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This article offers a dynamic model of opaque over-the-counter markets. A seller searches
for an attractive price by visiting multiple buyers, one at a time. The buyers do not observe
contacts, quotes, or trades elsewhere in the market. A repeat contact with a buyer reveals
the seller’s reduced outside options and worsens the price offered by the revisited buyer.
When the asset value is uncertain and common to all buyers, a visit by the seller suggests
that other buyers could have quoted unattractive prices and thus worsens the visited buyer’s
inference regarding the asset value. (JEL G14, C78, D82, D83)

Trading in many segments of financial markets occurs over-the-counter (OTC).
As opposed to centralized exchanges and auctions, opaque OTC markets rely
on sequential search and bilateral negotiations. For example, in markets for
corporate bonds, municipal bonds, mortgage-backed securities (MBS), asset-
backed securities (ABS), and exotic derivatives, firm (executable) prices are
usually not publicly quoted. Traders often search for attractive prices by
sequentially contacting multiple counterparties. Once a quote is provided, the
opportunity to accept quickly lapses. For example, in corporate bond markets,
“Telephone quotations indicate a firm price but are only good ‘as long as the
breath is warm,’ which limits one’s ability to obtain multiple quotations before
committing to trade” (Bessembinder and Maxwell 2008). Even when quotes
are displayed on electronic systems, they are often merely indicative and can
differ from actual transaction prices.1 Electronictrading, which makes it easier
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to obtain multiple quotes quickly, is also limited in the markets for many fixed-
income securities and derivatives.2 Beyond financial securities, markets for
bank loans, labor, and real estates are also OTC.

In this article, I develop a model of opaque OTC markets. A seller, say
an investor in need of liquidity, wishes to sell an indivisible asset to one of
N > 1 buyers, say quote-providing dealers. There is no pretrade transparency.
The seller must visit the buyers one at a time. When visited, a buyer makes
a quote for the asset. The seller may sell the asset to the current potential
buyer or may turn down the offer and contact another buyer. Because a buyer
does not observe negotiations elsewhere in the market, he facescontact-order
uncertainty—uncertainty regarding the order in which the competing buyers
are visited by the seller. The seller may also make a repeat contact with a
previously rejected buyer, such as when a new buyer’s quote is sufficiently
unattractive.

I show that the potential for a repeat contact creates strategic pricing behav-
ior by quote providers. If the seller and buyers have independent private values
for owning the asset,3 a returning seller faces no adverse price movement
caused by fundamental news but invites adverse inference about the price
quotes available elsewhere in the market. For example, a seller may initially
refuse an unattractive quote from one buyer, only to learn that other buyers’
quotes are even worse. In this case, the seller takes into account the likely
inference of the original buyer if she contacts him for a second time. Upon a
second contact by the seller, the original buyer infers that the seller’s outside
options are sufficiently unattractive to warrant the repeat contact, despite the
adverse inference. In accordance, the buyer revises his offer downward. The
natural intuition that a repeat contact signals reduced outside options—and
hence results in a lower offer—is confirmed as the first main result of this
article.

As the second main result of this article, I show that when buyers have a
common valuation of the asset, search induces an additional source of adverse
selection. In the model, the seller observes the fundamental valuev of the asset,
but buyers observe only noisy signals ofv. The seller is assumed to randomly
choose the order of contacts with the buyers. I also assume that buyers have
higher private values for owning the asset than does the seller, so the potential
gain from trade is positive.

I show that a buyer’s expected asset value conditional on his own signaland
on being visited,E(v | signal,visit), is strictly lower than the expected asset

2 For example,SIFMA (2009) finds that electronic trading accounts for less than 20% of European sell-side trading
volume for credit and sovereigns. For interest-rate swaps, credit default swaps, and asset-backed securities, the
fractions are lower than 10%.Barclay, Hendershott, and Kotz(2006) find that the market share of electronic
intermediation falls from 81% to 12% when U.S. Treasury securities go off the run.

3 We can interpret the private values as “private components” of valuations, relative to a commonly known
fundamental value. For example, a buyer of real estate often has an idiosyncratic preference beyond the resale
value of the real estate. Hedging demands in financial markets are also likely to be private.
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value conditional only on his own signal,E(v | signal), provided thatN ≥ 2.
Intuitively, the fact that the asset is currently offered for sale means that nobody
has yet bought it, which, in turn, suggests that other buyers may have received
pessimistic signals about its fundamental value. Anticipating this “ringing-
phone curse,”4 a buyer may quote a low price for the asset, even if his own
signal indicates that the asset value is high.

Perhaps surprisingly, the ringing-phone curse in OTC markets is discovered
to be less severe than the winner’s curse in first-price auctions, in the sense that
a trade is more likely to occur in the OTC market than in the first-price auction
in expectation. Intuitively, when a buyer is visited by the seller in the OTC
market, he infers that onlyalready visitedbuyers have received pessimistic
signals. However, when a buyer wins a first-price auction, he infers that the
signals ofall other buyers are more pessimistic than his. Therefore, a trade
is less likely to take place in an auction than in an OTC market. Given the
associated gains from trade, an OTC market may be superior to an auction
market from a welfare viewpoint, at least within the confines of this model
setting.

Moreover, buyers’ inferences regarding the asset value are less sensitive to
their signals in an OTC market than in a first-price auction. In a first-price
auction, a higher signal of a buyer translates into a higher bid and thus a higher
probability of winning. In an OTC market, by contrast, due to the lack of
simultaneous contacts, a higher signal of a particular buyer does not change
the search path of the seller nor the buyers’ inference of it.

To the best of my knowledge, this article offers the first model that captures
the joint implications of uncertain contact order, bargaining power, adverse
selection, and market opacity. The results of this article generate a number
of empirical implications. First, a repeat contact in an OTC market tends to
worsen price quotes.5 Second,interaction with quote seekers gives a quote
provider valuable information regarding the prices available from competitors,
so we expect dealers with larger market shares of trading volume to quote
prices that are closer to quotes available elsewhere in the market. Third, in
an OTC market a buyer with the highest value among all buyers may not be
visited at all and thus may not purchase the asset, so we expect to see more
inter-dealer trading when customers cannot simultaneously contact multiple
dealers. This suggests that the new Dodd-Frank requirement—to expose
standard OTC derivatives in “swap execution facilities” (SEFs) to multiple
counterparties—could reduce the market shares of trading volumes captured
by intermediaries in affected derivatives. Fourth, for assets with high degrees
of information asymmetry, trading relationships improve quoted prices from

4 I thank Kerry Back for suggesting this intuitive name.

5 Whenquote providers cannot observe the trading direction of the quote seeker, a worse price is reflected in a
wider bid-ask spread. If the marketwide prices have moved between the original contact and the repeat contact,
a worse price applies after adjusting for this marketwide price movement.
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frequentlyvisited counterparties only at the cost of worsening price quotes
from rarely visited counterparties. Fifth, search-induced adverse selection in
OTC markets dampens the sensitivity of quoted prices to payoff-relevant
information, compared with centralized auctions. The model thus predicts
that allowing simultaneous contacts to multiple counterparties increases the
cross-sectional dispersion of quotes, increases price volatility, and speeds
information aggregation. These testable implications are particularly relevant
for the design and reform of OTC derivative markets as new regulations in
the United States and Europe move more of OTC derivatives trading onto
electronic platforms.

1. Dynamic Search with Repeat Contacts

There is one quote seeker, say an investor, andN ≥ 2 ex ante identical
quote providers, say dealer banks. Everyone is risk neutral. Without loss of
generality, suppose that the quote seeker is a seller and the quote providers are
potential buyers. The seller has one unit of an indivisible asset she wishes to
sell. The seller’s valuation,v0, and the buyers’ valuations,vi , i = 1,2, . . . , N,
are jointly independent and privately held information.6 Theseller’s value of
v0 is binomially distributed with

P(v0 = VH ) = pH , P(v0 = VL) = pL = 1 − pH , (1)

whereVH >VL >0 and(pH , pL) arecommonly known constants. The buyers’
values have an identical cumulative distribution functionG : [0, ∞) → [0, 1].

The market is over-the-counter. The seller contacts buyers one by one.
Contacts are instantaneous and have no costs for the seller.7 Upona contact, the
selected buyer makes an offer for the asset. The seller cannot counteroffer, but
can accept or reject the quote. The inability of the quote seeker to counteroffer
is realistic in functioning OTC markets, in which customers rarely have the
market power to make offers to the quote-providing dealers. If the seller
accepts the quote, then the transaction occurs at the quoted price and the game
ends. If she rejects it, then the buyer’s quote immediately lapses. After rejecting
a quote, the seller may subsequently contact a new buyer, who is randomly
chosen with equal probabilities across the remaining buyers and independently
of everything else, or may contact an already visited buyer. Upon the next
contact, the same negotiation is repeated, and so on. Any contact between two
counterparties is unobservable to anyone else. For simplicity, I refer to thenth
buyer visited for the first time by the seller as “thenth buyer.”

6 Private valuations can stem from inventory positions, hedging needs, margin requirements, leverage constraints,
or benefits of control, all of which are likely to be private. A common-value setting is considered in Section2.

