Estimating Information Flow in Deep Neural Networks

Ziv Goldfeld

MIT

56th Allerton Conference on Communication, Control, and Computing
Monticello, Illinois, US

October 4th, 2018

Collaborators: E. van den Berg, K. Greenewald, I. Melnyk, N. Nguyen, B. Kingsbury and Y. Polyanskiy
How do Deep Neural Networks Learn?

- Unprecedented practical success in hosts of tasks
- Long way to go theory-wise:
How do Deep Neural Networks Learn?

- Unprecedented practical success in hosts of tasks

- Long way to go theory-wise:
 - What drives the evolution of hidden representations?
How do Deep Neural Networks Learn?

- Unprecedented practical success in hosts of tasks
- Long way to go theory-wise:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
How do Deep Neural Networks Learn?

- Unprecedented practical success in hosts of tasks
- Long way to go theory-wise:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?
How do Deep Neural Networks Learn?

- Unprecedented practical success in hosts of tasks
- Long way to go theory-wise:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?
How do Deep Neural Networks Learn?

- Unprecedented practical success in hosts of tasks

- Long way to go theory-wise:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

- Past attempts to understand effectiveness of deep learning
How do Deep Neural Networks Learn?

- Unprecedented practical success in hosts of tasks
- Long way to go theory-wise:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?
- Past attempts to understand effectiveness of deep learning
 - Optimization in parameter space [Saxe’14, Choromanska’15, Advani’17]
How do Deep Neural Networks Learn?

- Unprecedented practical success in hosts of tasks

- Long way to go theory-wise:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

- Past attempts to understand effectiveness of deep learning
 - Optimization in parameter space [Saxe’14, Choromanska’15, Advani’17]
 - Classes of efficiently representable functions [Montufar’14, Poggio’17]
How do Deep Neural Networks Learn?

- Unprecedented practical success in hosts of tasks

- Long way to go theory-wise:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

- Past attempts to understand effectiveness of deep learning
 - Optimization in parameter space [Saxe’14, Choromanska’15, Advani’17]
 - Classes of efficiently representable functions [Montufar’14, Poggio’17]
 - Information theory [Tishby’17, Saxe’18, Gabrié’18]
How do Deep Neural Networks Learn?

- Unprecedented practical success in hosts of tasks

- Long way to go theory-wise:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

- Past attempts to understand effectiveness of deep learning
 - Optimization in parameter space [Saxe’14, Choromanska’15, Advani’17]
 - Classes of efficiently representable functions [Montufar’14, Poggio’17]
 - Information theory [Tishby’17, Saxe’18, Gabrié’18]
How do Deep Neural Networks Learn?

- Unprecedented practical success in hosts of tasks
- Long way to go theory-wise:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?
- Past attempts to understand effectiveness of deep learning
 - Optimization in parameter space [Saxe’14, Choromanska’15, Advani’17]
 - Classes of efficiently representable functions [Montufar’14, Poggio’17]
 - **Information theory** [Tishby’17, Saxe’18, Gabrié’18]

★ **Goal:** Explain ‘compression’ in Information Bottleneck framework
Feedforward DNN for Classification:

\[
\begin{align*}
\mathcal{L} & = \text{Label} \\
\mathcal{K} & = \mathcal{L}(\text{Feature/Image}) \\
\mathcal{P} \mathcal{O} & = \mathcal{K}(\text{Input Layer}) \\
\mathcal{P} \mathcal{H} \mathcal{I} \mathcal{L} & = \mathcal{P} \mathcal{O} (\text{Hidden Layer 1}) \\
\mathcal{P} \mathcal{H} \mathcal{I} \mathcal{L} \mathcal{1} & = \mathcal{P} \mathcal{H} \mathcal{I} \mathcal{L} (\text{Hidden Layer 1}) \\
\mathcal{P} \mathcal{H} \mathcal{I} \mathcal{L} \mathcal{2} & = \mathcal{P} \mathcal{H} \mathcal{I} \mathcal{L} (\text{Hidden Layer 1}) \\
\mathcal{O} & = \mathcal{P} \mathcal{H} \mathcal{I} \mathcal{L} \mathcal{2} (\text{Output Layer})
\end{align*}
\]
Setup and Preliminaries

Feedforward DNN for Classification:

\[Y \quad X \quad T_0 = X \]

(Y (Label) X (Feature/Image) T_0 = X (Input Layer))

Cat

Dog
Setup and Preliminaries

Feedforward DNN for Classification:

\[Y \quad (\text{Label}) \quad X \quad (\text{Feature/Image}) \quad T_0 = X \quad (\text{Input Layer}) \quad T_1 \quad (\text{Hidden Layer 1}) \quad T_2 \quad (\text{Hidden Layer 1}) \quad T_3 \quad (\text{Hidden Layer 1}) \]

Cat

Dog

Estimating Information Flow in DNNs
Setup and Preliminaries

Feedforward DNN for Classification:

\[\hat{Y} \] (Label) \[X \] (Feature/Image) \[T_0 = X \] (Input Layer) \[T_1 \] (Hidden Layer 1) \[T_2 \] (Hidden Layer 1) \[T_3 \] (Hidden Layer 1) \[T_4 = \hat{Y} \] (Output Layer)

Cat

Dog
Setup and Preliminaries

Feedforward DNN for Classification:

\(T_\ell = f_\ell(T_{\ell-1}) \) (MLP: \(T_\ell = \sigma(W_\ell T_{\ell-1} + b_\ell) \))

- Deterministic DNN:

\(Y \) (Label) \(X \) (Feature/Image) \(T_0 = X \) (Input Layer) \(T_1 \) (Hidden Layer 1) \(T_2 \) (Hidden Layer 1) \(T_3 \) (Hidden Layer 1) \(T_4 = \hat{Y} \) (Output Layer)

Cat

Dog
Setup and Preliminaries

Feedforward DNN for Classification:

