394 | 1.1720 1.2788
0.7 | 0.8813 {8392 | 8406 | 916 | 1.0000 | 1.0068 | 1.0437 | 1.0800 1.2087
0.8 | 0.7219 | 7123 | 7131 | 809 | 0.8334 | 0.8380 | 0.8706 | 0.9089 1.0383
0.9 0.4690 |5099 | 5116 | 596 | 0.5905 | 0.5942 | 0.6112 { 0.6309 | 0.7219
Entropy and rates are expressed in terms of bits per letter.
TABLE VI
RESULTS FORSECOND-ORDER MARKOV BINARY SOURCES OFLENGTH 65536
g [Shannon | |Gy | ¢t [j—1]7%(@) | r(z) | r(=) Unix Gzip
entropy Compress
0.6 | 0.9710 |9059 | 9073 986 | 1.0803 | 1.0871 | 1.1308 1.1771 1.2745
0.7 0.8813 [8356 (8371 [ 906 | 0.9932 [ 1.0001 | 1.0393 | 1.0927 | 1.2065
0.8 ] 0.7219 | 7163 | 7171 | 810 | 0.8432 | 0.8491 | 0.8798 | 0.9387 | 1.0464
0.9 0.4690 | 5139|5159 622 |0.5932 | 0.5983 | 0.6143 | 0.6699 | 0.7344

Entropy and rates are expressed in terms of bits per letter.

first-order Markov, and second-order Markov binary sources
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have a probabilistic analysis of these algorithms. In par-

of length65536.

VIIl. CONCLUSIONS

ticular, what are the average and pointwise redundancies
of these algorithms? How does the irreducible grammar
G, evolve? What properties does the set consisting of

Within the design framework of grammar-based codes, we

have presented a greedy irreducible grammar transform that2 As the lenath of the dat . the si
constructs sequentially a sequence of irreducible context-free ) As the length of the data sequencincreases, the size

grammars from which the original data sequence can be
recovered incrementally. Based on this grammar transform, we

have developed three efficient universal lossless compression

algorithms: the hierarchical algorithm, sequential algorithm,
and improved sequential algorithm. These algorithms combine
the power of arithmetic coding with that of string matching in
a very elegant way and jointly optimize in some sense string
matching and arithmetic coding capability. It has been shown

that these algorithms are all universal in the sense that they

can achieve asymptotically the entropy rate of any stationary,
ergodic source. Moreover, it has been proved that their worst
case redundancies among all individual sequences of length
are upper-bounded hyloglogn/logn, wherec is a constant.
These algorithms have essentially linear computation and
storage complexity. Simulation results show that these algo-
rithms outperform the Unix Compress and Gzip algorithms,

which are based on LZ78 and LZ77, respectively.

Many problems concerning these algorithms remain open,
however. To conclude this paper, in the following paragraphs,

we discuss some of these problems.

substrings represented by @él}-variables have asgets
larger and larger?

of GG, gets larger and larger so that at some point, it will
reach the memory limit that software and hardware de-
vices can handle. If this happens, one certainly needs to
modify the proposed algorithms in this paper. One so-
lution is to freeze@, at this point and reusé; to en-
code the remaining data sequence; we call this version
the fixed-database version. Obviously, the fixed-database
version is applicable only to the sequential and improved
sequential algorithms. Another solution is to discétd

and restart these algorithms for the remaining sequence.
These two solutions represent two extreme cases. One
may expect that to get better compression performance,
it should be arranged that, should be changed gradu-

ally.
3) Analyze the performance of the fixed-database version.
4) Extend these algorithms to high-dimensional data and an-
alyze compression performance accordingly.