7 This zero-cost assumption allows me to bypass the Diamond paradox (Diamond 1971) and focus on the
sequential nature of search, rather than the pecuniary cost of search.
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An equilibrium consists of the buyers’ quoting strategies and the seller’s
acceptance or rejection of quotes, with the property that all players maximize
their expected net payoffs. In selecting an equilibrium, I focus on a symmetric,
perfectly revealing equilibrium in which buyers use the same quote strategies,
and a buyer’s first quote perfectly reveals what his quotes would be upon
subsequent contacts. I further assume that upon each contact, a buyer quotes a
price for the sole purpose of trading on that contact, given the option to trade on
any subsequent contact, but not for the purpose of “manipulating” the seller’s
belief about the buyer’s valuation. As we discuss shortly, this assumption is
unlikely to change the qualitative nature of the results. Finally, I impose two
tie-breaking rules:

1. Whenever the expected payoffs of trading versus not trading are equal,
a player strictly prefers trading.

2. Whenever two strategies give the same expected payoff to a buyer or
seller, the buyer or seller strictly prefers the strategy with a fewer number
of contacts.

At his kth contact with the seller, any buyeri bids βk(vi ), whereβk :
[0, ∞) → R is a quoting strategy common to all buyers and is assumed to
be right-continuous with left limits.8 Without loss of generality, we restrict
attention to offers that are accepted with strictly positive probability.

We observe three properties of equilibria. First, no buyer strictly increases
his offer upon a repeat contact; otherwise, the earlier, lower offer is rejected
with probability 1. Thus, for allvi andk,

βk(vi ) ≥ βk+1(vi ). (2)

Second,because contacts are unobservable, the seller does not return to any
rejected buyer unless she has visited all remaining buyers.9 Oncethe seller
has visited all buyers at least once, perfect revelation implies that there is
no uncertainty regarding quotes upon subsequent contacts. Because the seller
prefers the shortest path (given the tie-breaking rule), the seller’s last visit is
to the buyer (or one of the buyers) who would make the highest second quote.
Thus, the third property of equilibria is that the seller makes two contacts with
the same buyer at most.

8 A function F : [a, b] → R is right-continuous atx ∈ (a, b) if limy↓x F(y) = F(x). The functionF hasa left
limit at x ∈ (a, b) if limy↑x F(y) exists.

9 To see why, suppose otherwise, and a seller visits, say Buyer 1, for akth time (k ≥ 2) before the first contact to,
say, Buyer 2. If the seller accepts Buyer 1’skth quote in equilibrium, then a strictly better strategy for the seller
is to visit Buyer 2 before making thekth contact to Buyer 1 because Buyer 2’s first quote might be better. If the
seller rejects Buyer 1’skth quote in equilibrium, then the seller is no better off than if he had not made thekth
contact.In fact, by the tie-breaking rules it is suboptimal for the seller to make thekth contact to Buyer 1 and
then reject hiskth quote. Therefore, the seller never revisits a buyer unless she has visited all other buyers.
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Figure 1
The game tree forN = 3
The seller goes from the left to the right and visits buyers one at a time. The seller can accept or reject a quote
at any time. The dashed lines link the information sets of three buyers upon the first contact and represent
the uncertainty of the buyers regarding the order of contacts. The revisited buyer can be any of the three
buyers.

Figure1 plots the game tree forN = 3. The seller contacts the three buyers
in sequence and may accept or reject any quote along the path. Upon the first
contact, none of the buyers know if they are the first, second, or third buyer
to be visited by the seller. If, however, the seller visits a buyer for a second
time, then the revisited buyer infers that the other two buyers have quoted
sufficiently unattractive prices. Exploiting the seller’s reduced outside options,
the revisited buyer strictly lowers his quote.

Proposition 1. (Search with repeat contact.) LetV0 ≥ V1 ≥ ∙ ∙ ∙ ≥ VN ≡ VL

andR1 > R2 > ∙ ∙ ∙ > RN ≡ VL be implicitly defined, whenever possible, by

Rk = E
[
max(β1(vk+1), Rk+1)

]
, 1 ≤ k ≤ N − 1, (3)

(Vk − Rk)

∑N
j =k qj

∑N
j =1 qj

= (Vk − Rk+1)

∑N
j =k+1 qk

∑N
j =1 qj

, 1 ≤ k ≤ N − 1, (4)

V0 − VH = (V0 − R1)

(

1 +

∑N
j =1 G(V0)

j −1

∑N
j =1 qj

pH

pL

)−1

, (5)

where

β1(vi ) =






0, if vi ∈ [0, VL)

Rk, if vi ∈ [Vk, Vk−1), 1 ≤ k ≤ N

VH , if vi ∈ [V0, ∞)

(6)

qk =
k−1∏

j =1

G(Vj ), 1 ≤ k ≤ N. (7)
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If a solution{Vk}
N−1
k=0 and {Rk}

N−1
k=1 to Equations (3)–(5) exists, then the

following strategies constitute an equilibrium:

1. The first quoteβ1(vi ) of buyeri is given by Equation (6).

2. The second quote of buyeri is

β2(vi ) =

{
0, if vi ∈ [0, VL),

VL , if vi ≥ VL .
(8)

3. A high-value seller accepts a quote ofVH assoon as it is quoted. If all
buyers’ quotes are lower thanVH , then the high-value seller leaves the
market.

4. A low-value seller accepts the first quote of thekth buyer, 1≤ k ≤ N,
if and only if it is no lower thanRk. Otherwise, she rejects the quote
and visits a new buyer. If the seller still holds the asset after visiting all
buyers, she returns to any buyer whose first quote is no lower thanVL

andaccepts the revisited buyer’s second quote if it is no lower thanVL .
If all buyers’ first quotes are lower thanVL , then the lower-value seller
leaves the market.

In any such equilibrium,β2(vi ) < β1(vi ) aslong asVL < β1(vi ) < VH .

A proof of Proposition1 is provided in the Appendix. Because we have
2N − 1 equilibrium variables,{Vk}

N−1
k=0 and{Rk}

N−1
k=1 , and 2N − 1 equations,

Equations (3)–(5), we expect Equations (3)–(5) to have a unique solution.
I now present an example that illustrates the intuition of Proposition1. In the

general equilibrium characterization, as well as in the following example, the
key determinant of a buyer’s first quote is whether or not the buyer is willing to
“match” a seller’s continuation value and prevent the seller from further search.

Example 1.Let N = 3, VH = 1, VL = 0.4, and pH = pL = 0.5. Also let
the values of the buyers have the standard exponential cumulative distribution
function G. That is, G(x) = 1 − e−x. In this equilibrium, R1 = 0.76,
R2 = 0.63,V0 = 1.21,V1 = 0.87,andV2 = 0.76,as plotted in Figure2.

If the valueu of a buyer is low, specificallyu ∈ [0.4,0.76), the buyer is not
willing to pay a low-value seller’s continuation value. His equilibrium quote
of VL = 0.4 is accepted by a low-value seller if and only if the seller has
failed to find a good price from the other two buyers—i.e., if the seller has
run out of outside options. A buyer with a higher valueu ∈ [0.76,0.87)
is willing to quote a higher price ofR2 = 0.63, which is equal to the
continuation value of a low-value seller who has one more buyer to visit, i.e.,
R2 = E[max(β(v3), VL)]. A buyer with valueu ∈ [0.87,1.21) quotes a price
of R1 = 0.76, which is the continuation value of a low-value seller who is
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Figure 2
Equilibrium quoting strategy of buyers, for N = 3
Parameters:VH = 1, VL = 0.4, andpH = pL = 0.5. The values of the buyers have the cumulative distribution
functionG(x) = 1 − e−x .

yet to visit either of the other two buyers. That is,R1 = E[max(β(v2), R2)].
A quote of R1 is thus accepted with certainty by a low-value seller. Finally,
a buyer with valueu ∈ [1.21,∞) quotes a price ofVH = 1 and trades
immediately with both types of sellers.

The cutoff values{Rk} and{Vk} are determined so that a buyer with a value
of Vk is indifferent between quoting the higher price ofRk or the lower price
of Rk+1, as shown in Equation (4). A higher quote is compensated by a higher
probability of trade and vice versa.10

A key result of Proposition1 is that a buyer’s second quote upon a repeat
contact is strictly lower than his first quote. In this example, suppose that the
seller has the low value ofVL and that the first quotes of the three buyers are
β1(v1) = 0.63,β1(v2) = 0, andβ1(v3) = 0, respectively. In equilibrium, these
three quotes are all lower than the seller’s continuation values at the times of
contact and are thus rejected by the seller. After rejecting them, however, the
seller learns that it is the first buyer who has the highest value among the three
and returns to the first buyer. Upon this repeat contact, the first buyer infers
that the seller’s value isVL (as the seller would have otherwise left the market
without trading) and that no other buyer has a value aboveV0 = 1.21 (as the
seller would have otherwise already traded and never returned). Exploiting the
seller’s reduced bargaining power, this revisited buyer lowers his quote from
R2 = 0.63 toVL = 0.4. Without a better outside option, the seller accepts this
new, lower quote.

