146. Heavier crude, changing demand for petroleum fuels, regional climate policy, and the location of upgrading capacity: A preliminary look Reilly et al. (4/07)

143. Technical change, investment and energy intensity Kratena (3/07)

142. Federal tax policy towards energy Metcalf (1/07)

141. Over-allocation or abatement? A preliminary analysis of the EU ETS based on the 2005 emissions data Ellerman & Buchner (12/06)

140. The allocation of EU allowances: Lessons, unifying themes and general principles Buchner et al. (10/06)

139. Directed technical change and the adoption of CO₂ abatement technology: The case of CO₂ capture and storage Otto & Reilly (8/06)

138. Energy conservation in the United States: Understanding its role in climate policy Metcalf (8/06)

137. Unemployment effects of climate policy Babiker & Eckaus (8/06)

136. Bringing transportation into a cap-and-trade regime Ellerman, Jacoby & Zimmerman (6/06)

135. Modeling climate feedbacks to energy demand: The case of China Asadoorian et al. (6/06)

134. Directed technical change and climate policy Otto et al. (4/06)

133. Estimating probability distributions from complex models with bifurcations: The case of ocean circulation collapse Webster et al. (3/06)

132. The value of emissions trading Webster et al. (2/06)

131. The economic impacts of climate change: Evidence from agricultural profits and random fluctuations in weather Deschenes & Greenstone (1/06)

130. Absolute vs. intensity limits for CO₂ emission control: performance under uncertainty Sue Wing et al. (1/06)

129. Future carbon regulations and current investments in alternative coal-fired power plant designs Sekar et al. (12/05)

145. Biomass energy and competition for land Reilly & Paltsev (4/07)

146. Assessment of U.S. cap-and-trade proposals Paltsev et al. (4/07)

147. A global land system framework for integrated climate-change assessments Schlosser et al. (5/07)

148. Relative roles of climate sensitivity and forcing in defining the ocean circulation response to climate change Scott et al. (5/07)

149. Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone Reilly et al. (5/07)

150. U.S. greenhouse gas cap-and-trade proposals: Application of a forward-looking computable general equilibrium model Gurgel et al. (6/07)

151. Consequences of considering carbon/nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle Sokolov et al. (6/07)

152. Energy scenarios for East Asia Paltsev & Reilly (7/07)

153. Climate change, mortality, and adaptation: Evidence from annual fluctuations in weather in the U.S. Deschenes & Greenstone (8/07)

154. Modeling the prospects for hydrogen powered transportation through 2100 Sandoval et al. (2/08)

155. Potential land use implications of a global biofuels industry Gurgel et al. (3/08)

156. Estimating the economic cost of sea-level rise Sugiyama et al. (4/08)

157. Constraining climate model parameters from observed 20th century changes Forest et al. (4/08)

158. Analysis of the coal sector under carbon constraints McFarland et al. (4/08)

159. Impact of sulfur and carbonaceous emissions from international shipping on aerosol distributions and direct radiative forcing Wang & Kim (4/08)