APPENDIX A

In this appendix, we prove Lemma 3. Since each variable
1) The technique we have adopted to analyze these algp-€ S(j:) represents a distinci-sequence, in this proof we
rithms is a combinatorial one. It is certainly desirable tehall identify each symba); € S(j;) with the.A-sequence rep-
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resented by;. Accordingly, |s;| will denote the length of that and
Ny

A-sequence. Let't D (Gy) = wujuy - - u,, be the partition
sequence induced Wy, whereu; € AU {sq, ---, 55,1} for
anyl < [ < m. Assume thatn > 3; this is certainly true
wheneverz| > 3. Sinceul:=1(G,) is the partition sequence
induced byG,, it follows that

m

2| = Jul- (A1)
=1
Let
A m—2
L= (] + i1 | + |uig2|] -
=1
Clearly, (A.1) implies that
|z] < L < 3|z (A.2)
In view of Lemma 2yuipqtyye, I = 1,2, -, m — 2, are

all distinct as sequences of lengthfrom S(j;) U A. Since
eachuw; represents aml-sequencey; ;11142 then represents
the concatenation of thd-sequences representediy w41,
andu; 2, respectively. Note that thd-sequences represented
by wiuip1w4s, 1 = 1, 2, -+ -, m — 2, may not necessarily be
distinct. Nonetheless, we can upper-bound the multiplicity. The
number of integeréfor which wu;11142 represents the same
A-sequence of length, is less than or equal t(f‘;l) since
each symbok; € S(j;) represents a distinct-sequence and
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_ lAP2 [ (k4 Dk(k — 1)]A*=2 B 3(k + 1)k|A|+—D

2 A1 (A - 17
6(k 4 1)|A¥ 3 6(| AR — 1)}
(A-1° ~ (A- 1
AP (k+DRGE-DJARD 3 M
N Al -1 JA-p°
_ o[ HAPT (AP - 1)
=(k+ DM+ (E+ D)A] {(|A|—1)2 (|A|—1)3}
3
(AT —1) et
3 3 k !
= 0 g e gy ()4
O (L

-G+ D | qm;nJ
_. 3 4
=k+ 1M, - (A= 1) Mk—37

k(k—1D)|AF2  2(k+1) kJAF?
R e e o e
20k + 1) (JA* — 1)}
3 (A- 1

Lkt DMy — 5 M, —3M,
= (A= 1)
> (k= 5)My (A%

all wyur1u40, as sequences of lengsfrom S(j:) U A, are  \here the inequalityl) is true for anyk > 2, and the last in-

distinct. Thus for any. > 3

A
m 2 0 ] + [wap] + hugel = n, 1S TS m =2}

n—1 "
S( 5 >|A| .

Clearly

(A.3)

equality is due to the fact thd| > 2. If L happens to bév;
for somek > 5, thenm — 2 < Mj. In view of (A.4), we then
have

1

k-5

m—2
L

M,
< —< A.5
SH, S (A.5)

If N, < L < Niq1, wewritel = N + A, whereA <

||
L= Z Mpn

n=3

and

|z
m—2= E My
n=3

Of coursem,, may be0 for somen. Now it is easy to see that
givenL, m is maximized when all;| + |ui41| + |wi42| are as

(k + 1)(5)[A**L. Then

Ny, A

2 < M, + A < +
[ e A PO R PO S A

This, together with (A.5), implies that

m—2 1
- =<

L k-5

(A.6)

small as possible, subject to the constraints given by (A.3). FsheneverV,, < L < Ny, for somek > 5. We next bound:

anyk > 3, let

k
A n—1 "
Nk:;n< )
and

k
/ 1
M 2N <”2 >|A|".
n=3

in terms ofL. Since

Lszzk<k;1) | A

it follows that

log L

; A7
< g | 4] (A7)
It is easy to verify that and whenevelV, < L < Ny for somek > 6
AR Th(k—D)AR2 2kJAF L 2(JAF -1 _
M;||[< IAPRE AR 204 - 1) m_m-2 2 _ 1 (A8)
2 |Al -1 (4] = 1) (A4 - 1) L L L~ k-6
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On the other hand,
L < Njqp < 3K3|AJFF2.
From this
log L < 3logk + (k +2)log| Al + 2
which, combined with (A.7), implies that
(k+2)log|A| > log L — 3loglog L — 2. (A.9)
Combining (A.9) with (A.8) yields
m log | A|

< .
L ~ logL —3loglogL — 2 — 8log | A|

This, coupled with (A2), implies that

[u (G 3log | Al
|| ~logL — 3loglog L — 2 — 8log | A|
< 3log |A|
~ log |z| — 3loglog |z| — 2 — 8log | A|

(A.10)
whenever

7
n—1
=30 ("5 )l

n=3

and
log |z| — 3loglog |z| — 2 — 8log | Al > 0.