The main intuition of Proposition1, which leads to a strictly lower quote
upon a repeat contact, is likely to be robust to the myopic assumption that
buyers do not manipulate the seller’s belief. On the one hand, with private
values, a buyer has no incentive to manipulate the seller’s belief “downward,”
as such manipulation would make the seller less likely to return. On the other
hand, a buyer may manipulate the seller’s belief “upward” to encourage the

10 This quoting behavior is analogous to the pricing behavior in the limit-order book model ofRosu(2009), in
which a limit order with a better price is more likely to be executed and vice versa.
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sellerto return. However, such manipulation requires quoting a high price upon
the first contact and subsequentlylowering the quotes upon repeat contacts,
which reinforces the effect of Proposition1.

The ability of quote providers to revise their quotes upon repeat contacts
distinguishes the model of this article from existing search models that have
perfect recall. In those models, quote providers commit to their original quotes
when the quote seeker returns (Quan and Quigley 1991; Biais 1993;de Frutos
and Manzano 2002; Yin 2005;Green 2007).11 In this article, as in functioning
OTC markets, a rejected quote immediately lapses. Repeat contacts have zero
probability in models that are based on the “random matching” of an infinite
number of buyers and sellers, as inDuffie, Gârleanu, and Pedersen(2005,
2007), Vayanos and Wang(2007), andVayanos and Weill(2008), among
others. Infinite-agent models thus miss a key aspect of search markets. In
addition, the results here reveal that the sequential nature of search can give
rise to strategic pricing behavior that is unfavorable to quote seekers. This
perspective complements the traditional focus on a positive pecuniary cost of
search (Diamond 1971).

The model of this article also differs from existing bargaining models
that have outside options, such as those ofChatterjee and Lee(1998), de
Fraja and Muthoo(2000),Gantner(2008), andFuchs and Skrzypacz(2010),
among others. In these models, the contact order is common knowledge and
outside options are often exogenous.12 By contrast, contact-order uncertainty
in this article creates information asymmetry regarding the quote seeker’s
endogenous outside options, which is key to the strategic pricing behavior of
quote providers. Moreover, a repeat contact in this article signals a reduced
outside option of the quote seeker and worsens the price quotes. This prediction
is opposite to those of bargaining models that are based on screening, in
which a delay signals a “strong” valuation, and thus a repeat contact (weakly)
improves the price offered to the quote seeker (Rubinstein 1982).

In addition to the prediction that quotes worsen with a repeat contact, the
results here also suggest that quote providers can learn something about each
other’s valuation from repeated interactions with quote seekers. Because of
this learning, the model predicts that dealer banks that handle larger shares of
an OTC market quote prices that are closer to quotes available elsewhere in

11 Cheng,Lin, and Liu(2008) allow some quote providers to exogenously drop out, but remaining quote providers
commit to their original quotes.

12 For example,Chatterjee and Lee(1998) consider a one-to-one bargaining game and show that when the search
cost is sufficiently low, the quote provider may begin by offering a relatively unattractive price, hoping that
this price may become acceptable once the outside option of the quote seeker is determined to be worse. Their
model, however, assumes that the values of both parties are common knowledge and that the outside offers
are exogenously drawn from some distribution function. In this article, both valuations and contact order are
uncertain, and outside offers are endogenously determined by quote providers.de Fraja and Muthoo(2000) study
a bargaining game between one quote seeker and two quote providers and characterize conditions under which
the quote seeker switches between the two quote providers. They nonetheless assume symmetric information
regarding the quote seeker’s valuation and the order of contact. Another difference is that offers in the model of
de Fraja and Muthoo(2000) improve over time, whereas offers in the model of this article deteriorate.
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the market, after controlling for other benefits associated with size, such as
superior research capabilities, which are not modeled here.

Because repeat contacts reveal valuable information regarding outside
options, a financial institution may benefit by keeping a complete history of
its interactions with clients. Indeed, many broker-dealers organize their traders
by specialization, whereby all transactions of a particular security are handled
by one trader. This specialization makes it harder for returning customers to
avoid the adverse inference caused by repeated contacts.

The sequential nature of search can cause allocational inefficiency. In the ex-
ample previously calculated, ifβ1(v1) = R1 = 0.76andβ1(v2) = β1(v3) = 1,
thena low-value seller stops searching at the first buyer, even though the other
two buyers would quotehigher prices—an efficiency loss.13 By contrast, the
winner in a centralized auction is the highest bidder, who in general also has the
highest value. To the extent that dealers retrade among themselves after dealing
with customers, we expect dealers to capture a larger fraction of total trading
volume in OTC markets than in auctions. For example, theCommodity Futures
Trading Commission(2011) states that “to ensure that multiple participants
have the ability to reach multiple counterparties, the Commission proposes to
require SEFs [Swap Execution Facilities] to provide that market participants
transmit a request for quote to at least five potential counterparties in the
trading system or platform.” The model of this article suggests that these
requirements can increase direct trading among “end-users” and reduce the
fraction of trading volume that is conducted through intermediaries.

1.1 Comparative statics
Now we calculate the comparative statics of the equilibrium of Proposition1,
with respect to characteristics of the market and the players. Because Equations
(3)–(5) are nonlinear, all equilibria are numerically computed. The parameters
are those of Figure2, unless otherwise specified.

Figure 3 plots the equilibrium quotes and the distribution of quotes as
functions of the probabilitypH of a high asset value. AspH increases,it
becomes less likely that a quote lower thanVH is ever accepted, so buyers
raise their quotesR1 andR2, as shown in the left-hand plot. The right-hand plot
shows the probability distribution of buyers’ quotes. For a randomly selected
buyer, the probability that he quotes a price ofR1 is G(V0) − G(V1), the
probability that he quotes a price ofR2 is G(V1) − G(V2), and so on. As
pH increases,a buyer is more likely to quote either a high price ofVH or low
prices ofR2 andVL , but he is less likely to quote an intermediate price ofR1.
Intuitively, if a buyer does not have a value that is sufficiently high to result
in an immediate trade with a high-value seller, then he is less willing to pay

13 For example,Ashcraft and Duffie(2007) find that a significant number of loans in the federal funds market are
made by lenders who are relatively short of funds themselves.
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Figure 3
Comparative statics of the equilibrium of Proposition1, with respect to pH
Other parameters are those in Figure2. The left panel plots the equilibrium quotesR1 andR2. The right panel
plots the equilibrium probability distribution of quotes.

a low-value seller’s outside option value ofR1. The buyer would rather trade
with a seller whose outside option is reduced or exhausted.

Figure4 plots the comparative statics, asVL varies, of the equilibrium of
Proposition1. Clearly, as the low-value seller’s value increases, buyers’ offers
increase, as shown in the left-hand-side plot. An increase inVL also leads to
an increase in the probability that a buyer quotes the highest price,VH , or the
lowest price, 0, as shown in the right-hand-side plot. A buyer’s incentive to
quoteVH increases because the seller’s value increases; the incentive to quote
0 increases because fewer buyers can afford to quote a price ofVL or higher.
Quotes of the intermediate pricesVL , R1, andR2 decrease inVL . Intuitively,
because a seller’s outside option depends on the gapVH −VL , asVL converges
to VH a buyer is less able or willing to screen sellers based on their outside
options. AsVL converges toVH , a buyer does not screen at all and quotesVL

or 0 with probability 1.
Figure5 plots the comparative statics of the equilibrium of Proposition1,

with respect to the distribution of buyers’ values. Here, I assume that the buy-
ers’ values are exponentially distributed with parameterλ (mean 1/λ), where
λ > 0 is a free parameter. Increasingλ lowers the probability distribution of
the buyers in the sense of first-order stochastic dominance. Naturally, the offers
R1 andR2 increase in buyers’ values (decreases inλ), as illustrated in the left-
hand-side plot. Asλ increases, the gapR1 − R2 first widens and then shrinks,
which suggests that intermediate buyer valuations give buyers the strongest
incentive to screen a seller on the basis of her outside options. The right-
hand-side plot of Figure5 reveals that, as the distribution of buyers’ values
decreases (asλ increases), the probabilities of the three intermediate quotes
R1, R2, andVL are all hump shaped. Intuitively, asλ increases from 0, buyers’
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Figure 4
Comparative statics of the equilibrium of Proposition1, with respect toVL
Other parameters are those in Figure2. The left panel plots the equilibrium quotesR1 andR2. The right panel
plots the equilibrium probability distribution of quotes.

Figure 5
Comparative statics of the equilibrium of Proposition 1, with respect toλ > 0, where the buyers’ values
have the cumulative probability distribution function G(x) = 1 − e−λx

Other parameters are those in Figure2. The left panel plots the equilibrium quotesR1 andR2. The right panel
plots the equilibrium probability distribution of quotes.

values decline, but they are still much higher thanVH on average. Thus, buyers
are willing to bid the seller’s outside option value. Asλ further increases,
however, buyers’ values further decline and eventually become comparable to
the seller’s. As a result, buyers become less willing to bid the seller’s outside
options.
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2. Search-induced Adverse Selection

So far, I have analyzed a model of an opaque OTC market in which traders have
private values. In this section, I incorporate a common value into the model
and examine the interplay between uncertain contact order, market opacity,
and adverse selection.