- **Deterministic DNN**: $T_\ell = f_\ell(T_{\ell-1})$
 MLP: $T_\ell = \sigma(W_\ell T_{\ell-1} + b_\ell)$

- **ℓth Hidden Layer Enc & Dec**: $P_{T_\ell|X}$ (enc) and $P_{\hat{Y}|T_\ell}$ (dec)
Feedforward DNN for Classification:

- **Deterministic DNN:** $T_\ell = f_\ell(T_{\ell-1})$ (MLP: $T_\ell = \sigma(W_\ell T_{\ell-1} + b_\ell)$)
- **ℓth Hidden Layer Enc & Dec:** $P_{T_\ell|X}$ (enc) and $P_{\hat{Y}|T_\ell}$ (dec)
- **IB Theory:** Track MI pairs $(I(X;T_\ell), I(Y;T_\ell))$ (information plane)
Feedforward DNN for Classification:

IB Theory Claim: Training comprises 2 phases
IB Theory Claim: Training comprises 2 phases

- **Fitting:** $I(Y; T_\ell)$ & $I(X; T_\ell)$ rise (short)
Setup and Preliminaries

Feedforward DNN for Classification:

IB Theory Claim: Training comprises 2 phases

- **Fitting:** $I(Y; T_\ell) \& I(X; T_\ell)$ rise (short)
- **Compression:** $I(X; T_\ell)$ slowly drops (long)
Feedforward DNN for Classification:

IB Theory Claim: Training comprises 2 phases

- **Fitting**: $I(Y; T_\ell) \& I(X; T_\ell)$ rise (short)
- **Compression**: $I(X; T_\ell)$ slowly drops (long)
Setup and Preliminaries

Feedforward DNN for Classification:

\[
T_0 = X \quad (Input \ Layer) \quad T_1 \quad (Hidden \ Layer \ 1) \quad T_2 \quad (Hidden \ Layer \ 1) \quad T_3
\]

\[
T_4 = \hat{Y} \quad (Output \ Layer)
\]

IB Theory Claim: Training comprises 2 phases

- **Fitting:** \(I(Y; T_\ell) \ & I(X; T_\ell) \) rise (short)
- **Compression:** \(I(X; T_\ell) \) slowly drops (long)
Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)
Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

\[I(X; T_\ell) \text{ is independent of the DNN parameters} \]
Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)
\[\implies I(X; T_\ell) \text{ is independent of the DNN parameters} \]

Why?
Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid) \(\implies I(X; T_\ell) \) is independent of the DNN parameters

Why? Formally…
Observation

\[\text{Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)} \Rightarrow I(X; T_\ell) \text{ is independent of the DNN parameters} \]

Why? Formally...

- Continuous \(X \):
Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

\[\implies I(X; T_\ell) \text{ is independent of the DNN parameters} \]

Why? Formally...

- **Continuous** \(X \):
 \[
 I(X; T_\ell) = h(T_\ell) - h(T_\ell|X)
 \]
Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

\[I(X; T_\ell) \text{ is independent of the DNN parameters} \]

Why? Formally...

- **Continuous** \(X \):
 \[I(X; T_\ell) = h(T_\ell) - h(T_\ell | X) \]
Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid) \[\implies I(X; T_\ell) \text{ is independent of the DNN parameters}\]

Why? Formally...

- **Continuous** \(X\): \[I(X; T_\ell) = h(T_\ell) - h(\tilde{f}_\ell(X) | X)\]
Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

$$I(X; T_\ell) \text{ is independent of the DNN parameters}$$

Why? Formally...

- Continuous X:

$$I(X; T_\ell) = h(T_\ell) - h(\tilde{f}_\ell(X) | X)$$

$$= -\infty$$
Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

\[I(X; T_\ell) \text{ is independent of the DNN parameters} \]

Why? Formally...

- **Continuous** \(X \):
 \[
 I(X; T_\ell) = h(T_\ell) - h(\tilde{f}_\ell(X)|X) = \infty
 \]
Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

\[\implies I(X; T_\ell) \text{ is independent of the DNN parameters} \]

Why? Formally...

- **Continuous** \(X \):
 \[I(X; T_\ell) = h(T_\ell) - h(f_\ell(X)|X) = \infty \]

- **Discrete** \(X \):
Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

$\implies I(X; T_\ell)$ is independent of the DNN parameters

Why? Formally...

- **Continuous X:**
 \[
 I(X; T_\ell) = h(T_\ell) - h(\tilde{f}_\ell(X)|X) = \infty
 \]

- **Discrete X:** The map $X \mapsto T_\ell$ is injective*

* For almost all weight matrices and bias vectors
Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

\[\implies I(X; T_\ell) \text{ is independent of the DNN parameters} \]

Why? Formally...

- **Continuous** \(X \):
 \[I(X; T_\ell) = h(T_\ell) - h(\tilde{f}_\ell(X) | X) = \infty \]

- **Discrete** \(X \): The map \(X \mapsto T_\ell \) is injective* \[\implies I(X; T_\ell) = H(X) \]

* For almost all weight matrices and bias vectors
Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

\[\Rightarrow I(X; T_\ell) \text{ is independent of the DNN parameters} \]

Why?

Formally...

- **Continuous** \(X \):
 \[I(X; T_\ell) = h(T_\ell) - h(\tilde{f}_\ell(X)\mid X) = \infty \]

- **Discrete** \(X \):
 The map \(X \mapsto T_\ell \) is injective* \(\Rightarrow I(X; T_\ell) = H(X) \)
Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

\[\implies I(X; T_\ell) \text{ is independent of the DNN parameters} \]

Why? Formally...

- **Continuous** \(X \):
 \[I(X; T_\ell) = h(T_\ell) - h(\tilde{f}_\ell(X) \mid X) = \infty \]

- **Discrete** \(X \): The map \(X \mapsto T_\ell \) is injective* \(\implies I(X; T_\ell) = H(X) \)

Intuition:
Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

\[I(X; T_\ell) \text{ is independent of the DNN parameters} \]

Why?

Formally...