To upper-boundG,|/|z|, note that each variablg in S(j;)

other thans, appears at least once in the partition sequencge

uY=1(@,). Thus from Lemma 1

|G| = ‘u(jt—l)(Gt)

G- 1) S 2[ul (G

which, together with (A.10), implies that

|Gy 6log |A]

|z] ~ loglz| — 3loglog|z| — 2 — 8log|A]
whenever

! n—1
> n
230 (") 14
n=3

and

log |z| — 3loglog |z| — 2 — 8log|.A| > 0.
From this and (A.10), Lemma 3 follows.

APPENDIX B

In this appendix, we prove Lemma 4. We use the same nota-

tion as in the proof of Lemma 3. Lat’* =1 (G,) = uug - - - upm
be the partition sequence induced &Yy, whereu; € A U

{31’ ..

once inuU:=Y(Gy). Let A’ C A consist of alla € A that ap-
pear inuU* 1 (G,). Assume thatn > 3; this is certainly true
wheneverz| > 3. Recall from the proof of Lemma 3 that

m—2

L= [l + luesa] + fura].
=1

and
lz] < L < 3|z (B.1)
In view of Lemma 211142, =1,2, .-+, m — 2, are all
distinct as sequences of lengttfrom A" U {s1, -+, sj,_1}.
From this, it follows that
L<Y > > llon]+ Jaz| + |as]]
(s 51 Qo Qg
=3(| A+ = 1)* Y o]
ay
3
<3 [Z |a1|] (B2)
where}_  denotes the summation ovel U {s1, - -+, sj,—1}

foranyl < ¢ < 3. In view of (B.1) and (B.2), we have

E <|§—|)

[e31

1/3
. (B.3)

To estimate the average length of tHesequences represented
by s;, i =1, ---, j; — 1, we first evaluate

1
—_—— v |.
AT 1 21l
Note that eacly; € A'U{sq1, ---, 55,1} represents a distinct
sequence. Standard techniques can be used to show that
L S log L' — loglog L' — 1 — 3log | A|
A+ 4 —1~ log | A]

wheneverL’ > |A| + |A|?. This, together with (B.3), implies
that

L S log |z| — 3loglog |z| — 3 — 9log | A| — log3
A+ =17 3log | A|

(B.4)

whenevetz| > 3(|.A|+]A4]?)3. Note thatj, must be>2 if |z| >
3(|A| + |.A]?)3. Since the length of thel-sequence represented
by eachs;, i > 0, is >2, it follows from (B.4) that
‘ 1 J*z_:l il > log |x| —3loglog || -3 — 9log |A| —log 3
Je—1 = 3log | A

wheneveriz| > 3(]A| + |4|?)3. This completes the proof of
Lemma 4.
APPENDIX C

In this Appendix, we prove Lemma 5.
We first establish a relationship betwegand |G, |. Recall

-, 85,—1} foranyl < I < m. As mentioned in Sec- from Section Il that the proposed irreducible grammar trans-

tion V, each variable; € S(j;) other thans, appears at least form parses the sequeneesequentially into nonoverlapping
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substrings{z1, 22 - Zn,, -+, Tn, 41 "%, ; and builds »; > I; is subordinate to a top interval. Furthermore, for any
sequentially an irreducible gramméf; with variable setS(j;) interval[l;, ;] with +; > 1;, we have

foreachz; - - - z,,, wherel <i <¢,ny = 1,andn, = n. From

Theorem 1, it follows that the sizi?;41| of G4, increases ri =1 = |G (s5)| — 2

by 1 in Cases 1 and 2 of Theorem 1 and remains the same as
|G;| in Case 3 of Theorem 1. Thus the numbéds equal to whe
|G| plus the number of times Case 3 of Theorem 1 appearsq
the entire irreducible grammar transform process. Recall that R N