The market structure is that of Section1. The seller contacts buyers one
by one at random and with equal probabilities. Each contact is instantaneous
and unobservable to anyone except the two involved counterparties. The seller
can sell the asset at any time. I also maintain the two tie-breaking rules; i.e.,
whenever the expected payoffs are equal, players prefer trading to not trading
and prefer fewer contacts.

The fundamental (common) valuev of the asset has a binomial distribution

P(v = VH ) = pH , P(v = VL) = pL = 1 − pH , (9)

for VH > VL ≥ 0. The seller perfectly observesv, but buyers do not. Instead,
conditional onv, buyers receive i.i.d. signals with a continuously differentiable
distribution functionF(∙ | v) : [0, s̄] → [0, 1], where 0 < s̄ < ∞. For
simplicity, I write Fθ (s) ≡ F(s | v = Vθ ) and fθ (s) ≡ F ′

θ (s), for θ ∈ {H, L}.
Section2.2 considers “lumpy” signal distributions, which allowFθ to have
discontinuities. These probability densities satisfy the monotone likelihood
ratio property (MLRP)

d

ds

(
fH (s)

fL(s)

)
> 0, s ∈ (0, s̄). (10)

That is, higher signals are more likely to occur if the asset value is higher.
A standard result (seeMilgrom 1981) is that the MLRP implies first-order
stochastic dominance:

FH (s) < FL(s), s ∈ (0, s̄). (11)

Furthermore,the seller and the buyers have the same low-outcome valuation
VL for the asset. Conditional on a high value for the asset, the seller values the
asset at the fundamental valueVH , while the buyers value the asset atDVH

for some commonly known constantD > 1. Thus,(D − 1)VH is the potential
gain from trade. The focus of this section is to study the extent to which adverse
selection in an OTC market prevents the realization of this gain from trade. I
also compare this effect with that of a first-price auction.

Conditional on a signal ofs, a regular version of the conditional distribution
of v is uniquely determined by the likelihood ratio

P(v = VH | s)

P(v = VL | s)
=

pH

pL
∙

fH (s)

fL(s)
, (12)

1267

 by guest on M
arch 21, 2012

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 

http://rfs.oxfordjournals.org/


TheReview of Financial Studies / v 25 n 4 2012

with the usual abuse of notation. Here, the first fraction on the right-hand
side of Equation (12) is the prior, and the second fraction is the information
contained in the signals. To rule out some trivialities, I further assume that

pH DVH + pL VL < VH <
pH fH (s̄)DVH + pL fL(s̄)VL

pH fH (s̄) + pL fL(s̄)
. (13)

This condition implies that adverse selection is sufficiently severe that a
buyer’s ex ante expected valuation for the asset is lower than the high-
value seller’s valueVH . However, a monopolist buyer who receives the most
optimistic signal can nonetheless purchase the asset from a high-value seller at
a price ofVH .

Proposition 2. (Search-induced adverse selection.) Under Condition (13),
there exists a signal outcomes∗ ∈ (0, s̄) thatis implicitly defined by

J(s∗, N) ≡
pH

pL
∙

fH (s∗)

fL(s∗)
∙

∑N−1
k=0 FH (s∗)k

∑N−1
k=0 FL(s∗)k

=
VH − VL

(D − 1)VH
. (14)

If this cutoff signals∗ is unique, there exists an equilibrium in which

1. If a buyer receives a signal ofs ≥ s∗, then he quotes a price ofVH .
Otherwise,he quotes a price ofVL .

2. A seller searches throughN buyers one by one and accepts the first
quote that is at leastVH . If no buyer quotes a price ofVH or higher, then
a seller with a high-value asset leaves the market, whereas a seller with
a low-value asset accepts a quote ofVL from the last buyer.

In this equilibrium, conditional on being visited by the seller, a buyer with a
signal ofs ∈ [0, s̄] assigns the likelihood ratio

IOT C(s, N) =
P(v = VH | s, visit)

P(v = VL | s, visit)
=

pH

pL
∙

fH (s)

fL(s)
∙

∑N−1
k=0 FH (s∗)k

∑N−1
k=0 FL(s∗)k

. (15)

Moreover, if ∂ J(s, N)/∂s > 0 for all N, then the cutoff signals∗ is unique
and strictly increasing inN, andIOT C(s, N) is strictly decreasing inN.

The intuition of the equilibrium of Proposition2 is simple. The first fraction
on the right-hand side of Equation (15) is the prior belief. The second is the
information contained in the signal. The third term is the effect of search-
induced adverse selection (or the “ringing-phone curse”). Intuitively, because
a buyer is more likely to be visited when quotes elsewhere are low, he puts a
higher weight on the event{v = VL} thanon the event{v = VH }, as reflected
in the fraction

∑N−1
k=0 FH (s∗)k/

∑N−1
k=0 FL(s∗)k < 1. For a buyer, a call is bad
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news for the value of the asset. Such ringing-phone curse is absent in common-
value search models that are based on random matching, in which contacts are
exogenous (Duffie, Malamud, and Manso 2010; Chiu and Koeppl 2010).

Clearly, in no equilibrium would a buyer offer a price in the interval
(VL , VH ) becauseany seller willing to accept such a price must be of low
type. When a price of at leastVH occursin equilibrium, we can show that
the equilibrium of Proposition2 is the unique “cutoff equilibrium.” A cutoff
equilibrium is represented by a pair(PH , s∗) with the property that buyers with
signals greater than or equal tos∗ quotea price ofPH , whereas buyers with
signals lower thans∗ quotea price ofVL .

Proposition 3. (Equilibrium selection.) Suppose that Condition (13) holds
and N ≥ 2. In any cutoff equilibrium, the high quotePH is equal toVH and
thecutoff signals∗ is as given by Proposition2.

We now proceed to analyze the asymptotic behavior of prices as the number
N of buyers becomes large. As the market becomes larger, a visiting seller
could have contacted more buyers, which, in turn, suggests that more buyers
have received low signals. To mitigate this adverse selection, buyers impose
an ever higher cutoff signals∗. In the limit, search-induced adverse selection
dominates any informative signal, except for the most optimistic one,s̄. Under
fairly general conditions, the market breaks down with a strictly positive
probability. In expectation, a seller must visit infinitely many buyers before
she can find, if at all, a sufficiently good price.

Proposition 4. (Asymptotic behavior of large OTC markets.) Suppose that
Condition (13) holds and∂ J(s, N)/∂s > 0 for all N. Then, in the equilibria
of Proposition2,

1. As N → ∞, s∗ → s̄.

2. For alls < s̄, limN→∞ E[v | s, visit] < VH .

3. Provided thatfH (s̄)/ fL(s̄) < ∞, limN→∞ E[v | s̄, visit] = VH .

4. Suppose that fH (s̄)/ fL(s̄) < ∞ and v = VH . Let xH ≡
limN→∞ FH (s∗)N bethe probability of a market breakdown in the limit.
Then,xH ∈ (0,1) is the smaller root of the equation

ax fL (s̄)/ fH (s̄) − x = a − 1, (16)

where

a =
VH − VL

(D − 1)VH
∙

pL

pH
.

1269

 by guest on M
arch 21, 2012

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 

http://rfs.oxfordjournals.org/


The Review of Financial Studies / v 25 n 4 2012

5. Conditional onv = VH , let TN be the number of buyers being searched
in equilibrium in a market withN buyers. Then, limN→∞ E(TN) = ∞.

Proposition4 reveals that as long as no signal is infinitely informative, the
limiting probability of a market breakdown is strictly positive and depends only
on the likelihood ratiofH (s̄)/ fL(s̄) on the boundary. This result has a natural
counterpart in centralized auctions, as we further discuss in Section2.1.

Example 2.Let FH (s) = s2 andFL(s) = s for s ∈ [0, 1]. Also, letVH = 0.6,
VL = 0, D = 5/3, andpH = pL = 0.5. We leaveN as a free parameter. It is
easy to check that Condition (13) holds. For these parameters, Equation (14)
reduces to

J(s∗, N) =
2s∗(1 + s∗N)

1 + s∗ =
3

2
.

Because∂ J(s, N)/∂s > 0, for eachN, a unique cutoff signals∗, which
increases inN, determines the equilibrium strategy of Proposition2. Figure6
plots this cutoff signals∗ as a function ofN. As N becomes larger, an ever
higher cutoff signal is required for a buyer to quote the high price ofVH .
With a relatively optimistic signal ofs = 0.9, a buyer finds it unprofitable
to purchase the asset at a price ofVH , as long asN > 5. As N → ∞, the
market breaks down if all buyers receive signals belows∗, which occurs with
the limiting probability

lim
N→∞

FH (s∗)N = lim
N→∞

(s∗)2N = lim
N→∞

(
3 − s∗

4s∗

)2

=
1

4
,

which is the smaller root of Equation (16) (or 1.5
√

x − x = 0.5). Whether or
not the market breaks down, a high-value seller must search for infinitely many
buyers in expectation before she can find a good price.