160. Analysis of U.S. greenhouse gas tax proposals Metcalf et al. (4/08)

161. A forward looking version of the MIT Emissions Prediction and Policy Analysis (EPPA) Model Babiker et al. (5/08)
128. Evaluating the use of ocean models of different complexity in climate change studies *Sokolov et al.* (11/05)
127. An analysis of the European Emission Trading Scheme *Reilly & Paltsev* (10/05)
126. Estimated PDFs of climate system properties including natural and anthropogenic forcings *Forest et al.* (9/05)
124. The MIT Integrated Global System Model (IGSM) Version 2: Model description and baseline evaluation *Sokolov et al.* (7/05)
123. Simulating the spatial distribution of population and emissions to 2100 *Asadoorian* (5/05)
122. A 3D ocean-seaice-carbon cycle model and its coupling to a 2D atmospheric model: Uses in climate change studies *Dutkiewicz et al.* (5/05)
121. Climate change taxes and energy efficiency in Japan *Kasahara et al.* (5/05)
120. What should the government do to encourage technical change in the energy sector? *Deutch* (5/05)
119. Does model sensitivity to changes in CO2 provide a measure of sensitivity to the forcing of different nature? *Sokolov* (3/05)
118. Effects of air pollution control on climate *Prinn et al.* (1/05)
117. Modeling the transport sector: The role of existing fuel taxes in climate policy *Paltsev et al.* (11/04)
116. Explaining long-run changes in the energy intensity of the U.S. economy *Sue Wing & Eckaus* (9/04)
115. Future U.S. energy security concerns *Deutch* (9/04)
114. The role of non-CO2 greenhouse gases in climate policy: Analysis using the MIT IGSM *Reilly et al.* (8/04)
113. Economic benefits of air pollution regulation in the USA: An integrated approach *Yang et al.* (revised 1/05)
112. The cost of Kyoto Protocol targets: The case of Japan *Paltsev et al.* (7/04)
111. Technology and technical change in the MIT EPPA model *Jacoby et al.* (7/04)
110. Stabilization and global climate policy *Sarofim et al.* (7/04)
109. Sensitivity of climate to diapycnal diffusivity in the ocean *Dalan et al.* (5/04)
108. Methane fluxes between terrestrial ecosystems and the atmosphere at high latitudes during the past century *Zhuang et al.* (2/04)
107. Informing climate policy given incommensurable benefits estimates *Jacoby* (2/04)
106. Climate prediction: The limits of ocean models *Stone* (2/04)
105. Analysis of strategies of companies under carbon constraint *Hashimoto* (1/04)
104. A process-based analysis of methane exchanges between Alaskan terrestrial ecosystems and the atmosphere *Zhuang et al.* (11/03)
103. Past and future effects of ozone on net primary production and carbon sequestration using a global biogeochemical model *Felzer et al.* (1/04)
102. Induced technical change and the cost of climate policy *Sue Wing* (9/03)
101. Technology detail in a multi-sector CGE model: Transport under climate policy *Schafer & Jacoby* (7/03)
100. Absolute vs. intensity-based emission caps *Ellerman & Sue Wing* (7/03)
98. Russia’s role in the Kyoto Protocol *Bernard et al.* (6/03)
96. Market power in international carbon emissions trading: A laboratory test *Carlén* (1/03)
95. Uncertainty analysis of climate change and policy response *Webster et al.* (12/02)
94. Modeling non-CO2 greenhouse gas abatement *Hyman et al.* (12/02)
93. Is international emissions trading always beneficial? *Babiker et al.* (12/02)
92. An issue of permanence: Assessing the effectiveness of temporary carbon storage *Herzog et al.* (12/02)
91. Exclusionary manipulation of carbon permit markets *Carlén* (11/02)
90. Ozone effects on net primary production and carbon sequestration in the U.S. conterminous *Felzer et al.* (11/02)
89. Representing energy technologies in top-down economic models using bottom-up info *McFarland et al.* (10/02)
88. The deep-ocean heat uptake in transient climate change *Huang et al.* (9/02)
87. Sensitivities of deep-ocean heat uptake & heat content to surface fluxes and subgrid-scale parameters in an OGCM with idealized geometry Huang et al. (9/02)

86. Incentive-based approaches for mitigating greenhouse gas emissions: Issues and prospects for India Gupta (6/02)

85. Tax distortions and global climate policy Babiker, Metcalf & Jacoby (5/02)

84. A modeling study on the climate impacts of black carbon aerosols Wang (3/02)

83. The “safety valve” and climate policy Jacoby & Ellerman (2/02)

82. The evolution of a climate regime: Kyoto to Marrakech Babiker et al. (2/02)

81. A comparison of the behavior of different AO GCMs in transient climate change experiments Sokolov et al. (12/01)

80. Uncertainty in atmospheric CO₂ predictions from a parametric uncertainty analysis of a global ocean carbon cycle model Holian et al. (9/01)

79. Uncertainty in emissions projections for climate models Webster et al. (8/01)

78. Quantifying uncertainties in climate system properties using recent climate observations Forest et al. (7/01)

77. Comparing greenhouse gases Reilly et al. (7/01)

76. CO₂ abatement by multi-fueled electric utilities: An analysis based on Japanese data Ellerman & Tsukada (7/01)

75. Feedbacks affecting the response of the thermohaline circulation to increasing CO₂. Kamenkovich et al. (7/01)

74. The welfare costs of hybrid carbon policies in the European Union Babiker et al. (6/01)

73. [superseded by Report 95]

72. The cap and trade policies in the presence of monopoly and distortionary taxation Fullerton & Metcalf (3/01)

71. The MIT EPPA Model: Revisions, sensitivities, and comparisons of results Babiker et al. (2/01) [superseded by Report 125]

70. Carbon emissions and the Kyoto commitment in the European Union Viguier et al. (2/2001)

68. How to think about human influence on climate Forest et al. (10/00)

67. The curious role of “learning” in climate policy: Should we wait for more data? Webster (9/00)

66. Fair trade and harmonization of climate change policies in Europe Viguier (9/00)

65. Rethinking the Kyoto emissions targets Babiker & Eckaus (8/00)

64. The effects of changing consumption patterns on the costs of emission restrictions Lahiri et al. (8/00)

63. Linking local air pollution to global chemistry and climate Mayer et al. (6/00)

62. Constraining climate model properties using optimal fingerprint detection methods Forest et al. (5/00)

61. Effects of differentiating climate policy by sector: A U.S. example Babiker et al. (5/00)

60. A coupled atmosphere-ocean model of intermediate complexity for climate change study Kamenkovich et al. (5/00)

59. Supprentarity: An invitation to monopsony? Ellerman & Sue Wing (4/00)

58. Multiple gas control under the Kyoto agreement Reilly et al. (3/00)

57. A game of climate chicken: Can EPA regulate greenhouse gases before the US Senate ratifies the Kyoto Protocol? Bugnion & Reiner (11/99)