I(1) = 0, and for anyi > 1, I(i) is equal to0 if G; is equal 2 Iy =t1= 2 16 ()] = 21 €2
to the appended:;_;, andl otherwise. One can determine the
number of times Case 3 of Theorem 1 appears by looking at e next upper-bound the sum on the right-hand side of (C.2).
runs ofl’s in the binary sequencE1)I(2) - - - 1(¢). In view of Let us focus on a particular top interval, sfy,, , 7m,]. Con-
Theorem 1, it is easy to see that the total number of rurissof sider all intervalg/;, r;] that are subordinate to the top interval

in the binary sequencE1)1(2)---I(t) is j, — 1; each run of [l,,,,, 7m,|. Note that even thoudl;, =] is subordinate directly
1I'sis corresponding to a variablkg for somel < j < j, — 1. t0 [ls,, 7m,], the sequencér,. (s;) is not necessarily a sub-
Let [I;, r;] be the interval corresponding to thith run of 1's, ~ string of G, (s, ). The reason is as follows: 1, (sm,)

that is, I(1;)I(1; + 1)---I(r;) is the jth run of I's. This, of is a sequence from U {s, sz, - -+, s, —1}; 2) by the defini-
course, implies that(l; — 1) = 0andI(r; + 1) = 0if ; < ¢t. tion given in the above paragrapi, < j; and 3) before the
The variables; is introduced at the stagg, and Case 3 of stagel; — 1, the production rule corresponding 4g,, may be
Theorem 1 holds fot; + 1, I; +2, ---, r; if r; > ;. Thenone changed, and as a result,. (s;) may contain some variables
can see that the number of times Case 3 of Theorem 1 appearsvherem; < ¢ < j. Nonetheless, as long s, ;] is sub-

in the entire irreducible grammar transform process is equal trdinate to[l,,, , ., ], the sequenceé:,. (s;) is indeed gener-
ated fromG,., (sm,). By applying a procedure similar to the
parallel replacement procedure mentioned in Section Il, the se-
Z [ri =4l = Z [ri =] quence?,, (s;) can be expanded so that the expanded sequence
=t "> G,.(s;) is a substring of7,,. (sm,). Using the tree structure
implied implicitly by the subordinate relation, one can verify
that the expanded sequen(fé,g, (s;) corresponding to all inter-
vals[l;, r;] subordinate to the top interv),,, , ..., | satisfy the

re|G,,(s;)| denotes the length dF,. (s;), which is a se-
wence fromA U {s1, - -+, s;}. This implies that

r; > r; >

-1

where the summatiopy,,. ., is taken over alj satisfyingr; >
l;. Thus we get the following identity:

t= |G|+ Z rs —1j]. (C.1) following properties. ~
P>l e.1) Every expanded sequencg, (s;) is a substring of
Gr,, (5my)-

In view of Lemma 3, it now suffices to upper-bound the . .
sum in (C.1). To this end, let us reveal a hierarchical structure ©2) 3 < [Gr (s;)] < |Gy(s))l, where|G,. (s;)] de-
among the interval§l;, r;] satisfyingr; > I;. An interval notes the length ofG,,(s;) as a sequence from
(I, r;] with r; > [; is called atop intervalif G, (s;) is AU sy, 52, -+, 8my 1}

a substring ofG;; 1(so). In other words, for a top interval  e.3) All expanded sequencésj (s;) are distinct.

(L, 5], Gr,(s;) is read off directly fromGy,—1(s0), and e.4) For any two expanded sequencés.(s;) and
G"a‘ is obtained fromGy,—, by repegtedl_y applying Re_duc- G, (s;), which correspond, respectively, to two
tion Rules 2 and 1. Note that the first intervid), ;] with intervals [l;, ;] and[l;7, r;/] that are subordinate to
rj > ljis atop interval. Assume that there are a totalkof [, . 7, ], €itherG,. (s,) is a substring of,.., (s;/),
top intervals [1,, 7mi ] [lngs Tmals =05 [lngs 7my ], Where N . o = E