Figure 6
Cutoff signal s∗ in the equilibrium of Proposition 2 for FH (s) = s2 and FL (s) = s, s ∈ [0, 1]
Model parameters:VH = 0.6, VL = 0, D = 5/3, andpH = pL = 0.5.
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Sofar we have considered equilibria in which the seller searches for buyers
in a random order. We now consider an equilibrium in which some buyers,
such as those with a “relationship” with the seller, take priority over others
buyers. For example, the seller can commit to visit a “favored” group ofN1
buyers before visiting the “disfavored” group of the otherN − N1 buyers. In
each group, the seller assigns a random contact order. The ringing-phone curse
becomes less severe in the favored group, each member of which assigns a
lower cutoff signal. Buyers in the disfavored group, however, assign a higher
cutoff signal because they know that the seller visits the favored group before
visiting them. This intuition applies to an arbitrary partition of the buyers, as
stated in the following proposition.

Proposition 5. (Concentrating adverse selection by fragmentation.) Suppose
that Condition (13) holds and∂ J(s∗, N)/∂s∗ > 0 for all N. Suppose that
the set{1,2, . . . , N} of buyers is partitioned intoM groups. Denote byP j

the j th group of buyers, forj = 1,2, . . . , M . Then, there exists somēj ∈
{1,2, . . . , M} such that the following strategies constitute an equilibrium:

1. For all j ≤ j̄ , let the j th cutoff signals∗
j beimplicitly defined by

pH

pL
∙

fH (s∗
j )

fL(s∗
j )

∙

∑|P j |−1
k=0 FH (s∗

j )
k

∑|P j |−1
k=0 FL(s∗

j )
k

∙
j −1∏

l=1

FH (s∗
l )|Pl |

FL(s∗
l )|Pl |

=
VH − VL

(D − 1)VH
. (17)

A buyer in the j th group quotes a price ofVH if his signal is greater
than or equal tos∗

j andquotes a price ofVL if his signal is less thans∗
j .

Moreover, the cutoff signals satisfy

s∗
j < s∗

j +1, 1 ≤ j ≤ j̄ − 1. (18)

2. For all j > j̄ , buyers in thej th group quote a price ofVL .

3. The seller visits theM groups of buyers in the order ofP1,P2, . . . ,PM .
Within each group, the seller is assumed to adopt a random search order.
The seller sells the asset as soon as she is quoted a price ofVH or higher.
If no buyer quotes a price ofVH or higher, then a seller with a high-value
asset leaves the market, whereas a seller with a low-value asset accepts
a quote ofVL from the last buyer.

The last term on the left-hand side of Equation (17) reflects a buyer’s
inference that he is only visited because all buyers of the previousj −1 groups
have received signals below their respective cutoffs. The larger thej , the worse
the inference of these buyers regarding the asset value. In short, fragmentation
of OTC markets concentrates adverse selection, rather than eliminating it.
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Figure 7 plots the equilibrium cutoff signals forN = 20 buyers, who
are partitioned into a favored group and a disfavored group. Because the
favored group is visited first, they assign a strictly lower cutoff signal than
that applied without partitioning the buyers. To account for this additional
adverse selection, the disfavored group assigns a strictly higher cutoff signal.
Both cutoff signals are strictly increasing in the sizeN1 of the favored group.

An empirical implication of Proposition5 is that committing to a favored
counterparty improves the prices offered by that counterparty, but worsens the
price offered by other counterparties. For example,Bharath, Dahiya, Sauders,
and Srinivasan(2011) find that repeated borrowing from the same lender
lowers the loan spread offered, but this lending relationship has little benefit
when the information of the borrower is relatively symmetric between the
borrower and the lender.

Moreover, a market structure in which traders favor certain counterparties
over others looks quite similar to that of many OTC-traded assets, such
as MBS, ABS, and collateralized debt obligations (CDOs). Both market
structures involve creating liquidity by “pooling and tranching” (DeMarzo
2005). In the fragmented market of Proposition5, the seller “tranches” the
pool of counterparties, just as a CDO structure tranches the pool of underlying
assets. Liquidity is created in the preferred group of buyers, just like the
liquidity created for the senior tranche of a CDO. Adverse selection is,
however, transferred and concentrated to other parts of the market. It would
be desirable to characterize whether, under general conditions, the seller
prefers to favor certain counterparities over others or to treat all counterparties
equally, but such a result has not been obtained. Section2.2 studies an
alternative information structure in which, under certain conditions, treating
all counterparties equally can be less profitable for the seller than favoring
some counterparties.

Figure 7
Cutoff signals whenN = 20 buyers are fragmented into two groups
Distribution functions areFH (s) = s andFL (s) = 1 − (1 − s)2 for s ∈ [0, 1]. Other parameters are the same as
in Figure6.
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2.1 Ringing-phone curse versus winner’s curse
Among centralized trading mechanisms, a first-price auction is a natural
counterpart to the OTC market considered in this article. Both forms of market
are opaque in the sense that offers are not publicly observed. The key difference
is that buyers compete simultaneously in an auction but sequentially in an OTC
market.

In a first-price auction, suppose that buyers use a symmetric bidding strategy
βA(s) thatis strictly increasing in a buyer’s signals. Then, in equilibrium, the
winning buyer with a signal ofs assigns the likelihood ratio

I A(s, N) =
P(v = VH | s, win)

P(v = VL | s, win)
=

pH

pL
∙

fH (s)

fL(s)
∙

FH (s)N−1

FL(s)N−1
. (19)

The likelihood ratio (19) is a natural counterpart to Equation (15). The first
two fractions on the right-hand side of Equation (19) represent, as in the OTC
market, the buyer’s prior belief and the information contained in the signal. The
last fraction,FH (s)N−1/FL(s)N−1, represents the winning bidder’s adverse
inference that all otherN − 1 buyers’ signals are strictly lower thans, the
familiar winner’s curse.

Proposition 6. (OTC versus first-price auction.) In a first-price auction, there
exists a unique cutoff signalsA ∈ (s∗, s̄) thatis implicitly defined by

I A(sA, N) =
pH

pL
∙

fH (sA)

fL(sA)
∙

FH (sA)N−1

FL(sA)N−1
=

VH − VL

(D − 1)VH
. (20)

A buyer receiving the signalsA quotesa price of VH . This signalsA is
increasingin N. Moreover, for any finiteN, the probability FH (sA)N of
a market breakdown in a first-price auction is higher than the probability
FH (s∗)N of a market breakdown in the OTC equilibrium of Proposition2.
As N → ∞,

1. If fH (s̄)/ fL(s̄) < ∞, then

lim
N→∞

FH (sA)N =
(

VH − VL

(D − 1)VH
∙

pL

pH
∙

fL(s̄)

fH (s̄)

) fH (s̄)
fH (s̄)− fL (s̄)

> lim
N→∞

FH (s∗)N . (21)

2. If fH (s̄)/ fL(s̄) =∞, then limN→∞ FH (s∗)N = limN→∞ FH (sA)N = 0.

Perhapssurprisingly, Proposition6 suggests that the auction market is more
likely to break down than is the OTC market. To the extent that a market
breakdown prevents gains from trade, the first-price auction is less efficient
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than the OTC market. Intuitively, because the OTC market does not allow
simultaneous contacts, a visited buyer, say Buyer A, infers that onlyalready
visited buyers received low signals, as reflected in the ratio of weighted
sums

∑N−1
k=0 FH (s∗)k

/∑N−1
k=0 FL(s∗)k. By comparison, because bids are

simultaneously submitted in an auction, winning an auction unambiguously
reveals that the winner’s signal is the highest amongall buyers, as reflected
in the ratio FH (s)N−1/FL(s)N−1. For a buyer receiving a signal ofs∗, the
likelihood ratio in the auction is smaller than that in the OTC market. Thus, for
a buyer to be willing to bid a price ofVH in an auction, it takes a higher cutoff
signal, i.e.,sA > s∗.

Moreover, because OTC markets and first-price auctions are both pretrade
opaque—quotes and bids are not publicly observed—we can interpret these
potential market breakdowns as manifestations of the allocational inefficiency
of pretrade market opacity. Notably, the U.S. Treasury Department introduced
a preauction “when-issued” OTC market for treasuries in order to aggregate
asymmetrically held information before each treasury auction and thus miti-
gate the winner’s curse effect on auction yields.

The asymptotic inefficiency of the first-price auction relative to the OTC
market is closely linked to whether the auction itself aggregates information.
A common-value auction aggregates information if the winning bid in the
auction converges to the true asset value in probability asN becomes large,
as modeled byWilson (1977),Milgrom (1979), andKremer (2002), among
others.Milgrom (1979) provides a necessary and sufficient condition on the
distribution of signals for information aggregation. In the setting of this article,
Milgrom’s condition is equivalent tofH (s̄)/ fL(s̄) = ∞, i.e., signals are
unboundedly informative. IffH (s̄)/ fL(s̄) = ∞, then the auction aggre-
gates information, and both markets are asymptotically efficient. If, however,
fH (s̄)/ fL(s̄) < ∞, then the auction may not aggregate information, and the
auction is less efficient than the OTC market, both for finiteN and asN
becomes large.