- **Continuous** X:
 \[I(X; T_\ell) = h(T_\ell) - h(\tilde{f}_\ell(X)|X) = \infty \]

- **Discrete** X:
 The map $X \mapsto T_\ell$ is injective

Intuition: Encoding all info. about X is arbitrarily fine variations of T_ℓ
Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

\[I(X; T_\ell) \text{ is independent of the DNN parameters} \]

Why?

Formally...

- **Continuous** \(X \):
 \[I(X; T_\ell) = h(T_\ell) - h(\tilde{f}_\ell(X)|X) = \infty \]

- **Discrete** \(X \): The map \(X \mapsto T_\ell \) is injective\(^*\) \(\implies I(X; T_\ell) = H(X) \)

Intuition:

Encoding all info. about \(X \) is arbitrarily fine variations of \(T_\ell \)

Past Works:

[Schwartz-Ziv&Tishby'17, Saxe et al. '18]
What is going on here?

- Plots via binning-based estimator of \(I(X; T_\ell) \), for \(X \sim \text{Unif(dataset)} \)
What is going on here?

- Plots via binning-based estimator of $I(X; T_\ell)$, for $X \sim \text{Unif}(\text{dataset})$
 \[\implies \text{Plotted values are } I(X; \text{Bin}(T_\ell))\]
What is going on here?

- Plots via binning-based estimator of $I(X; T_\ell)$, for $X \sim \text{Unif}(\text{dataset})$

 \implies Plotted values are $I(X; \text{Bin}(T_\ell)) \approx I(X; T_\ell)$
Plots via binning-based estimator of $I(X; T_\ell)$, for $X \sim \text{Unif}(\text{dataset})$

\implies Plotted values are $I(X; \text{Bin}(T_\ell)) \approx I(X; T_\ell)$

No!
What is going on here?

- Plots via binning-based estimator of $I(X;T_\ell)$, for $X \sim \text{Unif}\,(\text{dataset})$

 \implies Plotted values are $I(X;\text{Bin}(T_\ell)) \approx I(X;T_\ell)$ $\textbf{No!}$
What is going on here?

- Plots via binning-based estimator of $I(X; T_\ell)$, for $X \sim \text{Unif}($dataset$)$

 \implies Plotted values are $I(X; \text{Bin}(T_\ell))$ $\approx I(X; T_\ell)$ No!

- Smaller bins \implies Closer to truth: $I(X; T_\ell) = \ln(2^{12}) \approx 8.31$
What is going on here?

- Plots via binning-based estimator of $I(X; T_\ell)$, for $X \sim \text{Unif}($dataset$)$

 \implies Plotted values are $I(X; \text{Bin}(T_\ell)) \approx I(X; T_\ell)$ No!

- Smaller bins \implies Closer to truth: $I(X; T_\ell) = \ln(2^{12}) \approx 8.31$

- Binning introduces “noise” into estimator (not present in the DNN)
What is going on here?

- Plots via binning-based estimator of $I(X; T_\ell)$, for $X \sim \text{Unif(dataset)}$

 \implies Plotted values are $I(X; \text{Bin}(T_\ell)) \approx I(X; T_\ell)$ No!

- Smaller bins \implies Closer to truth: $I(X; T_\ell) = \ln(2^{12}) \approx 8.31$
- Binning introduces “noise” into estimator (not present in the DNN)
- Plots showing estimation errors
What is going on here?

- Plots via binning-based estimator of $I(X; T_\ell)$, for $X \sim \text{Unif}($dataset$)$

 \implies Plotted values are $I(X; \text{Bin}(T_\ell)) \approx I(X; T_\ell)$ No!

- Smaller bins \implies Closer to truth: $I(X; T_\ell) = \ln(2^{12}) \approx 8.31$

- Binning introduces “noise” into estimator (not present in the DNN)

- Plots showing estimation errors

- **Real Problem:** $I(X; T_\ell)$ is meaningless for studying the DNN
Proposed Fix: Inject (small) Gaussian noise to neurons’ output
Noisy Deep Neural Networks

Proposed Fix: Inject (small) Gaussian noise to neurons’ output

- **Formally:** \(T_\ell = f_\ell(T_{\ell-1}) + Z_\ell \), where \(Z_\ell \sim \mathcal{N}(0, \beta^2 I) \)
Proposed Fix: Inject (small) Gaussian noise to neurons’ output

- **Formally:** \(T_\ell = f_\ell(T_{\ell-1}) + Z_\ell \), where \(Z_\ell \sim \mathcal{N}(0, \beta^2 I) \)

```
\[
T_{\ell-1} \xrightarrow{\sigma(W_\ell^{(k)}T_{\ell-1} + b_\ell^{(k)})} S_\ell^{(k)} \xrightarrow{\text{+}} T_\ell^{(k)} \\
Z_\ell^{(k)} \sim \mathcal{N}(0, \beta^2)
\]
```
Proposed Fix: Inject (small) Gaussian noise to neurons’ output

Formally: \(T_\ell = f_\ell(T_{\ell-1}) + Z_\ell \), where \(Z_\ell \sim \mathcal{N}(0, \beta^2 I) \)

\[
\begin{align*}
T_{\ell-1} & \xrightarrow{\sigma(W^{(k)}_{\ell}T_{\ell-1} + b^{(k)}_{\ell})} S_{\ell}(k) \xrightarrow{+} T_{\ell}(k) \\
Z_{\ell}(k) & \sim \mathcal{N}(0, \beta^2) \\
\end{align*}
\]

\(X \mapsto T_\ell \) is a \textbf{parametrized channel} that depends on DNN param.!
Proposed Fix: Inject (small) Gaussian noise to neurons’ output

- **Formally:** \(T_\ell = f_\ell(T_{\ell-1}) + Z_\ell \), where \(Z_\ell \sim \mathcal{N}(0, \beta^2 I) \)

\[
T_{\ell-1} \xrightarrow{\sigma(W^{(k)}_\ell T_{\ell-1} + b_\ell(k))} S_\ell(k) \xrightarrow{+} T_\ell(k)
\]

\(Z_\ell(k) \sim \mathcal{N}(0, \beta^2) \)

\(\Rightarrow X \mapsto T_\ell \) is a **parametrized channel** that depends on DNN param.

