The Impact of New Technology on Product Development

Outline

- Introduction
- Selection of new technology
- New Technology Management
 - Design
 - Manufacturing

- Lecture mixed with case discussion -- I will ask questions throughout to start discussion.

- In order to be competitive you need to introduce a known product with 8-10X change in
 - performance
 - cost
 - feature sets
- Uncertainty about
 - performance needs
 - cost targets
 - expected volumes
 - yields

Introduction

- Summarize the Cannon case...
What do we mean by New Technology

- New product families
 - Ink Jet portable printers
 - Compact Disks
- New technology
 - Antilock brakes
- New process
 - .5 - .35 micron line widths
 - Determinate Assembly (aircraft)

Cases

- *What characterizes new technology for both cases?*
Benefits of New Technology

- Significant edge over competitors
- Open new customer groups/new markets
 - portable printer
 - low cost computer
- Ability to share new technology across many products
 - Sony Walkman

Risks of New Technology

- You don’t understand the customer very well
 - how many will be purchased (volumes)
 - how much will the customer pay (costs).
- You don’t understand the product very well
 - what are the yields
 - what are the costs
 - how long to ramp the product
Metrics

- What are the metrics which measured Cannon's success?
 - Cost of sensor
 - Size of the sensor / fax machine
 - Yield
 - Ramp time
 - Volumes
 - Reliability
 - Market Size

Risks

- What are the uncertainties that they face
 - Risks
 - Could not make new component
 - Competitors have large market share (market not growing too fast)
 - Process/yields and costs
 - Customer wants
 - Resources
 - Line requires sign. Resources ($15M)
 - Yen value high
 - Bringing up CS-II takes away from CS-I
Technology push vs. pull

- **Push**
 - technology developed in-house
 - look for a product to put it in
 - patents to protect intellectual property
- **Pull**
 - have a product -- looking for a technology
 - internally develop it -- risky from a schedule perspective
 - externally purchase it -- risky from a market share perspective (competitive position compromised)
Two approaches

- Bet the farm (big returns, high risk)
 - Building an entire new product platform on a new technology
 - Xerox’s digital office platform
- Start slow (medium returns, medium risk)
 - Incorporate into one product
 - Test it, get the bugs out
 - Incorporate into other products

Product Development funnel filter

- R&D
- Product concepts for new technology
- Down select from the large set to pick the few that will be implemented

Recycled

Trashed

Market
Questions

- How did Cannon down select from their many technologies?
- Why was their technology strategy successful?
- How did they mitigate the risks?
 - Cross functional teams
 - Product development process
 - Diversification
 - Vertical integration
 - Core technologies
 - Product focused research and development
 - focus on future customer needs not existing customers
 - focus on on product and then diversify

New Technology: Design
Develop Technology maturity before entering manufacturing

- Reduce uncertainty about
 - time to develop/ramp
 - performance
 - robustness
 - work required to get it to perform

- Understand
 - how to manufacture
 - what the yields are
 - robustness
 - noise variables and their impact

Robustness

- Design latitude -- how much variation can be tolerated
- Manufacturing variability -- how much variation is going to be introduced by the manufacturing process
Yield problems

- Noise factors are affecting the quality of the product such that it violates the allowable latitude.

![Graph showing yield problems and technology readiness.]

Control factors:
- Change the control factors (in design)

Noise factors:
- Control the noise factors (in production)

New Technology

Inputs

Outputs
Variation Factors

Control Factors
- Dimensions
- Materials
- Process Variables

Noise factors
- Outer noise
 - temperature
 - humidity
 - people
- Inner noise
 - Wear
 - Fade
- Product noise
 - Part to part variation

1- During Design

- Use prototypes (virtual and physical) to determine
 - What are the noise variables
 - How do they affect the final product
- Change the control variables (dimensions, etc.) to make the system as robust as possible
2 - Ramp

- What are the potential noise variables that may affecting quality
- What are their contributions
- Set up measurement plans to track both the
 - noise factors (inputs)
 - quality characteristic (outputs)
- Set up root cause diagrams (Fishbone, FMEA) to enable rapid diagnosis of errors
- Institute learning cycles to map input/output noise and remove the sources

Learning Cycle

- Learning in ramp increases the rate/quality of production by
 - reducing uncertainty about what noise factors are the large contributors
 - identify and resolve unknown problems (door example)
- Four stages
 - identification, root cause analysis, fix selection, fix execution
Learning cycle

Identify problem → Trace the error

Measurement plans

Fix the problem
- variation reduction
- design change
- production change

Where should it be fixed?

Questions

- Why weren’t they successful on the CS-I? Why did they have to wait until the next generation?
- What were the success factors at Cannon? Why do they continue to be world leaders?
- What are the differences between Cannon and EMI? Is one “better” than the other?
Advanced Micro Devices: A Tale of missed opportunities

- AMD is a competitor to Intel
- Produces a compatible chip to Intel’s Pentium
- Considered the “Also ran….”

Some rough cost numbers

- To build a new fab is on the order of 500M - 1B dollars
- 50% of the cost of a chip is the cost of the factory
• Nov. 1994
 – AMD announces the K86 family
 • low cost, high performance alternative to the Pentium family
 – All capacity committed for 1995 to customers
 – K5 design almost completed (100MHz)
 – Plan to move from .5 micron to .35 micron in 1996
• Nov 1995
 – Only a a few thousand K5s at 75 MHz being produced

\[
\text{Volume} \times \text{yield} \times \text{price} = \frac{\text{volume} \times (\text{materials} + \text{labor}) + \text{capital}}{1 + \text{profit} \%} \]
• June 1996
 – K5 finally shipping for low end machines (9 months late)
 – “tardiness caused a lukewarm reception for the chip”
• Nov 1996
 – Producing at 2M/yr volumes K5 (orig. plan was 5M/yr)
 – sales slumping -- volume and price problems (competition from Intel

• Dec. 1996
 – Ended the fiscal year $69M in the red
 – Samples of K6 being released
 – Persuaded laptop manuf. To use K6 because the laptop Pentium not coming out until 1997
• June 1997
 – K6 still not at volumes, slower than Pentium but $167 cheaper.

• October 1997
 – K6 for laptop actually comes out -- same time as Intel’s Pentium Pro chip.
 – Yields still not up for the k6 -- not enough capacity
• Nov 1997
 – 97Q3 losses of 31.7M
 – Shipped 1 million k6
 – goal to ship 2 million in 97Q4
• Jan 1998
 – Move to .25 micron fab
 – No experience and had troubles with .35
• April 1998
 – Downsized year predictions from 15M to 12M K6s
 – Shipped 1.5M in 98Q1 (goal was 2 in 97Q1)
 – Goal to ship 2M in 98Q2
Summary

• AMD had a theoretical advantage
 – same product
 – lower price
• They failed because
 – they couldn’t get the volumes
 – they couldn’t support the price
 • aggressive yield predictions
 • failure to achieve yields/throughput

Summary

• Target costing
 – Design to cost so the product fits the market
• Volumes
 – volumes drive manufacturing strategy and pricing especially where there is significant capital equipment costs
• Yields
 – pick the right process and design the product so that yields are high
• Ramp
 – quick ramps are a requirement for cost effective development
Next lecture

- Continuous Casting Investments at USX Corporation, (HBS #9-697-020)

- Do you think Kappmeyer should sign the proposal? Why or why not?
- What position should USX take with respect to CSP tech.?
- Why do Henderson and Clark believe that established firms fail in the face of "architectural innovations"?
- Compare Henderson and Clark’s explanation for the failure of established firms with that of Christiansen and Bower. How are they similar? How do they differ?