56. The Kyoto Protocol and developing countries Babiker et al. (10/99)

55. Changes in sea-level associated with modifications of the mass balance of the Greenland and Antarctic ice sheets over the 21st century Bugnion (10/99)

54. Model estimates of the mass balance of the Greenland and Antarctic ice sheets Bugnion (10/99)

53. Developing country effects of Kyoto-type emissions restrictions Babiker & Jacoby (10/99)

52. Interactive chemistry and climate models in global change studies Wang & Prinn (9/99)

51. Japanese nuclear power and the Kyoto agreement Babiker et al. (8/99)

50. A study of the effects of natural fertility, weather and productive inputs in Chinese agriculture Eckaus & Tsao (7/99)

49. Toward a useful architecture for climate change negotiations Jacoby et al. (5/99)

48. Adjusting to policy expectations in climate change modeling Shackley et al. (5/99)

47. Constraining uncertainties in climate models using climate change detection techniques Forest et al. (4/99) [superseded by Report 126]
<table>
<thead>
<tr>
<th>Report Number</th>
<th>Title</th>
<th>Authors</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>From science to policy: The science-related politics of climate change policy in the U.S.</td>
<td>Skolnikoff</td>
<td>1/99</td>
</tr>
<tr>
<td>45</td>
<td>Multi-gas assessment of the Kyoto Protocol</td>
<td>Reilly et al.</td>
<td>1/99</td>
</tr>
<tr>
<td>44</td>
<td>Primary aluminum production: Climate policy, emissions and costs</td>
<td>Harnisch et al.</td>
<td>12/98</td>
</tr>
<tr>
<td>43</td>
<td>The uses and misuses of technology development as a component of climate policy</td>
<td>Jacoby</td>
<td>11/98</td>
</tr>
<tr>
<td>42</td>
<td>Obstacles to global CO₂ trading</td>
<td>Ellerman</td>
<td>11/98</td>
</tr>
<tr>
<td>41</td>
<td>The effects on developing countries of the Kyoto Protocol and CO₂ emissions trading</td>
<td>Ellerman et al.</td>
<td>11/98</td>
</tr>
<tr>
<td>40</td>
<td>Analysis of post-Kyoto CO₂ emissions trading using marginal abatement curves</td>
<td>Ellerman & Decaux</td>
<td>10/98</td>
</tr>
<tr>
<td>39</td>
<td>Sequential climate decisions under uncertainty: An integrated framework</td>
<td>Valverde et al.</td>
<td>9/98</td>
</tr>
<tr>
<td>38</td>
<td>Quantifying the uncertainty in climate predictions</td>
<td>Webster & Sokolov</td>
<td>7/98</td>
</tr>
<tr>
<td>37</td>
<td>Integrated global system model for climate policy assessment: Feedbacks and sensitivity studies</td>
<td>Prinn et al.</td>
<td>5/98</td>
</tr>
<tr>
<td>36</td>
<td>Impact of emissions, chemistry and climate on atmospheric CO₂: 100-year predictions from a global chemistry-climate model</td>
<td>Wang & Prinn</td>
<td>4/98</td>
</tr>
<tr>
<td>35</td>
<td>Combined effects of anthropogenic emissions and resultant climatic changes on atmospheric OH</td>
<td>Wang & Prinn</td>
<td>4/98</td>
</tr>
<tr>
<td>34</td>
<td>Economic development and the structure of the demand for commercial energy</td>
<td>Judson et al.</td>
<td>4/98</td>
</tr>
<tr>
<td>33</td>
<td>Kyoto’s unfinished business</td>
<td>Jacoby et al.</td>
<td>3/98</td>
</tr>
<tr>
<td>32</td>
<td>Beyond emissions paths: Rethinking the climate impacts of emissions protocols in an uncertain world</td>
<td>Webster & Reiner</td>
<td>11/97</td>
</tr>
<tr>
<td>31</td>
<td>Uncertainty in future carbon emissions: A preliminary exploration</td>
<td>Webster</td>
<td>11/97</td>
</tr>
<tr>
<td>30</td>
<td>Analysis of CO₂ emissions from fossil fuel in Korea</td>
<td>Choi</td>
<td>11/97</td>
</tr>
<tr>
<td>29</td>
<td>Transient climate change and net ecosystem production of the terrestrial biosphere</td>
<td>Xiao et al.</td>
<td>11/97</td>
</tr>
<tr>
<td>27</td>
<td>Annex I differentiation proposals: Implications for welfare, equity and policy</td>
<td>Reiner & Jacoby</td>
<td>10/97</td>
