What’s My Deal?
Contract Communications in
XML Agent Marketplaces

Invited Presentation for
Center for eBusiness @ MIT Annual Conference
April 19, 2002, Cambridge, MA USA

Prof. Benjamin Grososf

MIT Sloan School of Management
bgrosof@mit.edu
http://www.mit.edu/~bgrosof/

4/30/2002 by Benjamin Grososf copyrights reserved
Outline

• **Aiming to be provocative**

• 1. Intro: XML, Semantic Web
 – example: e-signatures: deeper issues & opportunities

• 2. What’s Doable Now in rule-based agent contracting
 – functionality: communicate, execute, modify
 – what kind of stuff represented by rules

• 3. Example of Agent Contract Communication:
 – Approach: Inter-operable, modular XML Rules represent parts of Contract Content

• 4. Applications:
 – Current
 – Vision

• **5. Discussion: Directions for the Glorious Future**

4/30/2002 by Benjamin Grosof copyrights reserved

SweetDeal system
Deeper Issues of E-Signatures

• WHAT’S THE DEAL ? ... !!
• SIGN AS WHAT ?? ... !!

• Vision/Approach: A net of documents combined by links, on the Web
Looks Simple To Start...
then Gets Interestingly Precise

A Vision/Approach of what Web & Agents enable

SALES RECEIPT

Web info/knowledge “behind the curtain”

ComfieCo.com
5way Chair Blue

Operating Rules

of MIT Sloan

$140.
VISA Europe

Signed,

Benjamin

Receive ID
K46239...

Web links

4/30/2002
by Benjamin Grosof copyrights reserved
The Web is becoming XML → the Semantic Web

- XML (vs. HTML) offers much greater capabilities for structured detailed descriptions that can be processed automatically.
 - Eases application development effort for assimilation of data in inter-enterprise interchange
 - A suite of open standards both current and emerging
 - … including for knowledge-level SEMANTICS
- Soon, Agents will Talk according to these standards…
 - .. potential to revolutionize interactivity in Web marketplaces
 - B2B, …
What’s Doable Today in rule-based agent contracting, based on our approach to rule representation (“SweetDeal”)

- Communicate: with deep shared semantics
 - XML, inter-operable with same sanctioned inferences
 - ↔ heterogeneous rule systems / rule-based agents

- Execute contract provisions:
 - infer; ebiz actions; authorize; ...

- Modify easily: contingent provisions
 - default rules; modularity; exceptions, overriding

- Reason about the contract/proposal
 - hypotheticals, test, evaluate; tractably
 - (also need “solo” decision making/support by each agent)
Approach:

Rule-based Contracts for E-commerce

- Rules as way to specify (part of) business processes, policies, products: as (part of) contract terms.
- Complete or partial contract.
 - As default rules. Update, e.g., in negotiation.
- Rules provide high level of conceptual abstraction.
 - easier for non-programmers to understand, specify, dynamically modify & merge. E.g.,
 - by multiple authors, cross-enterprise, cross-application.
- Executable. Integrate with other rule-based business processes.
our SweetDeal System

• **SWEET** = Semantic WEb Enabling Technology
 - software components, theory, approach
 - pilot application scenarios, incl. contracting (SweetDeal)
• Uses/contributes *emerging standards* for XML and knowledge representation:
 - RuleML (co-founder)
 - WebOnt ontologies (W3C)
• Uses *repositories* of business processes and contracts
 - MIT Process Handbook (Sloan IT)
 - legal/regulatory sources: law firms, ABA, CommonAccord, … *Suggestions welcome!!*
Contract Rules across Applications / Enterprises

Contracting parties integrate e-businesses via shared rules.

Application 1, e.g., seller e-storefront
- Business Logic
 - Rules
 - e.g., OPS5

“E-Business”

Application 2, e.g., buyer shopbot agent
- Business Logic
 - Rules
 - e.g., Prolog

“E-Commerce”

Contract Rules Interchange

“E-Business”

4/30/2002 by Benjamin Grosof copyrights reserved
Examples of Contract Provisions
Well-Represented by Rules
in Agent Deal Making

• Product descriptions
 – Product catalogs: properties, conditional on other properties.

• Pricing dependent upon: delivery-date, quantity, group memberships, umbrella contract provisions

• Terms & conditions: refund/cancellation timelines/deposits, lateness/quality penalties, ordering lead time, shipping, creditworthiness, biz-partner qualification, service provisions

• Trust
 – Creditworthiness, authorization, required signatures

• Buyer Requirements (RFQ, RFP) wrt the above

• Seller Capabilities (Sourcing, Qualification) wrt the above
Contract Rules during Negotiation

Contracting parties NEGOTIATE via shared rules.
Exchange of *Rules Content* during Negotiation: example

Buyer, e.g., manufacturer

- Request For Quote
- Quote
- Purchase Order
- Ack. Deal

Seller, e.g., supplier of parts
Exchange of Rules Content during Negotiation: example

- Request for Proposal
- Proposal
- Counter-Proposal
- Final Offer
- Purchase Order
- Acknowledgment of Deal
Negotiation Example XML Document: Proposal from supplierCo to manufCo