The OTC equilibrium of Proposition2 differs from that ofLauermann and
Wolinsky (2010), who study the interaction between adverse selection and
search in a different setting. In their model, not only does the searcher (the
better-informed party) make the offers, she also observes the signals of her
counterparties. Thus, the equilibrium ofLauermann and Wolinsky(2010) is
based on signaling, and the searcher’s offers reveal her private information
as N becomes large and when some signals are infinitely informative. By
contrast, the searcher modeled in this article receives quotes and does not
observe the signals of her counterparties. Aside from the benefit of its realism,
this specification also allows me to characterize a simple cutoff equilibrium in
closed form.

Proposition6 also implies that a buyer’s inference regarding the asset value
is more sensitive to his signal in an auction market than in an OTC market. The
difference of the logarithms of likelihood ratiosI A(s, N) and IOT C(s, N),
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log I A(s, N) − log IOT C(s, N) = log

(
FH (s)N−1/FL(s)N−1

∑N−1
k=0 FH (s∗)k/

∑N−1
k=0 FL(s∗)k

)

,

(22)

is clearly increasing in the signals. That is, logI A(s, N) is a “steeper” function
of s than is logIOT C(s, N), as illustrated in Figure8.

An empirical implication of Equation (22) is that payoff-relevant infor-
mation has a smaller impact on quoted prices in an OTC market than in
first-price auctions. Allowing simultaneous contacts, as the result suggests,
increases the cross-sectional dispersion of quotes. In addition, as information
is gradually revealed through time, we also expect simultaneous contacts to
increase price volatility and speed price discovery. These implications are
relevant in light of recent legislation that moves standard OTC derivative
trading into swap execution facilities (SEFs) that allow simultaneous access
to multiple counterparties (Commodity Futures Trading Commission 2011;
Securities and Exchange Commission 2011).

2.2 Information granularity
So far we have studied an information structure in which signals are infinitely
granular, i.e., there is no point mass in the distribution functions of the
signals. This short subsection shows that market breakdowns are exacerbated
by “lumpy” information.

I start by considering the set that contains cumulative distribution functions
that are piecewise continuously differentiable on the support [0, s̄], are weakly
increasing, and are right-continuous with left limits. The cumulative condi-
tional distribution functions of signals,Fθ : [0, s̄] → [0, 1], θ ∈ {H, L},
are drawn from this set. The left limit ofFθ ( ∙ ) at s is denoted byFθ (s−) ≡
limt↑s Fθ (t). WhenFθ is absolutely continuous ats, we keep fθ (s) = F ′

θ (s)

Figure 8
Log likelihood ratio log I A(s, N) and log IOT C(s, N) as a function ofs, taking N = 4
Other parameters and distributions are the same as those of Figure6.
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asusual. WhenFθ is discontinuous ats, a pseudo-probability density (mass)
function is defined by

fθ (s) ≡ Fθ (s) − Fθ (s−), if Fθ (s) > Fθ (s−), s ∈ (0, s̄]. (23)

Finally, I slightly amend the MLRP definition so that it only applies to signals
for which the probability distribution (mass) function is positive. That is, for
all s > s′ suchthat fH (s) > 0, fL(s) > 0, fH (s′) > 0, fL(s′) > 0, I assume
that

fH (s)

fL(s)
>

fH (s′)

fL(s′)
. (24)

ThisMLRP definition allows for distribution functions with atoms.14

Proposition 7. (Lumpy information in OTC markets.) Suppose that
Fθ (s̄−) < 1 for θ ∈ {H, L} and that Condition (13) holds. In an OTC market,
if the seller adopts a random search order, then for sufficiently largeN, there
exists no cutoff equilibrium in which a buyer quotes a price of at leastVH .

Proposition7 suggeststhat, at least in the space of cutoff equilibria, a large
OTC market breaks down with a probability approaching 1 asN becomes
large. Since there is a point mass ats̄, some buyers receive the signals̄ with
the limit probability of 1 asN → ∞. Therefore, when a buyer is visited, the
fact that no previously visited buyer receives the signals̄ speaks so strongly
against the asset quality that the ringing-phone curse dominates any inference
from signals, including the signals̄. Instead of having a zero probability of
trade, a high-value seller in this case would rather commit to, for example,
visiting a particular buyer before others because the probability of selling the
asset to that favored buyer is no lower thanfH (s̄) > 0, by Condition (13).

A comparison of the asymptotic inefficiencies between the two information
structures (those characterized by Proposition7 and Proposition4) suggests
that information granularity can affect the size of the market for an OTC-traded
asset. For example, when the post-trade reporting of transaction prices and
trade volumes is less frequent, we expect to find there to be fewer dealers
willing to make a market.

Example 3.Consider an information structure with signal outcomes 0 and 1.
Let

P(s = 1 | v = VH ) = P(s = 0 | v = VL) = q, (25)

P(s = 0 | v = VH ) = P(s = 1 | v = VL) = 1 − q, (26)

14 For example, the signals maybe drawn from{0, s̄}, and the distribution functions satisfyfH (s̄) = fL (0) = q >
1 − q = fH (0) = fL (s̄), for someq ∈ (0.5,1).
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Figure 9
Expected asset value conditional on being visited as a function ofN
The seller chooses the order of contacts at random. Parameters:VH = 0.8,VL = 0.5, D = 1.25, and pH =
pL = 0.5.

whereq > 0.5 is the “quality” of the signal. Suppose that there exists a cutoff
equilibrium in which the seller searches in a random order and buyers who
receive the high signal quote a high price ofVH , while buyers with the low
signal quote a low price ofVL . It is easy to show that, upon a contact, a buyer
with a high signal forms the inference

P(v = VH | s = 1,visit)

P(v = VL | s = 1,visit)
=

pH

pL
∙

1 − (1 − q)N

1 − qN
, (27)

which is increasing inq and decreasing inN.
Figure 9 shows how the conditional expected asset value, given the high

signal, varies with the numberN of buyers for different levels of information
quality q. The model parameters areVH = 0.8, VL = 0.5, D = 1.25, and
pH = pL = 0.5. As we can see, for a relatively high information quality,
q = 0.7, a cutoff equilibrium can be supported by two buyers at most. For a
very high information quality,q = 0.9, a cutoff equilibrium can be supported
by ten buyers at most.

Proposition7 has a natural analogue in first-price auctions, as follows.

Proposition 8. (Lumpy information in first-price auctions.) Suppose that
Fθ (s̄−) < 1 for θ ∈ {H, L} and that Condition (13) holds. In a first-price
auction, if the seller chooses the winner from the highest bidders at random
and with equal probabilities, then for sufficiently largeN, there exists no pure-
strategy equilibrium in which a buyer bids a price of at leastVH .

3. Conclusion

This article offers a model of opaque over-the-counter markets. A quote seeker
searches for an attractive price by contacting multiple quote providers in
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sequence,and possibly repeatedly. Under stated conditions, a repeat contact
with a counterparty reveals a quote seeker’s reduced outside options and
worsens the quote from the revisited counterparty.

I also show that the combined effects of market opacity and contact-order
uncertainty create a ringing-phone curse that lowers quote providers’ inference
regarding the value of the asset. Selecting certain counterparties over others
improves the prices that are offered by these “favored” counterparties but
worsens those by other “disfavored” counterparties. The results further reveal
that an OTC market can, in some cases, realize a higher gain from trade than a
first-price auction in expectation. Finally, the model predicts that quoted prices
are more sensitive to payoff-relevant information in first-price auctions than
in OTC markets, suggesting that centralized auctions can provide faster price
discovery than OTC markets.

Appendix

Proof of Proposition 1. We prove the proposition by direct verification. First, when the highest
quote in the market isVH , both types of sellers will accept this quote; when all sellers accept a
price of VH , no buyer quotes a price higher thanVH . Second, because a buyer with a value of
u < VL cannotpurchase the asset, it is without loss of generality that he quotes zero. Third, if all
buyers quote a price ofVL uponthe second contact, then a low-value seller will accept, and vice
versa. Fourth, givenβ1 andβ2, the continuation value (or reserve price)Rk of a low-value seller
is given by Equation (3). Moreover, Equation (3) implies thatRk > Rk+1 for 1 ≤ k ≤ N − 1.
Fifth, if we takeβ1 andβ2 asgiven (we verify their expressions below), thenβ2(vi ) < β1(vi ), as
long asβ1(vi ) > VL .

What remains to be verified is the first quote of a buyer, say BuyerA, with valueu ≥ VL .
Becausea buyer does not observe the order of contact, he must infer it. Suppose that buyerA
considers quoting a price of, say,RN = VL . This quote leads to an immediate trade if and only
if two conditions hold. First, the seller is of low type conditional on the buyer being visited, i.e.,
with probabilityP(v0 = VL | visit). Second, conditional on the seller’s value being low, Buyer
A is the Nth buyer visited, and all previous(N − 1) buyers have quoted prices lower than the
seller’s continuation values, i.e., with probabilityqN = G(V1)G(V2) . . . G(VN−1). Then, by
Bayes’ Rule, the probability that BuyerA is theNth buyer visited, conditional on his being visited
and conditional on the seller’s value being low, is equal to

P(N-th | visit, v0 = VL ) =
qN ∙ P(N-th | v0 = VL )

∑N
j =1 qj ∙ P( j -th | v0 = VL )

=
qN

∑N
k=1 qj

,

wherethe last equality follows from the fact that a seller’s search order is random with equal
probability 1/N. The buyer’s expected profit of quoting a price ofRN = VL is thus

Π(RN , u) = P(v0 = VL | visit)(u − RN )
qN

∑N
j =1 qj

.