1<my <mg <--- < my < j; — 1. SinceG; is irreducible or G, (sy7) is a substring OfG”j,(Sj)’ or G”;‘(Sj)
for anyi and sinceG,,, (sm,) is a substring of7;,, _1(so), a and G, (s;7) are nonoverlapping substrings of

similar argument to the proof of Lemma 2 can be used to show Gy (S )- R R

that there is no repeated pattern of lengtim the & sequences e.5) For any three expanded sequer®@gss;), G, (s;7),
Gr,. (5my)s Gryy (Sms), o0y Gy (Sm, ), Where patterns are and G, (s;+), which correspond, respectively, to
counted in the sliding-window, overlapping manner and in all three distinct intervals subordinate t@,,,, 7m, ],
the k sequences. All other interva[fs,», 4] yvith r; > l; are if both @Tj(sj) and é”z’ (s;) are substrings of
related to top intervals. To show this, we introduce a new con- @Tj”(sj,,) and if neitherG,._(s;) nor @Tj,(sj,) is a

cept. Anintervall;, »;] with ; > I, is said to besubordinate
directly toan intervalll;/, -], wherel < j/ < j < j; — 1,
if G, (s;) is a substring ofGy, 1(s;/). An interval [I;, 7]
with r; > [; is said to besubordinate toan interval[l;-, r;-], In view of these properties and the fact that there is no repeated
wherel < j' < j < j, — 1, if there is a sequence of intervalspattern of lengtl in G, (s, ), these expanded sequences
i, ri,], -5 [li,, v, ] such that[l; ,»; ] is subordinate can be arranged in a hierarchical way, as shown in Fig. 2. The
directly to[l;,,,,, 7i,.,,] form = 0,1, ---, n, whereio = j top line segment in Fig. 2 represents the sequénce (s, ).
andi,41 = j'. Itis easy to see that every interyl, ;] with  Each of the other line segments in Fig. 2 represents a different

substring of the other, the@, (s;) andG,., (s;/) are
nonoverlapping substrings é,,j,, (sj7).
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Foreachl < i < K, let

Li= Y [l +ee| +as]

airazazCV;

Fig. 2. Hierarchical representation of expanded sequences related to amerem | (1 <j< 3) denotes the Iength of thA-sequence
interval. J — J — . . )
represented byy;. (Note that eachy; itself is a symbol in

Row 1 S(j:) U A.) Let
R0w2 — e vt — — [URUNE  p— —_— “es J— IS

: 3 3 L=S"L.
RowK - - - - - — — - - - ;

At this point, we invoke the following result, which will be
proved in Appendix D.

expanded sequenc®, (s;). For each line segment, the line Lemma 6: There is a constant,, which depends only on
segments underneath it are its nonoverlapping substrings. Frgm, such that
Property e.3), it follows that if for some line segment, there is

Fig. 3. Hierarchical representation of expanded sequences.

K

only one line segment underneath it, then the length of the line L
segment underneath it is strictly less than its own length. Here Z Vil < do logL”
by the length of a line segment, we mean the length of the se- =t
quence fromS(j;) U A it represents. It is easy to see that

The argument in the above paragraph applies equally well
to all other top intervals. Since there is no repeated pattern of L< Z 3|s;| < 3|
length3 in the & sequences 7>l

Gron, (5ma)s G (Sma)s =3 G (5my) where|s;| denotes the length of thé-sequence represented by

the variables;. This, together with Lemma 6, implies
the expanded sequeno@sj(sj) corresponding to all intervals I
[l;, r;] with ; > I; can be arranged in a similar fashion to S Vil < ds Blg| C.7)
Fig. 2, as shown in Fig. 3. Once again, the foline segments = " log(3lx))
in Fig. 3 represent thé sequences

Grml (Smy)s Grmz (Sms)s -7, Grmk (Smy)-

=1

Putting (C.2), (C.3), (C.6), and (C.7) together, we get

< g, Bkl
Each of the other line segments in Fig. 3 represents a different z:l i =Ll < d2 log(3|z|)
expanded sequend®,. (s,). Line segments in Fig. 3 have a "2t
similar interpretation to line segments in Fig. 2. which, coupled with (C.1) and Lemma 3, implies
Let us now go back to (C.2). In view of Property e.2)
3|z ||
- t S |Gt| + dQ N S 1 N
DG =21 > [1G(si)] - 2] (C.3) log(3z|) log |z|

ri>l >t for some constant; . This completes the proof of Lemma 5.

