1. (13 pts.)

(a)
\[
A = \begin{bmatrix}
0 & 0 & 2 & -2 & 1 & 2 \\
3 & 6 & 0 & 9 & 0 & 3 \\
1 & 2 & 0 & 3 & 1 & 3 \\
-1 & -2 & 2 & -5 & 0 & -1 \\
\end{bmatrix}.
\]

Permuting rows 1 and 2, we get:

\[
\begin{bmatrix}
3 & 6 & 0 & 9 & 0 & 3 \\
0 & 0 & 2 & -2 & 1 & 2 \\
1 & 2 & 0 & 3 & 1 & 3 \\
-1 & -2 & 2 & -5 & 0 & -1 \\
\end{bmatrix}.
\]

Now we can eliminate entries (3, 1) and (4, 1) to get:

\[
\begin{bmatrix}
3 & 6 & 0 & 9 & 0 & 3 \\
0 & 0 & 2 & -2 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 2 & -2 & 0 & 0 \\
\end{bmatrix}.
\]

The second pivot is now element (2, 3), and this pivot can be used to eliminate element (4, 3):

\[
\begin{bmatrix}
3 & 6 & 0 & 9 & 0 & 3 \\
0 & 0 & 2 & -2 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & -1 & -2 \\
\end{bmatrix}.
\]

The next pivot is element (3, 5), and it allows to eliminate element (4, 5):

\[
\begin{bmatrix}
3 & 6 & 0 & 9 & 0 & 3 \\
0 & 0 & 2 & -2 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}.
\]

The matrix now is in echelon form. To get the reduced row echelon form, we first scale row 1 by $1/3$ and row 2 by $1/2$:

\[
\begin{bmatrix}
1 & 2 & 0 & 3 & 0 & 1 \\
0 & 0 & 1 & -1 & 1/2 & 1 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}.
\]

We still need to eliminate entry (2, 5) (as x_5 is a pivot variable) and this is done by subtracting $1/2$ of row 3 from row 2:

\[
R = \begin{bmatrix}
1 & 2 & 0 & 3 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}.
\]
and this is the reduced row echelon form.

(b) The rank of A is 3 since we found 3 pivot variables: x_1, x_3 and x_5.

(c) If we take $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$ and we redo the eliminations on the augmented matrix $[A|b]$, we get that $Ax = b$ is equivalent to $Ex = d$ where $d = \begin{bmatrix} b_2/3 \\ b_1/2 - b_3/2 + b_2/6 \\ b_3 - b_2/3 \\ b_4 - b_1 + b_3 \end{bmatrix}$. If we take b such that $b_4 - b_1 + b_3 \neq 0$ then $Ax = b$ has no solution.

(d) When doing the elimination with $b = \begin{bmatrix} 22 \\ 24 \\ 16 \\ 6 \end{bmatrix}$, we get (see previous subquestion) $d = \begin{bmatrix} 8 \\ 7 \\ 8 \\ 0 \end{bmatrix}$. Thus a particular solution is

$$x_p = \begin{bmatrix} 8 \\ 0 \\ 7 \\ 8 \\ 0 \end{bmatrix}.$$

To get all solutions, we need to add linear combinations of the special solutions of the nullspace. We have a special solution for each free variable x_2, x_4 and x_6. All solutions to $Ax = b$ are thus given by:

$$\begin{bmatrix} 8 \\ -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \\ -2 \\ 1 \end{bmatrix} = + \begin{bmatrix} 8 - 2x_2 - 3x_4 - x_6 \\ x_2 \\ 7 + x_4 \\ x_4 \\ 8 - 2x_6 \\ x_6 \end{bmatrix}.$$

(e) No, since the nullspace contains non-zero vectors.

(g) The rank of $A^T A$ is also 3. Indeed let us prove that the rank of $A^T A$ is always equal to the rank of A (without doing any eliminations).

To see this, we first show that $N(A) = N(A^T A)$. It is clear that any x with $A x = 0$ satisfies $A^T A x = 0$. The converse is also true: If $A^T A x = 0$, observe that for $w = A x$ we have that $w \in N(A^T)$ and $w = C(A)$ which implies that $w = 0$ as $N(A^T) \cap C(A) = \{0\}$. In other words $A^T A x = 0$ implies that $A x = 0$. The fact that $N(A) = N(A^T A)$ now implies that the dimensions of these subspaces are the same and thus we have $\text{rank}(A) = \text{rank}(A^T A)$.

