Your name is: ________________________

Please circle your recitation:

1) M2 2-131 I. Ben-Yaacov 2-101 3-3299 pezz
2) M3 2-131 I. Ben-Yaacov 2-101 3-3299 pezz
3) M3 2-132 A. Oblomkov 2-092 3-6228 oblomkov
4) T11 2-132 A. Oblomkov 2-092 3-6228 oblomkov
5) T12 2-132 I. Pak 2-390 3-4390 pak
6) T1 2-131 B. Santoro 2-085 2-1192 bsantoro
7) T1 2-132 I. Pak 2-390 3-4390 pak
8) T2 2-132 B. Santoro 2-085 2-1192 bsantoro
9) T2 2-131 J. Santos 2-180 3-4350 jsantos

Problems 1–8 are 12 points each; Problem 9 is 4 points.
Thank you for taking 18.06!
Suppose A is an m by n matrix of rank r. You multiply it by any m by n invertible matrix E to get $B = EA$.

(a) Circle if true and cross out if false (three parts):

A and B have the

\[
\begin{align*}
\text{same nullspace} \\
\text{same column space} \\
\text{same bases for row space}.
\end{align*}
\]

(b) Suppose the right E gives the row-reduced echelon matrix

\[
EA = R = \begin{bmatrix} 1 & 4 & 0 & 6 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
\]

(1) Find a basis for the nullspace of A.

(2) True statement: *The nullspace of a matrix is a vector space.*

What does it mean for a set of vectors to be a vector space?

(c) What is the nullspace of a 5 by 4 matrix with linearly independent columns?

What is the nullspace of a 4 by 5 matrix with linearly independent columns?
This matrix A has column 1 + column 2 = column 3:

$$A = \begin{bmatrix}
1 & 1 & 2 \\
1 & 1 & 2 \\
0 & 1 & 1 \\
\end{bmatrix}$$

(a) Describe the column space $C(A)$ in two ways:

(1) Give a basis for $C(A)$.

(2) Find all vectors that are perpendicular to $C(A)$.

(b) The projection matrix P onto the column space does not come from the usual formula $A(A^TA)^{-1}A^T$. Why not—what goes wrong with this formula?

(c) Find that matrix P for projection onto the column space of A.
Suppose P is the 3 by 3 projection matrix (so $P = P^T = P^2$) onto the plane $2x + 2y - z = 0$. You do not have to compute this matrix P but you can if you want.

(a) What is the rank of P? What are its three eigenvalues? What is its column space?

(b) Is P diagonalizable—why or why not? Find a nonzero vector in its nullspace.

(c) If b is any unit vector in \mathbb{R}^3, find the number q. Explain your thinking in 1 sentence and 1 equation:

$$q = \|Pb\|^2 + \|b - Pb\|^2.$$
(a) If \(a \neq c \), find the eigenvalue matrix \(\Lambda \) and eigenvector matrix \(S \) in

\[
A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = S \Lambda S^{-1}.
\]

(b) Find the four entries in the matrix \(A^{1000} \).
(a) Suppose $A^T Ax = 0$. This tells us that Ax is in the ___ space of A^T. Always Ax is in the ___ space of A. Why can you conclude that $Ax = 0$?

(b) Supposing again that $A^T Ax = 0$ we immediately get $x^T A^T Ax = 0$.

From this, show directly that $Ax = 0$.

Every matrix $A^T A$ is symmetric and ________.

(c) The rectangular m by n matrix A always has the same nullspace as the square matrix $A^T A$ (this is proved above). Now deduce that A and $A^T A$ have the same rank.
Suppose $A = \text{ones}(3, 5)$ and $A^T = \text{ones}(5, 3)$ are the 3 by 5 and 5 by 3 matrices of all 1’s.

(a) Find the trace of AA^T and the trace of A^TA.

(b) Find the eigenvalues of AA^T and the eigenvalues of A^TA.

(c) What is the matrix Σ in the singular value decomposition $A = U\Sigma V^T$?
(a) By elimination or otherwise, find the determinant of A:

$$A = \begin{bmatrix} 1 & 0 & 0 & u_1 \\ 0 & 1 & 0 & u_2 \\ 0 & 0 & 1 & u_3 \\ v_1 & v_2 & v_3 & 0 \end{bmatrix}$$

(b) If that zero in the lower right corner of A changes to 100, what is the change (if any) in the determinant of A? (You can consider its cofactors)

(c) If (u_1, u_2, u_3) is the same as (v_1, v_2, v_3) so A is symmetric, decide if A is or is not positive definite—and why?

(d) Show that this block matrix M is singular for any u and v in \mathbb{R}^n, by finding a vector in its nullspace:

$$M = \begin{bmatrix} I & u \\ v^T & v^T u \end{bmatrix}.$$
Suppose q_1, q_2, q_3 are orthonormal vectors in \mathbb{R}^4 (not \mathbb{R}^3!).

(a) What is the length of the vector $v = 2q_1 - 3q_2 + 2q_3$?

(b) What four vectors does Gram-Schmidt produce when it orthonormalizes the vectors q_1, q_2, q_3, u?

(c) If u in part (b) is the vector v in part (a), why does Gram-Schmidt break down?

Find a nonzero vector in the nullspace of the 4 by 4 matrix

$$A = \begin{bmatrix} q_1 & q_2 & q_3 & v \end{bmatrix}$$

with columns q_1, q_2, q_3, v.
9 (4 points) PROVE (give a clear reason): If A is a symmetric invertible matrix then A^{-1} is also symmetric.