whereé,,j (s;)is the same a&',., (s;) whenevelfl;, ;] is atop

interval. Since there is no repeated pattern of lerigit the & APPENDIX D
sequences In this appendix, we prove Lemma 6. Recall that ebicls a
G (5m)s G (5m2)s -3 G (5 subset of S(j;) U.A)® and the sequendd’; } ' ; satisfies (C.4)
my ? Tmg \¥M2 /9 ’ Ty, \0Mp

and (C.5). For convenience, we also write a pattern of lefgth
itfollows that there is no repeated pattern of lengtheach row «; oz € (S(j:) U A)?, as a vectofay, az, az). As in the
of Fig. 3 either. This implies thdt7,(s;)| — 2 is equal to the proof of Lemma 3, since each symbel € S(j;) represents
number of patterns of length appearing in the line segmenta distinct.A-sequence, we shall identity € S(j;) with the
corresponding td~,. (s;). Let V; be the set consisting of all .A-sequence representeddayit is easy to see that for amy> 3
patterns of lengt appearing in Row of Fig. 3. Then we have
Halagagz aiapaz € (S(jt)U.A)3 o]+ az |+ as| :n}‘

Vid Ve D Vi (C.4) 1
and < <”; ) A" (D.1)
Vi > [Va] > -+ > |Vk]| (C.5) .
o where|a;|(1 < 4 < 3) denotes the length of thd-sequence
where|V;| denotes the cardinality df;. Furthermore, represented by;. The numbet is defined as

K K
> (G (spl =21 =3 IVil. (C.6) L= > [lea|+]oa|+as].

;>0 1=1 ajagaz€V;
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Vi Clearly, L is strictly greater thaV,,, if
V2
K
S Vil > My (M, +1)/2.
=1
\ Thus whenever
K
Fig. 4. Triangle structure of the séts in the worst case. Mm(Mm + 1)/2 < Z |Vz| < Mm+1(Mm+1 + 1)/2
- =1
We want to show thaEf‘:1 |V;| is upper-bounded b¥./ log L one has
multiplied by some constant. Since the functidilog L is
strictly increasing forl, > 3, it is enough for us to consider K
worst cases. Clearly, givélL -, |V;|, L is minimized when all D Vil € Mpgr (Myga +1)/2
|oq| + |ez| + |as|(aiozas € V,ande =1, 2, .-+, K) are as i=1
small as possible, subject to the constraints (C.4), (C.5), and _N, Mot 1(Mip41 +1)/2
(D.1). For anym > 3, let N,
m D 4Mrn+l(Mrn+l + 1)
A n—1 n <Npn
N, = Z n< 5 ) |A| m(m — 1)2(m — 2)2|A|?™
n=3 2) Nrn
and <dj -
é m n — 1 N 3) N
Mm—z< 5 >|A|- Sy
n=3 log(N,,)
Note that M,, is equal to the number of string vectors <d L
a, as, az), wherea; € AT, 4 = 1,2, 3, such that =" log L
( 7 7 ) 7 7 g
< m. i :
lﬁ;l—i_ |cv2] +[as| < m. From the proof of Lemma 3, it follows whereds andd, are some constants depending only.dh The
. ) . inequality 1) is due to (D.5). The inequalitg) follows from
. = Al [m(m — DA™ 2m] A" the observation that from (D.2)4,, = O(m?|.A|™), and, as a
m 2 |A] -1 (|A] — 1)2 result,
2 m—1
+%:| (D2) Mrn—l—l(Mrn-l—l + 1) _ i
and (Al -1) m(m — 1)2(m — 2)2| A2 m /)
N AP [(m+ D)m(m - LA —2) The inequality3) is due to the fact thatr = O(log(Nn.)).
) |Al -1 Finally, the last inequality follows from the fact that the function
3(m + Dm| A= 6(m + 1)|A™ L/log L is increasing and. > N,,. This completes the proof
B (A= 1)2 (A = 1)3 of Lemma 6.
6(JAI™ -1
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