Your name is: ________________________________

Please circle your recitation:

1) M2 2-131 I. Ben-Yaacov 2-101 3-3299 pezz
2) M3 2-131 I. Ben-Yaacov 2-101 3-3299 pezz
3) M3 2-132 A. Oblomkov 2-092 3-6228 obloomkov
4) T11 2-132 A. Oblomkov 2-092 3-6228 obloomkov
5) T12 2-132 I. Pak 2-390 3-4390 pak
6) T1 2-131 B. Santoro 2-085 2-1192 bsantoro
7) T1 2-132 I. Pak 2-390 3-4390 pak
8) T2 2-132 B. Santoro 2-085 2-1192 bsantoro
9) T2 2-131 J. Santos 2-180 3-4350 jsantos
We are given two vectors a and b in \mathbb{R}^4:

\[
\begin{align*}
a &= \begin{bmatrix} 2 \\ 5 \\ 2 \\ 4 \end{bmatrix} & b &= \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}
\end{align*}
\]

(a) Find the projection p of the vector b onto the line through a. Check (!) that the error $e = b - p$ is perpendicular to (what?)

(b) The subspace S of all vectors in \mathbb{R}^4 that are perpendicular to this a is 3-dimensional. Find the projection q of b onto this perpendicular subspace S. The numerical answer (it doesn’t need a big computation!) is $q =$ ______.
2 (30 pts.) Suppose q_1, q_2, q_3 are 3 orthonormal vectors in \mathbb{R}^n. They go in the columns of an n by 3 matrix Q.

(a) What inequality do you know for n?
Is there any condition on n for $Q^TQ = I$ (3 by 3)?
Is there any condition on n for $QQ^T = I$ (n by n)?

(b) Give a nice matrix formula involving b and Q, for the projection p of a vector b onto the column space of Q.

Complete this sentence: p is the closest vector \ldots

(c) Suppose the projection of b onto that column space is $p = c_1q_1 + c_2q_2 + c_3q_3$. Find a formula for c_1 that only involves b and q_1. (You could take dot products with q_1.)
3 (20 pts.) Suppose the 4 by 4 matrix M has four equal rows all containing a, b, c, d. We know that $\det(M) = 0$. The problem is to find by any method

$$\det(I + M) = \begin{vmatrix} 1 + a & b & c & d \\ a & 1 + b & c & d \\ a & b & 1 + c & d \\ a & b & c & 1 + d \end{vmatrix}.$$

Note If you can’t find $\det(I + M)$ in general, partial credit for the determinant when $a = b = c = d = 1.$
4 (30 pts.) We are looking for the parabola \(y = C + D t + E t^2 \) that gives the least squares fit to these four measurements:

\[
y_1 = 1 \text{ at } t_1 = -2, \ y_2 = 1 \text{ at } t_2 = -1, \ y_3 = 1 \text{ at } t_3 = 1, \ y_4 = 0 \text{ at } t_4 = 2.
\]

(a) Write down the four equations (not solvable!) for the parabola \(C + D t + E t^2 \) to go through those four points. This is the system \(A x = b \) to solve by least squares:

\[
A \begin{bmatrix} C \\ D \\ E \end{bmatrix} = b.
\]

What equations would you solve to find the best \(C, D, E \)?

(b) Compute \(A^T A \). Compute its determinant. Compute its inverse. NOT ASKING FOR \(C, D, E \).

(c) The first two columns of \(A \) are already orthogonal. From column 3, subtract its projection onto the plane of the first two columns. That produces what third orthogonal vector \(v \)? Normalize \(v \) to find the third orthonormal vector \(q_3 \) from Gram-Schmidt.