2. (6 pts.) Consider the space F spanned by the 4 vectors $v_1 = (4, 2, 4, 2)$, $v_2 = (-1, 4, 5, 10)$, $v_3 = (-5, 2, 1, 8)$ and $v_4 = (6, 6, 10, 10)$.

(a) The v_i’s are not linearly independent. Indeed, if you consider the matrix

$$
A = \begin{bmatrix}
4 & -1 & -5 & 6 \\
2 & 4 & 2 & 6 \\
4 & 5 & 1 & 10 \\
2 & 10 & 8 & 10 \\
\end{bmatrix},
$$

and do eliminations, we’ll get only two pivots. The matrix A would need to have a nullspace of dimension 0 for the vectors to be linearly independent.

(b) v_1 and v_2 forms a basis of F. Any two of the v_i’s would work here as none of them is a multiple of another.

(c) The dimension of F is 2 as we have two pivots.

(d) $v_1 + 2v_2 + 3v_3$, $v_1 - v_2$ and v_4 cannot be linearly independent since 3 vectors of a subspace of dimension 2 are never linearly independent.

3. (5 pts.) Consider the subspace F of all 3×3 symmetric matrices with zeroes on the diagonal.

(a) Consider the 3 matrices:

$$
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}, \quad \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
\end{bmatrix}, \quad \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix}.
$$

A linear combination of these matrices gives the matrix:

$$
\begin{bmatrix}
0 & a & b \\
a & 0 & c \\
b & c & 0 \\
\end{bmatrix}.
$$

To get the 0 matrix, we must have $a = b = c = 0$ implying that the 3 matrices are linearly independent. Furthermore we can get any symmetric matrix with zeroes on the diagonal by choosing a, b and c appropriately, and thus these 3 vectors span the subspace. Hence they form a basis.

(b) We’ll need $1 + 2 + \cdots + n - 1$ matrices in the basis, for a total of $\frac{n(n-1)}{2}$.

3
4. (4 pts.) Suppose we couldn’t find an index \(l \). This means that \(v_1, v_2, \ldots, v_{k-1}, v_k, v_l \) are linearly dependent for every \(l = k + 1, \ldots, n \). Since \(v_1, \ldots, v_k \) are linearly independent, it means that \(v_l \) linearly depends on \(v_1, \ldots, v_k \) for \(l > k \). This implies that any vector which is a linear combination of all the \(v_i \)'s can be expressed as a linear combination of just \(v_1, \ldots, v_k \). In other words, \(v_1, \ldots, v_k \) form a basis of \(C(A) \) and this contradicts the fact that the rank (and thus the dimension of \(C(A) \)) is greater than \(k \).

5. (12 pts.) Exercise 14 of section 3.6 on page 181. \(A = BC \) where \(B \) is invertible (since it is lower triangular with nonzeros on the diagonal).

- \(N(A) \). The nullspace \(N(A) \) is equal to \(N(C) \) (since \(B \) is invertible: \(BCx = 0 \) if and only if \(Cx = 0 \)). As \(C \) is in echelon form and \(x_4 \) is a free variable, we can just take that special solution as the only vector in the basis of \(N(C) = N(A) \):

\[
\begin{bmatrix}
0 \\
1 \\
-2 \\
1
\end{bmatrix}
\]

- \(R(A) \). Similarly \(R(A) = R(C) \) (from \(y = A^T u = C^T B^T u = C^T (B^T u) \) and \(B^T \) being invertible). We can just take all 3 row vectors of \(C \) as basis:

\[
\begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix},
\begin{bmatrix}
0 \\
1 \\
2 \\
3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
1 \\
2
\end{bmatrix}
\]

Thus the rank of \(A \) is 3.

- \(C(A) \). As the rank of \(A \) and thus the dimension of \(C(A) \) is 3, we have that \(C(A) \) is all of \(R^3 \). Thus we can take any basis of \(R^3 \), say the 3 unit vectors.

- \(N(A^T) \). As \(\text{dim}(C(A)) + \text{dim}(N(A^T)) = 3 \), we have that \(\text{dim}(N(A^T)) = 0 \) and thus a basis of \(N(A^T) \) contains 0 vectors (not the 0 vector).