- **Operational Perspective:**
Proposed Fix: Inject (small) Gaussian noise to neurons’ output

- Formally: \(T_\ell = f_\ell(T_{\ell-1}) + Z_\ell \), where \(Z_\ell \sim \mathcal{N}(0, \beta^2 I) \)

\[
\begin{align*}
T_{\ell-1} & \xrightarrow{\sigma(W^{(k)}_{\ell}T_{\ell-1} + b^{(k)}_{\ell})} S^{(k)}_\ell \xrightarrow{+} T^{(k)}_\ell \\
Z^{(k)}_\ell & \sim \mathcal{N}(0, \beta^2)
\end{align*}
\]

\(\implies X \leftrightarrow T_\ell \) is a parametrized channel that depends on DNN param.!

- Operational Perspective:
 - Performance & learned representations similar to det. DNNs \((\beta \approx 10^{-1})\)
Proposed Fix: Inject (small) Gaussian noise to neurons’ output

- **Formally:**
 \[T_\ell = f_\ell(T_{\ell-1}) + Z_\ell, \text{ where } Z_\ell \sim \mathcal{N}(0, \beta^2 I) \]

\[T_{\ell-1} \xrightarrow{\sigma(W_\ell^{(k)}T_{\ell-1} + b_\ell(k))} S_\ell(k) \xrightarrow{+} T_\ell(k) \]

\[Z_\ell(k) \sim \mathcal{N}(0, \beta^2) \]

\[\Rightarrow X \mapsto T_\ell \text{ is a parametrized channel that depends on DNN param.}! \]

- **Operational Perspective:**
 - Performance & learned representations similar to det. DNNs (\(\beta \approx 10^{-1} \))
 - Noise masks fine variations – MI represents relevant/distinguishable info.
Proposed Fix: Inject (small) Gaussian noise to neurons’ output

- **Formally:** \(T_\ell = f_\ell(T_{\ell-1}) + Z_\ell \), where \(Z_\ell \sim \mathcal{N}(0, \beta^2 I) \)

![Diagram of deep neural network](image)

\(T_{\ell-1} \xrightarrow{\sigma(W_\ell^{(k)}T_{\ell-1} + b_\ell(k))} S_\ell(k) \xrightarrow{+} T_\ell(k) \)

\(Z_\ell(k) \sim \mathcal{N}(0, \beta^2) \)

\(\implies X \mapsto T_\ell \) is a **parametrized channel** that depends on DNN param.!

- **Operational Perspective:**
 - Performance & learned representations similar to det. DNNs (\(\beta \approx 10^{-1} \))
 - Noise masks fine variations – MI represents relevant/distinguishable info.
 - Dropout & quantized DNNs widely used in practice \(\approx \) internal noise
Layer ℓ: Denote $S_\ell \triangleq f_\ell(T_{\ell-1})$
Layer ℓ: Denote $S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \ Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$
Mutual Information (Estimation) in Noisy DNNs

- **Layer** ℓ: Denote $S_\ell \triangleq f_\ell(T_{\ell-1}) \implies T_\ell = S_\ell + Z_\ell, \ Z_\ell \sim \mathcal{N}(0, \beta^2 I)$

- **Assume:** $X \sim \text{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
Layer ℓ: Denote $S_\ell \triangleq f_\ell(T_{\ell-1}) \implies T_\ell = S_\ell + Z_\ell$, $Z_\ell \sim \mathcal{N}(0, \beta^2 I)$

Assume: $X \sim \text{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset

Mutual Information: $I(X; T_\ell) = h(T_\ell) - \frac{1}{m} \sum_{i=1}^m h(T_\ell | X = x_i)$
Layer ℓ: Denote $S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}$, $Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$

Assume: $X \sim \text{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^{m}$ is empirical dataset

Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) - \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$

Distribution of S_{ℓ} is extremely complicated to compute/evaluate
Mutual Information (Estimation) in Noisy DNNs

- **Layer ℓ:** Denote $S_\ell \triangleq f_\ell(T_{\ell-1}) \implies T_\ell = S_\ell + Z_\ell$, $Z_\ell \sim \mathcal{N}(0, \beta^2 I)$

- **Assume:** $X \sim \text{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset

- **Mutual Information:**
 \[
 I(X; T_\ell) = h(T_\ell) - \frac{1}{m} \sum_{i=1}^m h(T_\ell | X = x_i)
 \]

- Distribution of S_ℓ is extremely complicated to compute/evaluate

- But, P_{S_ℓ} and $P_{S_\ell|X=x_i}$ are easily sampled from via DNN fwd. pass
Mutual Information (Estimation) in Noisy DNNs

- **Layer ℓ**: Denote \(S_\ell \triangleq f_\ell(T_{\ell-1}) \implies T_\ell = S_\ell + Z_\ell, \ Z_\ell \sim \mathcal{N}(0, \beta^2 I) \)

- **Assume**: \(X \sim \text{Unif}(\mathcal{X}) \), where \(\mathcal{X} \triangleq \{ x_i \}_{i=1}^m \) is empirical dataset

- **Mutual Information**: \(I(X; T_\ell) = h(T_\ell) - \frac{1}{m} \sum_{i=1}^m h(T_\ell | X = x_i) \)

- Distribution of \(S_\ell \) is **extremely** complicated to compute/evaluate

- But, \(P_{S_\ell} \) and \(P_{S_\ell | X=x_i} \) are **easily** sampled from via DNN fwd. pass

\[\implies \text{Estimate MI from samples & Exploit noisy DNN structure} \]
Mutual Information (Estimation) in Noisy DNNs

- **Layer ℓ**: Denote $S_\ell \triangleq f_\ell(T_{\ell-1}) \implies T_\ell = S_\ell + Z_\ell, \ Z_\ell \sim \mathcal{N}(0, \beta^2 I)$

- **Assume**: $X \sim \text{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset

- **Mutual Information**: $I(X; T_\ell) = h(T_\ell) - \frac{1}{m} \sum_{i=1}^{m} h(T_\ell | X = x_i)$

- Distribution of S_ℓ is extremely complicated to compute/evaluate

- But, P_{S_ℓ} and $P_{S_\ell | X = x_i}$ are easily sampled from via DNN f.w.d. pass

 \implies Estimate MI from samples & Exploit noisy DNN structure

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(S + Z)$ using n i.i.d. samples from $P_S \in \mathcal{F}_d$ (nonparametric class) and knowing that $Z \sim \mathcal{N}(0, \beta^2 I_d)$ independent of S.