- `<negotiation_message>`
 - `<message_header>`
 - `<proposal/>
 - `<from> supplierCo </from>
 - `<to> ManufCo </to>
 - `<message_header>`
 - `<rules_content>`
 - `…[see next slide]`
 - `<rules_content>`
 - `…`
 - `<negotiation_message>`

Example of similar message document format:

- FIPA Agent Communication Markup Language (draft industry standard).
Negotiation Ex. Doc. Rules:
Proposal from supplierCo to manufCo

- ...
 \(<\text{usualPrice}>\ \text{price}(\text{per_unit}, \ ?\text{PO}, \$60) \leftarrow\)
- \ \text{purchaseOrder}(\ ?\text{PO}, \ \text{supplierCo}, \ ?\text{AnyBuyer}) \land
- \ \text{quantity_ordered}(\ ?\text{PO}, \ ?\text{Q}) \land (?\text{Q} \geq 5) \land (?\text{Q} \leq 1000) \land
- \ \text{shipping_date}(\ ?\text{PO}, \ ?\text{D}) \land (?\text{D} \geq 24\text{Apr}00) \land (?\text{D} \leq 12\text{May}00).
- \ \langle\text{volumeDiscount}\rangle\ \text{price}(\text{per_unit}, \ ?\text{PO}, \$51) \leftarrow
- \ \text{purchaseOrder}(\ ?\text{PO}, \ \text{supplierCo}, \ ?\text{AnyBuyer}) \land
- \ \text{quantity_ordered}(\ ?\text{PO}, \ ?\text{Q}) \land (?\text{Q} \geq 100) \land (?\text{Q} \leq 1000) \land
- \ \text{shipping_date}(\ ?\text{PO}, \ ?\text{D}) \land (?\text{D} \geq 28\text{Apr}00) \land (?\text{D} \leq 12\text{May}00). \overright(\text{volumeDiscount} \ , \ \text{usualPrice}).
- \ \bot \leftarrow \text{price}(\text{per_unit}, \ ?\text{PO}, \ ?\text{X}) \land \text{price}(\text{per_unit}, \ ?\text{PO}, \ ?\text{Y}) \ \text{GIVEN} \ (?\text{X} \neq \ ?\text{Y}).
- \ ...
Negotiation Ex. Doc. Rules:

Counter-Proposal from manufCo to supplierCo

- ...
 <usualPrice> price(per_unit, ?PO, $60) ← ...
- <volumeDiscount> price(per_unit, ?PO, $51) ←
 purchaseOrder(?PO, supplierCo, ?AnyBuyer) ∧
 quantity_ordered(?PO, ?Q) ∧ (?Q ≥ 5) ∧ (?Q ≤ 1000) ∧
 shipping_date(?PO, ?D) ∧ (?D ≥ 28Apr00) ∧ (?D ≤ 12May00) .
 overrides(volumeDiscount, usualPrice) .
- ⊥ ← price(per_unit, ?PO, ?X) ∧ price(per_unit, ?PO, ?Y) GIVEN (?X ≠ ?Y).
- <aSpecialDeal> price(per_unit, ?PO, $48) ←
 purchaseOrder(?PO, supplierCo, manufCo) ∧
 quantity_ordered(?PO, ?Q) ∧ (?Q ≥ 400) ∧ (?Q ≤ 1000) ∧
 shipping_date(?PO, ?D) ∧ (?D ≥ 02May00) ∧ (?D ≤ 12May00) .
 overrides(aSpecialDeal, volumeDiscount) .
- overrides(aSpecialDeal, usualPrice) .
- ...

4/30/2002 by Benjamin Grosof copyrights reserved
Negotiation Example ---

XML Encoding of Rules in RuleML

• <rulebase>
• <imp>
• <_rlab>usualPrice</_rlab>
• <_head>
 • <clit>
 • <_opr><rel>price</rel></_opr>
 • <ind>per_unit</ind>
 • <var>PO</var>
 • <ind>$60</ind>
 • </clit>
• </_head>
• </_body> ... (see next page) </_body>
• </imp>
• ...
• </rulebase>
Negotiation Example --

XML Encoding of Rules in RuleML, Continued

- <body>
- <andb>
- <fclit>
 - <opr><rel>purchaseOrder</rel></opr>
 - <var>PO</var>
 - <ind>supplierCo</ind>
 - <var>AnyBuyer</var>
- </fclit>
- <fclit>
 ...
- </fclit>
- ...
- </andb>
- </body>

4/30/2002 by Benjamin Grosof copyrights reserved
Commercial Implementation & Piloting

• **IBM CommonRules**: AlphaWorks Java library
 – implements rule-based capabilities:
 • XML inter-operability; prioritized conflict handling

• **Rule Markup Language**: nascent industry standards effort
 – XML Knowledge Representation (KR) → make the Web be “Semantic”
 – KR: *Situated Courteous Logic Programs in XML*

• EECOMS industry consortium including Boeing, Baan, TRW, Vitria, IBM, universities, small companies
 – $29Million 1998-2000; 50% funded by NIST ATP
 – application piloted
 • contracting & negotiation; authorization & trust
Flavors of Rules Commercially Most Important today in E-Business

- E.g., in OO app’s, DB’s, workflows.