</tr>
<tr>
<td>26</td>
<td>Necessary conditions for stabilization agreements</td>
<td>Yang & Jacoby</td>
<td>10/97</td>
</tr>
<tr>
<td>25</td>
<td>Interactions among emissions, atmospheric chemistry and climate change: Implications for future trends</td>
<td>Wang & Prinn</td>
<td>9/97</td>
</tr>
<tr>
<td>24</td>
<td>A global interactive chemistry and climate model</td>
<td>Wang, Prinn & Sokolov</td>
<td>9/97</td>
</tr>
<tr>
<td>23</td>
<td>Uncertainty in the oceanic heat and carbon uptake and their impact on climate projections</td>
<td>Sokolov et al.</td>
<td>9/97</td>
</tr>
<tr>
<td>22</td>
<td>Same science, differing policies: The saga of global climate change</td>
<td>Skolnikoff</td>
<td>8/97</td>
</tr>
<tr>
<td>21</td>
<td>Needed: A realistic strategy for global warming</td>
<td>Jacoby, Prinn & Schmalensee</td>
<td>7/97</td>
</tr>
<tr>
<td>20</td>
<td>Parameterization of urban sub-grid scale processes in global atmospheric chemistry models</td>
<td>Calbo et al.</td>
<td>7/97</td>
</tr>
<tr>
<td>19</td>
<td>Joint implementation: Lessons from Title IV’s voluntary compliance programs</td>
<td>Atkeson</td>
<td>6/97</td>
</tr>
<tr>
<td>18</td>
<td>Transient climate change and potential croplands in the 21st century</td>
<td>Xiao et al.</td>
<td>5/97</td>
</tr>
<tr>
<td>17</td>
<td>A flexible climate model for use in integrated assessments</td>
<td>Sokolov & Stone</td>
<td>3/97</td>
</tr>
<tr>
<td>16</td>
<td>What drives deforestation in the Brazilian Amazon?</td>
<td>Pfaff</td>
<td>12/96</td>
</tr>
<tr>
<td>15</td>
<td>Economic assessment of CO₂ capture and disposal</td>
<td>Eckaus et al.</td>
<td>12/96</td>
</tr>
<tr>
<td>14</td>
<td>What does stabilizing greenhouse gas concentrations mean?</td>
<td>Jacoby et al.</td>
<td>11/96</td>
</tr>
<tr>
<td>13</td>
<td>Greenhouse policy architectures and institutions</td>
<td>Schmalensee</td>
<td>11/96</td>
</tr>
<tr>
<td>12</td>
<td>Net primary production of terrestrial ecosystems in China and its equilibrium responses to changes in climate and atmospheric CO₂ concentration</td>
<td>Xiao et al.</td>
<td>10/96</td>
</tr>
<tr>
<td>11</td>
<td>Global warming projections: Sensitivity to deep ocean mixing</td>
<td>Sokolov & Stone</td>
<td>9/96</td>
</tr>
<tr>
<td>10</td>
<td>Modeling the emissions of N₂O and CH₄ from the terrestrial biosphere to the atmosphere</td>
<td>Liu</td>
<td>8/96</td>
</tr>
<tr>
<td>9</td>
<td>CO₂ emissions limits: Economic adjustments and the distribution of burdens</td>
<td>Jacoby et al.</td>
<td>7/97</td>
</tr>
<tr>
<td>8</td>
<td>Relative roles of changes in CO₂ and climate to equilibrium responses of net primary production and carbon storage of the terrestrial biosphere</td>
<td>Xiao et al.</td>
<td>6/96</td>
</tr>
<tr>
<td>7</td>
<td>The MIT Emission Prediction and Policy Analysis (EPPA) Model</td>
<td>Yang et al.</td>
<td>5/96</td>
</tr>
<tr>
<td>6</td>
<td>World energy consumption and CO₂ emissions: 1950-2050</td>
<td>Schmalensee et al.</td>
<td>4/96</td>
</tr>
<tr>
<td>5</td>
<td>Application of the probabilistic collocation method for an uncertainty analysis of a simple ocean model</td>
<td>Webster et al.</td>
<td>1/96</td>
</tr>
</tbody>
</table>

The MIT Global Change Joint Program produces a REPORT SERIES including working papers and journal article preprints that are intended to communicate new results or provide useful reviews and commentaries on the subject of global change. These reports are available by request from the Joint Program office and are distributed at no charge.
3. Responses of primary production and total carbon storage to changes in climate and atmospheric CO₂ concentration Xiao et al. (10/95)

2. Description and validation of the MIT version of the GISS 2D model Sokolov & Stone (5/95)

1. Uncertainty in climate change policy analysis Jacoby et al. (12/94)