Layer ℓ: Denote $S_\ell \triangleq f_\ell(T_{\ell-1}) \implies T_\ell = S_\ell + Z_\ell$, $Z_\ell \sim \mathcal{N}(0, \beta^2 I)$

Assume: $X \sim \text{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset

Mutual Information: $I(X; T_\ell) = h(T_\ell) - \frac{1}{m} \sum_{i=1}^m h(T_\ell | X = x_i)$

- Distribution of S_ℓ is extremely complicated to compute/evaluate
- But, P_{S_ℓ} and $P_{S_\ell | X = x_i}$ are easily sampled from via DNN fwd. pass

\implies Estimate MI from samples & Exploit noisy DNN structure

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(S + Z)$ using n i.i.d. samples from $P_S \in \mathcal{F}_d$ (nonparametric class) and knowing that $Z \sim \mathcal{N}(0, \beta^2 I_d)$ independent of S.

Results [ZG-Greenewald-Polyanskiy’18]:
Mutual Information (Estimation) in Noisy DNNs

- **Layer** ℓ: Denote $S_\ell \triangleq f_\ell(T_{\ell-1}) \implies T_\ell = S_\ell + Z_\ell$, $Z_\ell \sim \mathcal{N}(0, \beta^2 I)$

- **Assume**: $X \sim \text{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset

- **Mutual Information**: $I(X; T_\ell) = h(T_\ell) - \frac{1}{m} \sum_{i=1}^m h(T_\ell | X = x_i)$

- Distribution of S_ℓ is **extremely** complicated to compute/evaluate

- But, P_{S_ℓ} and $P_{S_\ell | X = x_i}$ are **easily** sampled from via DNN fwd. pass

 \implies Estimate MI from samples & Exploit noisy DNN structure

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(S + Z)$ using n i.i.d. samples from $P_S \in \mathcal{F}_d$ (nonparametric class) and knowing that $Z \sim \mathcal{N}(0, \beta^2 I_d)$ independent of S.

Results [ZG-Greenewald-Polyanskiy’18]:

- Sample complexity is exponential in d
Mutual Information (Estimation) in Noisy DNNs

- **Layer \(\ell \):** Denote \(S_\ell \triangleq f_\ell(T_{\ell-1}) \implies T_\ell = S_\ell + Z_\ell, \ Z_\ell \sim \mathcal{N}(0, \beta^2 I) \)

- **Assume:** \(X \sim \text{Unif}(\mathcal{X}), \) where \(\mathcal{X} \triangleq \{x_i\}_{i=1}^m \) is empirical dataset

- **Mutual Information:** \(I(X; T_\ell) = h(T_\ell) - \frac{1}{m} \sum_{i=1}^m h(T_\ell | X = x_i) \)

- Distribution of \(S_\ell \) is extremely complicated to compute/evaluate

- But, \(P_{S_\ell} \) and \(P_{S_\ell | X = x_i} \) are easily sampled from via DNN fwd. pass

 \[\implies \text{Estimate MI from samples & Exploit noisy DNN structure} \]

Differential Entropy Estimation under Gaussian Convolutions

Estimate \(h(S + Z) \) using \(n \) i.i.d. samples from \(P_S \in \mathcal{F}_d \) (nonparametric class) and knowing that \(Z \sim \mathcal{N}(0, \beta^2 I_d) \) independent of \(S \).

Results [ZG-Greenewald-Polyanskiy’18]:

- Sample complexity is exponential in \(d \)

- Absolute-error minimax risk is \(O((\log n)^{d/4} / \sqrt{n}) \) (all const. explicit)
Single Neuron Classification:

$I(X; T_{\ell})$ Dynamics - Illustrative Minimal Example
Single Neuron Classification:

$$X \xrightarrow{\text{tanh}(wX + b)} S_{w,b} \xrightarrow{\text{}} T$$

$$Z \sim \mathcal{N}(0, \beta^2)$$
Single Neuron Classification:

- **Input**: \(X \sim \text{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1) \)

 \(\mathcal{X}_{-1} \triangleq \{-3, -1, 1\} \), \(\mathcal{X}_1 \triangleq \{3\} \)
Single Neuron Classification:

- **Input:** $X \sim \text{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$
 - $\mathcal{X}_{-1} \triangleq \{-3, -1, 1\}$, $\mathcal{X}_1 \triangleq \{3\}$

\[X \xrightarrow{\tanh(wX + b)} S_{w,b} \xrightarrow{T} Z \sim \mathcal{N}(0, \beta^2)\]
Single Neuron Classification:

- **Input:** $X \sim \text{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$

 $\mathcal{X}_{-1} \triangleq \{-3, -1, 1\}$, $\mathcal{X}_1 \triangleq \{3\}$

- $Z \sim \mathcal{N}(0, \beta^2)$

- Move tanh center $x = 2$ (⟺ $b = -2$)
Single Neuron Classification:

- **Input:** \(X \sim \text{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1) \)
 \[
 \mathcal{X}_{-1} \triangleq \{-3, -1, 1\}, \quad \mathcal{X}_1 \triangleq \{3\}
 \]
Single Neuron Classification:

- **Input:** $X \sim \text{Unif}(X_{-1} \cup X_1)$

 $X_{-1} \triangleq \{-3, -1, 1\}$, $X_1 \triangleq \{3\}$

\[X \xrightarrow{\tanh(wX + b)} S_{w,b} \xrightarrow{\pm} T \]

\[Z \sim \mathcal{N}(0, \beta^2) \]

\(\star\) **Sharpen** \(\tanh\) transition (\(\iff\) increase \(w\) and keep \(b = -2w\))
Single Neuron Classification:

- **Input:** $X \sim \text{Unif}(X_- \cup X_1)$

 $X_- \triangleq \{-3, -1, 1\}$, $X_1 \triangleq \{3\}$
Single Neuron Classification:

- **Input:** \(X \sim \text{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1) \)
 \(\mathcal{X}_{-1} \triangleq \{-3, -1, 1\} \), \(\mathcal{X}_1 \triangleq \{3\} \)

\[
S_{5,-10}
\]

\[
\begin{align*}
X &\xrightarrow{\text{tanh}(wX + b)} S_{w,b} \\
&\xrightarrow{+} T \\
Z &\sim \mathcal{N}(0, \beta^2)
\end{align*}
\]

✓ Correct classification performance
Single Neuron Classification:

- **Input:** $X \sim \text{Unif}(\mathcal{X}_- \cup \mathcal{X}_1)$

 $\mathcal{X}_- \triangleq \{-3, -1, 1\}$, $\mathcal{X}_1 \triangleq \{3\}$

- **Empirical Results:**

\[
Z \sim \mathcal{N}(0, \beta^2)
\]
Single Neuron Classification:

- **Input:** $X \sim \text{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$
 \[\mathcal{X}_{-1} \triangleq \{-3, -1, 1\}, \quad \mathcal{X}_1 \triangleq \{3\} \]

- **Mutual Information:**
 \[I(X; T) \]
Input: \(X \sim \text{Unif}(X_{-1} \cup X_1)\)
\[X_{-1} \triangleq \{-3, -1, 1\}, \quad X_1 \triangleq \{3\}\]

Mutual Information:
\[I(X; T) = I(X; S_{w,b} + Z)\]
Single Neuron Classification:

- **Input:** \(X \sim \text{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1) \)
 \(\mathcal{X}_{-1} \triangleq \{-3, -1, 1\} \), \(\mathcal{X}_1 \triangleq \{3\} \)

- **Mutual Information:**
 \[
 I(X; T) = I(X; S_{w,b} + Z) = I(\tanh(wX + b); S_{w,b} + Z)
 \]
Single Neuron Classification:

- **Input:** $X \sim \text{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$
 \[\mathcal{X}_{-1} \triangleq \{-3, -1, 1\}, \mathcal{X}_1 \triangleq \{3\} \]

- **Mutual Information:**
 \[
 I(X; T) = I(X; S_{w,b} + Z) = I(\tanh(wX + b); S_{w,b} + Z) = I(S_{w,b}; S_{w,b} + Z)
 \]

\[Z \sim \mathcal{N}(0, \beta^2) \]
Single Neuron Classification:

- **Input:** \(X \sim \text{Unif}(X_{-1} \cup X_1) \)
 \[X_{-1} \triangleq \{-3, -1, 1\}, \; X_1 \triangleq \{3\} \]

- **Mutual Information:**
 \[I(X; T) = I(X; S_{w,b} + Z) = I(\tanh(wX + b); S_{w,b} + Z) = I(S_{w,b}; S_{w,b} + Z) \]
 \[\Rightarrow \quad I(X; T) \text{ is the aggregate info. transmitted over AWGN w. symbols} \]
 \[S_{w,b} \triangleq \{\tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b)\} \]
Single Neuron Classification:

- **Input:** \(X \sim \text{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1) \)
 \(\mathcal{X}_{-1} \triangleq \{-3, -1, 1\} \), \(\mathcal{X}_1 \triangleq \{3\} \)

- **Mutual Information:**

\[
I(X; T) = I(X; S_{w,b} + Z) = I(\tanh(wX + b); S_{w,b} + Z) = I(S_{w,b}; S_{w,b} + Z)
\]

\(\Rightarrow \) \(I(X; T) \) is the aggregate info. transmitted over AWGN w. symbols

\(S_{w,b} \triangleq \{\tanh(-3w + b), \tanh(-w + b), \tanh(w + b), \tanh(3w + b)\} \rightarrow \{\pm 1\} \)
Single Neuron Classification:

- **Input:** \(X \sim \text{Unif}(\mathcal{X}_- \cup \mathcal{X}_1) \)
 \[\mathcal{X}_- \triangleq \{-3, -1, 1\}, \mathcal{X}_1 \triangleq \{3\} \]

- **Mutual Information:**

 \[
 I(X; T) = I(X; S_{w,b} + Z) = I(\tanh(wX + b); S_{w,b} + Z) = I(S_{w,b}; S_{w,b} + Z)
 \]

 \(\Rightarrow\) \(I(X; T) \) is the aggregate info. transmitted over AWGN w. symbols

- **Symbols:**
 \[
 S_{w,b} \triangleq \{\tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b)\} \rightarrow \{\pm 1\}
 \]
Single Neuron Classification:

- **Input:** \(X \sim \text{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1) \)
 \(\mathcal{X}_{-1} \triangleq \{-3, -1, 1\} \), \(\mathcal{X}_1 \triangleq \{3\} \)

- **Mutual Information:**
 \[
 I(X; T) = I(X; S_{w,b} + Z) = I(\tanh(wX + b); S_{w,b} + Z) = I(S_{w,b}; S_{w,b} + Z)
 \]
 \[
 \Rightarrow I(X; T) \text{ is the aggregate info. transmitted over AWGN w. symbols}
 \]
 \[
 S_{w,b} \triangleq \{\tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b)\} \rightarrow \{\pm 1\}
 \]
$I(X; T_{\ell})$ Dynamics - Illustrative Minimal Example

Single Neuron Classification:

- **Input:** $X \sim \text{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$
 \[\mathcal{X}_{-1} \triangleq \{-3, -1, 1\}, \mathcal{X}_1 \triangleq \{3\} \]

- **Mutual Information:**
 \[
 I(X; T) = I(X; S_{w,b} + Z) = I(\tanh(wX + b); S_{w,b} + Z) = I(S_{w,b}; S_{w,b} + Z)
 \]
 \[
 \Rightarrow \quad I(X; T) \text{ is the aggregate info. transmitted over AWGN w. symbols}
 \]
 \[
 S_{w,b} \triangleq \{\tanh(-3w + b), \tanh(-w + b), \tanh(w + b), \tanh(3w + b)\} \rightarrow \{\pm 1\}
 \]
Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:
Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

- **Binary Classification**: 12-bit input & 12–10–7–5–4–3–2 MLP arch.
Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

- **Binary Classification:** 12-bit input & 12–10–7–5–4–3–2 MLP arch.
- **Noise std.:** Set to $\beta = 0.1$
Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby'17]:

- **Binary Classification:** 12-bit input & 12–10–7–5–4–3–2 MLP arch.
- **Noise std.:** Set to $\beta = 0.1$
Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

- **Binary Classification**: 12-bit input & 12–10–7–5–4–3–2 MLP arch.
- **Noise std.**: Set to $\beta = 0.1$
Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

- **Binary Classification**: 12-bit input & 12–10–7–5–4–3–2 MLP arch.
- **Noise std.**: Set to $\beta = 0.1$
Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

- **Binary Classification:** 12-bit input & 12–10–7–5–4–3–2 MLP arch.
- **Noise std.:** Set to $\beta = 0.1$

Compression of $I(X; T_\ell)$ driven by clustering of representations
Circling back to Deterministic DNNs

- $I(X; T_\ell)$ is constant
Circling back to Deterministic DNNs

- $I(X; T_\ell)$ is constant \implies Doesn’t measure clustering
Circling back to Deterministic DNNs

- $I(X; T_\ell)$ is constant \implies Doesn’t measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
Circling back to Deterministic DNNs

- $I(X; T_\ell)$ is constant \implies Doesn’t measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
Circling back to Deterministic DNNs

- \(I(X; T_\ell) \) is constant \(\implies \) Doesn’t measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - Within-class & In-between-class pairwise distance distribution
Circling back to Deterministic DNNs

- $I(X; T_\ell)$ is constant \implies Doesn’t measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - Within-class & In-between-class pairwise distance distribution
 - Binned entropy $H(\text{Bin}(T_\ell))$
Circling back to Deterministic DNNs

- $I(X; T_\ell)$ is constant \iff Doesn’t measure clustering

- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - Within-class & In-between-class pairwise distance distribution
 - Binned entropy $H(\text{Bin}(T_\ell))$

- **Noisy DNNs:** $I(X; T_\ell)$ and $H(\text{Bin}(T_\ell))$ highly correlated!*
Circling back to Deterministic DNNs

- $I(X; T_\ell)$ is constant \iff Doesn’t measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - Within-class & In-between-class pairwise distance distribution
 - Binned entropy $H(\text{Bin}(T_\ell))$
- **Noisy DNNs:** $I(X; T_\ell)$ and $H(\text{Bin}(T_\ell))$ highly correlated!*
- **Det. DNNs:** $H(\text{Bin}(T_\ell))$ compresses (resolution wrt bins size)
Circling back to Deterministic DNNs

- $I(X; T_\ell)$ is constant \implies Doesn’t measure clustering

- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - Within-class & In-between-class pairwise distance distribution
 - Binned entropy $H(\text{Bin}(T_\ell))$

- **Noisy DNNs:** $I(X; T_\ell)$ and $H(\text{Bin}(T_\ell))$ highly correlated!

- **Det. DNNs:** $H(\text{Bin}(T_\ell))$ compresses (resolution wrt bins size)

- **Past Works:** Estimated $I(X; T_\ell)$ by $I(X; \text{Bin}(T_\ell))$
Circling back to Deterministic DNNs

- $I(X; T_\ell)$ is constant \implies Doesn’t measure clustering

- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - Within-class & In-between-class pairwise distance distribution
 - Binned entropy $H(\text{Bin}(T_\ell))$

- **Noisy DNNs:** $I(X; T_\ell)$ and $H(\text{Bin}(T_\ell))$ highly correlated!*

- **Det. DNNs:** $H(\text{Bin}(T_\ell))$ compresses (resolution wrt bins size)

- **Past Works:** Estimated $I(X; T_\ell)$ by $I(X; \text{Bin}(T_\ell)) = H(\text{Bin}(T_\ell))$
Circling back to Deterministic DNNs

- $I(X; T_\ell)$ is constant \implies Doesn’t measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - Within-class & In-between-class pairwise distance distribution
 - Binned entropy $H(\text{Bin}(T_\ell))$
- **Noisy DNNs:** $I(X; T_\ell)$ and $H(\text{Bin}(T_\ell))$ highly correlated!
- **Det. DNNs:** $H(\text{Bin}(T_\ell))$ compresses (resolution wrt bins size)
- **Past Works:** Estimated $I(X; T_\ell)$ by $I(X; \text{Bin}(T_\ell)) = H(\text{Bin}(T_\ell))$
 - Incapable of accurately estimating MI values
Circling back to Deterministic DNNs

- \(I(X; T_\ell) \) is constant \(\implies \) Doesn’t measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - Within-class & In-between-class pairwise distance distribution
 - Binned entropy \(H(\text{Bin}(T_\ell)) \)

- **Noisy DNNs:** \(I(X; T_\ell) \) and \(H(\text{Bin}(T_\ell)) \) highly correlated!*

- **Det. DNNs:** \(H(\text{Bin}(T_\ell)) \) compresses (resolution wrt bins size)

- **Past Works:** Estimated \(I(X; T_\ell) \) by \(I(X; \text{Bin}(T_\ell)) = H(\text{Bin}(T_\ell)) \)
 - \(\times \) Incapable of accurately estimating MI values
 - \(\checkmark \) Still, simple to compute & follows MI in tracking clustering!
Circling back to Deterministic DNNs (Cntd.)