- Relational databases, SQL: Views, queries, facts are all rules.
- Production rules (OPS5 heritage): e.g.,
 - Blaze, ILOG, Haley: rule-based Java/C++ objects.
- Event-Condition-Action rules (loose family), cf.:
 - business process automation / workflow tools.
 - active databases; publish-subscribe.
- Prolog. “logic programs” as a full programming language.
- (Lesser: other knowledge-based systems.)
Criteria for Contract Rule Representation

1. High-level: Agents reach common understanding; contract is easily modifiable, communicatable, executable.
2. Inter-operate: heterogeneous commercially important rule systems.
3. Expressive power, convenience, natural-ness.
 ... but: computational tractability.
4. Modularity and locality in revision.
5. Declarative semantics.
 – essential feature in commercially important rule systems.
7. Prioritized conflict handling.
8. Ease of parsing.
9. Integration into Web-world software engineering.

OPC

OLP

Courteous

XML

Situated

4/30/2002 by Benjamin Grosof copyrights reserved
Also Currently Being Developed in the world today

- Delegations between agents
- XML Ontologies (Vocabularies)
 - knowledge representation: infer with definitional knowledge
 - specific domain/industry vocabularies
- DARPA Agent Markup Language: ontologies, rules
- Industry Standards:
 - Web, incl. Web services
 - Agents, Business Processes, Workflow
 - E-Commerce: ebXML, ...
 - Industry-Specific
 - Legal XML
- Law: Electronic Signatures, ...
- Reusable Contract doc’s on Web: CommonAccord, our work, ...

4/30/2002 by Benjamin Grosof copyrights reserved
Our Current Research Directions

• **SweetRules**: prototyping of SCLP RuleML inferencing, translation, knowledge integration
 – ontologies; justifications; queries; using Web protocols to invoke procedural actions; Jess.

• In **SweetDeal**, using **SweetRules**: deals about Web services, using MIT Process Handbook; integrating shallowly automated legal text; reputations; exception handling and management of risk contingencies; financial services; P3P privacy policies; and distributed trust management incl. for security authorization.

• *I.e.*, **Business Intelligence on the Semantic Web**
Thanks!

Questions?

Comments? Pointers?

For More Info:
 – http://www.mit.edu/~bgrosof/
 • links to http://www.research.ibm.com/rules/
Speaker Bio

• Benjamin Grosof is Douglas Drane Assistant Professor in Information Technology at MIT Sloan School of Management. His research is to create and study knowledge-based information technology for e-commerce applications, including high-level business/agent communication, information integration, contracts/negotiation, trust, product descriptions, business rules/policies, Web services, and e-marketplaces. The pioneer of inter-operable XML business rules and of their application to contracting, he co-leads the RuleML emerging industry standards effort on inter-operable XML/RDF rules. He is PI currently for a project in the DARPA Agent Markup Language (DAML) initiative, to create Semantic Web technology and explore its business applications.

• Previously, he was a senior research scientist at IBM T.J. Watson Research Center (12 years there), where most recently he conceived and led IBM CommonRules (V3.0 currently on IBM alphaWorks) and co-led its application piloting for rule-based XML agent contracting in EECOMS, a $29 Million NIST industry consortium project on manufacturing supply chain management. His notable technical contributions also include fundamental advances in rule-based security authorization, conflict handling for rules, rule-based intelligent agents, and integration of rules with machine learning. He is author of over 30 refereed publications, two major software releases, and a patent. His recent service includes co-chairing the AAAI (National Conference on Artificial Intelligence) Workshops on AI in E-Commerce (1999) and Knowledge-Based E-Markets (2000). His background includes 2 years in software startups, PhD in Computer Science (specialty AI) from Stanford University, and BA in Applied Mathematics from Harvard University.
Intelligent Agents in Web E-Commerce

• Today: especially in the discovery phase of shopping
 – sales agents: recommend products, target ads
 – buyer agents: find vendors; compare offers on price, delivery, and availability

• Coming soon to a world near you:…
 – billions/trillions of agents
 – ...with smarts: knowledge gathering, reasoning, economic optimization
 – ...doing our bidding
 • but with some autonomy
Automating Contracting

- “Contract” in broad sense: = offering or agreement.
- “Automate” in deep sense: =
 - 1. Communicatable automatically.
 - 2. Executable within appropriate context of contracting parties’ business processes.
 - 3. Evaluable automatically by contracting parties.
 - “reason about it”.
 - 4. Modifiable automatically by contracting parties.
 - negotiation, auctions.
Contracting 1-2-3

1. Find Contracting Opportunity
2. Negotiate Contract
3. Execute Contract Terms

- DISCOVER
- NEGOTIATE
- EXECUTE

- Applies to any contracting, electronic or not.
- May iterate or interleave these steps.
- Boundaries not necessarily sharp.

4/30/2002 by Benjamin Grosof copyrights reserved