Similarly, if the buyer quotes a higher price ofRN−1, then a low-value seller accepts it if and only
if the buyer is either theNth or the(N − 1)th buyer visited. The buyer’s corresponding profit is

Π(RN−1, u) = P(v0 = VL | visit)(u − RN−1)
qN + qN−1
∑N

j =1 qj
.
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Because∂Π(RN , u)/∂u < ∂Π(RN−1, u)/∂u, the higher the value of the buyer, the more
attractive it is to quote the higher price ofRN−1, relative to quoting the lower price ofRN . In
equilibrium, a buyer with a value ofVN−1 mustbe indifferent between the two quotes. That is,

(VN−1 − RN−1)
qN + qN−1
∑N

j =1 qj
= (VN−1 − RN )

qN
∑N

j =1 qj
,

which is one equation of Equation (4). We can derive other equations in Equation (4) in a similar
manner. Moreover, by Bayes’ Rule,

P(v0 = VH | visit)

P(v0 = VL | visit)
=
P(visit | v0 = VH )pH

P(visit | v0 = VL )pL
=

∑N
j =1 G(V0) j −1

∑N
j =1 qj

pH

pL
,

andthus

P(v0 = VL | visit) =



1 +

∑N
j =1 G(V0) j −1

∑N
j =1 qj

pH

pL





−1

.

Then,Equation (5) follows from the fact that a buyer with a value ofu = V0 is indifferent between
trading with any type of seller at a price ofVH and trading with a low-value seller at a price
of R1. �

Proof of Proposition2. To verify the equilibrium of Proposition2, suppose that players adopt the
conjectured strategies and that there is a unique cutoff signal that satisfies Equation (14). Given the
seller’s acceptance strategy and the random ordering of buyers, a visited buyer assigns a probability
of 1/N that he is thekth buyer visited,k = 1,2, . . . , N. That is, the previousk−1 buyers all have
received signals belows∗. By Bayes’ Rule and the independence of signals, we have

P(v = VH | s, visit)

P(v = VL | s, visit)
=

pH

pL
∙
P(s, visit | v = VH )

P(s, visit | v = VL )
=

pH

pL
∙

fH (s)

fL (s)
∙

1
N
∑N−1

k=0 FH (s∗)k

1
N
∑N−1

k=0 FL (s∗)k
.

Thecutoff signals∗ mustimply an expected asset value ofVH or, equivalently, a likelihood ratio

of VH −VL
(D−1)VH

. Thus,s∗ mustsatisfy Equation (14).

It remains to show that suchs∗ exists. Write the right-hand side of Equation (14) asJ∗. From
MLRP, for some smalls > 0, fH (s) ≤ fL (s). By Condition (13), ats = s,

J(s, N) <
pH

pL
∙

fH (s)

fL (s)
≤

pH

pL
< J∗,

andat the upper supports = s̄,

J(s̄, N) =
pH

pL
∙

fH (s̄)

fL (s̄)
> J∗.

So,there exists somes∗ ∈ (0, s̄) suchthat Equation (14) holds. Moreover, if∂ J(s, N)/∂s > 0 for
all N, then the cutoff signals∗ is unique.

Whens∗ is unique, then any buyer who receives a signal below (above)s∗ hasexpected asset
value below (above)VH . A buyer with a signals ≥ s∗ hasno incentive to quote a price higher than
VH , asVH is acceptable to any seller. If the buyer deviates and quotes a price that is strictly lower
thanVH , then he only buys the asset if the asset is of low value, which implies a nonpositive profit
for the buyer. Similarly, a buyer with a signal ofs < s∗ doesnot quoteVH , as he otherwise makes
a negative expected profit. He has no incentive to deviate to a quote that is strictly lower thanVL ,
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asdoing so results in zero profit. Quoting a price higher thanVL but lower thanVH only attracts
low-value sellers, for whom a quote ofVL suffices. If all buyers quote a price lower thanVH , i.e.,
they all quoteVL , then a high-value buyer leaves the market because the asset is worthVH to her
and because already visited buyers will not raise the quotes. (If buyers ever raise their quotes in
equilibrium, then earlier, lower quotes become nonserious and are rejected.) This completes the
verification of the equilibrium.

We now show that∂ J(s∗, N)/∂N < 0. Observe that for all integersk > j ≥ 0 and any
s ∈ (0, s̄),

FH (s) j

FL (s) j
>

FH (s) j + FH (s)k

FL (s) j + FL (s)k
>

FH (s)k

FL (s)k
.

Iterateit and we get
∑N−1

k=0 FH (s)k
∑N−1

k=0 FL (s)k
>

FH (s)N

FL (s)N
.

Then,
∑N−1

k=0 FH (s)k
∑N−1

k=0 FL (s)k
>

∑N
k=0 FH (s)k

∑N
k=0 FL (s)k

>
FH (s)N

FL (s)N
.

If ∂ J(s∗, N)/∂s > 0, then by the inverse function theorem,

ds∗

dN
= −

∂ J(s∗, N)/∂N

∂ J(s∗, N)/∂s∗ > 0.

Finally, Equations (14) and (15) imply that for any fixeds,

IOT C(s, N) =
fH (s)/ fL (s)

fH (s∗)/ fL (s∗)
∙

VH − VL

(D − 1)VH
.

By MLRP, IOT C(s, N) is decreasing ins∗, and thus decreasing inN. �

Proof of Proposition 3. Suppose for contradiction that there is a cutoff equilibrium in which
PH > VH . Consider a buyer, say BuyerA, who receives the cutoff signals∗ andquotes a price
of PH . We first observe that BuyerA must be indifferent between quotingPH andVL , since if
he were to strictly prefer quotingPH , a buyer with a signal ofs∗ − ε for sufficiently smallε > 0
would deviate to quotePH , too. Thus, BuyerA values the asset atPH .

Considerthe seller’s response when BuyerA deviates to quotePH − ε for small ε > 0. If
the seller rejects this lower quote, her payoff from continued search can increase byε at most.
However, with a probability of at leastFH (s∗)N−1, the seller cannot find a quote ofPH from the
unvisited buyers. In this case, if the seller returns to BuyerA, Buyer A’s likelihood ratio of the
asset value reduces from

pH

pL
∙

fH (s∗)

fL (s∗)
∙

∑N−1
k=0 FH (s∗)k

∑N−1
k=0 FL (s∗)k

to
pH

pL
∙

fH (s∗)

fL (s∗)
∙

FH (s∗)N−1

FL (s∗)N−1
,

wherethe latter inference reflects the fact that the otherN − 1 ≥ 1 buyers receive signals below
s∗. Because BuyerA’s original inference gives an expected asset value ofPH , this new inference
implies an asset value strictly lower thanPH . Accordingly, the revisited BuyerA reduces his
quote by a discrete amount1(s∗) > 0. Thus, the seller’s cost of rejecting a quote ofPH − ε is
at leastFH (s∗)N−11(s∗) > 0. For small enoughε, the seller accepts the quote ofPH − ε, and
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theconjectured equilibrium cannot hold. Therefore, the only possible cutoff equilibrium is for the
buyers to quoteVH . �

Proof of Proposition4. By Proposition2, ∂ J(s, N)/∂s > 0 implies thats∗ is strictly increasing
in N. Sinces∗ is bounded above bȳs, limN→∞ s∗ exists. Suppose for contradiction that the limit
is s̄ − ε for someε > 0. As N → ∞, FH (s̄ − ε)N → 0, FL (s̄ − ε)N → 0, and thus

fH (s∗)

fL (s∗)
∙

∑N−1
k=0 FH (s∗)k

∑N−1
k=0 FL (s∗)k

→
fH (s̄ − ε)

fL (s̄ − ε)
∙

1 − FL (s̄ − ε)

1 − FH (s̄ − ε)
< 1,

where the last inequality follows from MLRP. Given Condition (13), for some sufficiently large
but finite N, Equation (14) cannot hold, so it is a contradiction. Therefore,s∗ → s̄ asN → ∞.

For anys < s̄, there exists somēN such that for allN > N̄, s∗ > s. By MLRP and Equations
(14) and (15),

IOT C(s, N) =
fH (s)/ fL (s)

fH (s∗)/ fL (s∗)
J(s∗, N) < J(s∗, N) =

VH − VL

(D − 1)VH
,

soE(v | s, visit) < VH . When fH (s̄)/ fL (s̄) < ∞,

lim
N→∞

IOT C(s̄, N) = lim
N→∞

fH (s̄)/ fL (s̄)

fH (s∗)/ fL (s∗)
J(s∗, N) =

VH − VL

(D − 1)VH
.

We now calculatexH ≡ limN→∞ FH (s∗)N . We let xL ≡ limN→∞ FL (s∗)N . By the
definition ofs∗, we have

VH − VL

(D − 1)VH
=

pH

pL
∙ lim

N→∞

1 − FH (s∗)N

1 − FL (s∗)N
,

wherethe equality follows from

lim
N→∞

fH (s∗)

fL (s∗)
∙

1 − FL (s∗)

1 − FH (s∗)
= 1

by l’H ôpital’s Rule. The proof of Proposition6 shows thatxH < 1, so we must havexL < 1 as
well. Then, we have

1 − xH = a(1 − xL ).