Comparing to Previously Shown MI Plots:
Circling back to Deterministic DNNs (Cntd.)

Comparing to Previously Shown MI Plots:
Circling back to Deterministic DNNs (Cntd.)

Comparing to Previously Shown MI Plots:

⇒ Past works we not showing MI but clustering (via binned-MI)!
Summary

- Reexamined Information Bottleneck Compression:
Reexamined Information Bottleneck Compression:

- $I(X;T)$ fluctuations in det. DNNs are theoretically impossible
Reexamined Information Bottleneck Compression:

- $I(X;T)$ fluctuations in det. DNNs are theoretically impossible
- Yes, past works presented $I(X;T)$ dynamics during training
Summary

- **Reexamined Information Bottleneck Compression:**
 - $I(X;T)$ fluctuations in det. DNNs are theoretically impossible
 - Yes, past works presented $I(X;T)$ dynamics during training

- **Noisy DNN Framework:** Studying IT quantities over DNNs
Summary

- **Reexamined Information Bottleneck Compression:**
 - $I(X;T)$ fluctuations in det. DNNs are theoretically impossible
 - Yes, past works presented $I(X;T)$ dynamics during training

- **Noisy DNN Framework:** Studying IT quantities over DNNs
 - Toolkit for accurate MI estimation over this framework
Summary

• Reexamined Information Bottleneck Compression:
 • $I(X; T)$ fluctuations in det. DNNs are theoretically impossible
 • Yes, past works presented $I(X; T)$ dynamics during training

• Noisy DNN Framework: Studying IT quantities over DNNs
 • Toolkit for accurate MI estimation over this framework
 • Clustering of the learned representations is the source of compression
Reexamined Information Bottleneck Compression:

- $I(X;T)$ fluctuations in det. DNNs are theoretically impossible
- Yes, past works presented $I(X;T)$ dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

- Toolkit for accurate MI estimation over this framework
- Clustering of the learned representations is the source of compression
- Methods to track clustering in det. DNNs (incl. $H(\text{Bin}(T_\ell))$)
Summary

- **Reexamined Information Bottleneck Compression:**
 - $I(X; T)$ fluctuations in det. DNNs are theoretically impossible
 - Yes, past works presented $I(X; T)$ dynamics during training

- **Noisy DNN Framework:** Studying IT quantities over DNNs
 - Toolkit for accurate MI estimation over this framework
 - Clustering of the learned representations is the source of compression
 - Methods to track clustering in det. DNNs (incl. $H(\text{Bin}(T_\ell))$)

- **Det. DNNs cluster representations**
Summary

- **Reexamined Information Bottleneck Compression:**
 - $I(X;T)$ fluctuations in det. DNNs are theoretically impossible
 - Yes, past works presented $I(X;T)$ dynamics during training

- **Noisy DNN Framework:** Studying IT quantities over DNNs
 - Toolkit for accurate MI estimation over this framework
 - Clustering of the learned representations is the source of compression
 - Methods to track clustering in det. DNNs (incl. $H(\text{Bin}(T_\ell))$)

- ![Det. DNNs cluster representations](image-url) ➞ Clarify past observations
Summary

- **Reexamined Information Bottleneck Compression:**
 - $I(X; T)$ fluctuations in det. DNNs are theoretically impossible
 - Yes, past works presented $I(X; T)$ dynamics during training

- **Noisy DNN Framework:** Studying IT quantities over DNNs
 - Toolkit for accurate MI estimation over this framework
 - Clustering of the learned representations is the source of compression
 - Methods to track clustering in det. DNNs (incl. $H(\text{Bin}(T_\ell))$)

- **Det. DNNs cluster representations** \implies Clarify past observations

- **Future Research:**
Summary

- **Reexamined Information Bottleneck Compression:**
 - $I(X; T)$ fluctuations in det. DNNs are theoretically impossible
 - Yes, past works presented $I(X; T)$ dynamics during training

- **Noisy DNN Framework:** Studying IT quantities over DNNs
 - Toolkit for accurate MI estimation over this framework
 - Clustering of the learned representations is the source of compression
 - Methods to track clustering in det. DNNs (incl. $H(\text{Bin}(T_\ell))$)

- **Det. DNNs cluster representations** \implies Clarify past observations

- **Future Research:**
 - Curse of dimensionality: How to track clustering in high-dimensions?
Summary

- **Reexamined Information Bottleneck Compression:**
 - $I(X;T)$ fluctuations in det. DNNs are theoretically impossible
 - Yes, past works presented $I(X;T)$ dynamics during training

- **Noisy DNN Framework:** Studying IT quantities over DNNs
 - Toolkit for accurate MI estimation over this framework
 - Clustering of the learned representations is the source of compression
 - Methods to track clustering in det. DNNs (incl. $H(\text{Bin}(T_\ell))$)

- **Det. DNNs cluster representations** \Rightarrow Clarify past observations

- **Future Research:**
 - Curse of dimensionality: How to track clustering in high-dimensions?
 - Is compression necessary? Desirable?
Summary

- **Reexamined Information Bottleneck Compression:**
 - $I(X;T)$ fluctuations in det. DNNs are theoretically impossible
 - Yes, past works presented $I(X;T)$ dynamics during training

- **Noisy DNN Framework:** Studying IT quantities over DNNs
 - Toolkit for accurate MI estimation over this framework
 - Clustering of the learned representations is the source of compression
 - Methods to track clustering in det. DNNs (incl. $H(\text{Bin}(T_\ell))$)

- **Det. DNNs cluster representations** \implies Clarify past observations

- **Future Research:**
 - Curse of dimensionality: How to track clustering in high-dimensions?
 - Is compression necessary? Desirable?
 - Build on findings to improve DNN training alg. and architectures