To derive a function ofxH alone,note that

xH

xL
= lim

N→∞

FH (s∗)N

FL (s∗)N
= lim

N→∞
e

N log
FH (s∗)
FL (s∗) = lim

N→∞
e
−N

(
1−

FH (s∗)
FL (s∗)

)

.

We can further calculate by l’Ĥopital’s Rule that

lim
N→∞

1 − FH (s∗)
FL (s∗)

1 − FH (s∗)
=

fH (s̄) − fL (s̄)

fH (s̄)
.

Substituteback and we have

xH

xL
=
(

lim
N→∞

e−N(1−FH (s∗))
)1− fL (s̄)/ fH (s̄)

= x
1− fL (s̄)/ fH (s̄)
H .
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Thus,xL = x
fL (s̄)/ fH (s̄)
H . Substituting back into 1− xH = a(1 − xL ), we see thatxH solves

g(x) ≡ ax fL (s̄)/ fH (s̄) − x = a − 1.

Given fL (s̄)/ fH (s̄) < 1, g(x) is strictly concave, and there are two roots ofg(x) = a−1 at most.
It is easy to show thatg(x) achieves its maximum at somex∗ thatis implicitly defined by

(
x∗) fL (s̄)/ fH (s̄)−1 =

(
a

fL (s̄)

fH (s̄)

)−1
> 1.

So,x∗ < 1. Sinceg(1) = a − 1, we must haveg(x∗) > a − 1, and there is a unique root ofg
between 0 and 1. This root isxH < 1.

Finally, we calculateE(TN ). Fix an arbitraryN′. Sinces∗ → s̄, for sufficiently largeN

the probabilityFH (s∗)N′
that the first N′ buyers receive signals belows∗ is at least 1/2. So,

limN→∞ E(TN ) > N′/2 for all N′. That is,E(TN ) → ∞ asN → ∞. �

Proof of Proposition 5. It is straightforward that whenever the cutoff signals∗
j exists, it is given

by Equation (17). We now prove Equation (18). Since inferences of the asset value at the cutoff
signals are equal, we have

fH (s∗
j )

fL (s∗
j )

∙

∑|P j |−1
k=0 FH (s∗

j )
k

∑|P j |−1
k=0 FL (s∗

j )
k

∙
j −1∏

l=1

FH (s∗
l )|Pl |

FL (s∗
l )|Pl |

=
fH (s∗

j +1)

fL (s∗
j +1)

∙

∑|P j +1|−1
k=0 FH (s∗

j +1)k

∑|P j +1|−1
k=0 FL (s∗

j +1)k
∙

j∏

l=1

FH (s∗
l )|Pl |

FL (s∗
l )|Pl |

. (A1)

Supposeby contradiction thats∗
j +1 ≤ s∗

j . Because∂ J(s∗, N)/∂s∗ > 0 for all N, the ratio of the
right-hand side of Equation (A1) to the left-hand side is no higher than

∑|P j +1|−1

k=0 FH (s∗
j )

k

∑|P j +1|−1

k=0 FL (s∗
j )

k

∑|P j |−1
k=0 FH (s∗

j )
k

∑|P j |−1
k=0 FL (s∗

j )
k

∙
FH (s∗

j )
|P j |

FL (s∗
j )

|P j |
< 1,

which is a contradiction. Thus,s∗
j +1 > s∗

j . �

Proof of Proposition 6. The implicit definition ofsA simply follows from the fact that a buyer
who receives a signal ofsA is just indifferent between biddingVH and bidding VL . Because
bidding VL yields an expected profit of 0, biddingVH alsoyields an expected profit of 0. The
cutoff sA is unique becauseI A(s, N) is monotone ins. Also, since∂ I A(s, N)/∂N < 0, we have
∂sA/∂N > 0.

To showsA > s∗, suppose for contradiction thatsA ≤ s∗. Then, we have, forN ≥ 2,

VH − VL

(D − 1)VH
≤

pH

pL
∙

fH (s∗)

fL (s∗)
∙

FH (s∗)N−1

FL (s∗)N−1
<

pH

pL
∙

fH (s∗)

fL (s∗)
∙

∑N−1
k=0 FH (s∗)k

∑N−1
k=0 FL (s∗)k

,

contradictingEquation (14). Thus,sA > s∗. The probability of market breakdown then follows
accordingly.

1282

 by guest on M
arch 21, 2012

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 

http://rfs.oxfordjournals.org/


Finding a Good Price in Opaque Over-the-Counter Markets

When fH (s̄)/ fL (s̄) < ∞, by the definition ofsA, we have

lim
N→∞

FH (sA)N

FL (sA)N
=

VH − VL

(D − 1)VH
∙

pL

pH
∙

fL (s̄)

fH (s̄)
≡ b. (A2)

To calculate the limit ofFH (sA)N , observe that

lim
N→∞

FH (sA)N = lim
N→∞

eN log FH (sA) = lim
N→∞

e−N(1−FH (sA)),

b = lim
N→∞

FH (sA)N

FL (sA)N
= lim

N→∞
e

N log
FH (sA)

FL (sA) = lim
N→∞

e
−N

(
1−

FH (sA)

FL (sA)

)

.

Then,the expression of limN→∞ FH (sA)N follows from the fact that

lim
N→∞

1 − FH (sA)

1 − FH (sA)

FL (sA)

=
fH (s̄)

fH (s̄) − fL (s̄)
.

Obviously, limN→∞ FH (s∗)N ≤ limN→∞ FH (sA)N becauseFH (s∗) < FH (sA) for eachN.
Moreover, limN→∞ FH (sA)N < 1 by Condition (13).

Write yH = limN→∞ FH (sA)N . To show thatyH > xH , it is sufficient to show that

ay
fL (s̄)/ fH (s̄)
H − yH > a − 1, wherea is given in Proposition4. Because

yH =
(

a
fL (s̄)

fH (s̄)

) fH (s̄)
fH (s̄)− fL (s̄)

,

wehave

ay
fL (s̄)/ fH (s̄)
H − yH = b

fL (s̄)
fH (s̄)− fL (s̄) (a − b) ≡ K (b),

whereb is given in Equation (A2). Clearly,K (1) = a − 1. It is easy to show thatK ′(z) ≤ 0 when
z ≥ b, soK (b) > K (1) = a − 1, and thusyH > xH .

Finally, because

pH

pL
∙ lim

N→∞

fH (sA)

fL (sA)
∙ lim

N→∞

FH (sA)N−1

FL (sA)N−1
=

VH − VL

(D − 1)VH
< ∞,

by Equation (19), we must have limN→∞ FH (sA)N = 0 when fH (s̄)/ fL (s̄) = ∞. In that case,
limN→∞ FH (s∗)N = 0 becauseFH (s∗) < FH (sA) for eachN. �

Proof of Proposition 7. Suppose for contradiction that there exists an equilibrium in which a
buyer with a signal of at leasts∗ quotesa price ofPH ≥ VH . If the seller adopts a random search
order, upon a contact by the seller, a buyer with a signal ofs∗ assignsthe likelihood ratio

IOT C(s∗) =
pH

pL
∙

fH (s∗)

fL (s∗)
∙

∑N−1
k=0 FH (s∗−)k

∑N−1
k=0 FL (s∗−)k

=
pH

pL
∙

1 − FH (s∗−)N

1 − FL (s∗−)N
∙

fH (s∗)

fL (s∗)
∙

1 − FL (s∗−)

1 − FH (s∗−)
.

By MLRP, for all s ≥ s∗, fH (s)/ fL (s) ≥ fH (s∗)/ fL (s∗), and thus

fH (s∗)

fL (s∗)
∙

1 − FL (s∗−)

1 − FH (s∗−)
≤ 1.
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Then,becauseFθ (s∗−) ≤ Fθ (s̄−) < 1,

lim
N→∞

IOT C(s∗) ≤
pH

pL
.

Thatis, limN→∞ E(v | s∗, visit) < VH . Thus, the conjectured equilibrium cannot survive.�

Proof of Proposition 8. Suppose for contradiction that there exists a pure-strategy equilibrium
in the first-price auction. Consider the inference of the winner who receives a signal ofs̄. Since
the seller chooses a winner at random and with equal probabilities if multiple buyers bid the same
highest price, the state-θprobability of winning conditional on signals̄ is

P(win | s̄, v = Vθ ) =
N∑

k=1

1

k

(
N − 1
k − 1

)
Fθ (s̄−)N−k(1 − Fθ (s̄−))k−1 =

1 − Fθ (s̄−)N

N fθ (s̄)
,

whereI have usedfθ (s̄) = 1 − Fθ (s̄−). The corresponding likelihood ratio is

P(v = VH | s̄, win)

P(v = VL | s̄, win)
=

pH

pL
∙

fH (s̄)

fL (s̄)
∙

1−FH (s̄−)N

N fH (s̄)

1−FL (s̄−)N

N fL (s̄)

→
pH

pL
,

asN → ∞. By Condition (13), a buyer with the highest signals̄ cannot quote a price ofVH or
higher. �
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