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We characterize the dynamic fragmentation of U.S. equity markets using a unique data 

set that disaggregates dark transactions by venue types. The “pecking order” hypothesis 

of trading venues states that investors “sort” various venue types, putting low-cost-low- 

immediacy venues on top and high-cost-high-immediacy venues at the bottom. Hence, 

midpoint dark pools on top, non-midpoint dark pools in the middle, and lit markets at the 

bottom. As predicted, following VIX shocks, macroeconomic news, and firms’ earnings sur- 

prises, changes in venue market shares become progressively more positive (or less nega- 

tive) down the pecking order. We further document heterogeneity across dark venue types 

and stock size groups. 
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1. Introduction 

A salient trend in global equity markets over the last

decade is the rapid expansion of off-exchange, or “dark”

trading venues. In the United States, dark venues now ac-

count for about 30% of equity trading volume (see Fig. 1 (a)

for an illustration of Dow-Jones stocks). In Europe, about

40% of volume trades off-exchange for leading equity

indexes (see Fig. 1 (b)). 

Equally salient is the wide fragmentation of trading

volume across dark venues. The United States has more

than 30 “dark pools” and more than 200 broker-dealers

that execute trades away from exchanges; see the report

by the U.S. Securities and Exchange Commission (SEC,

2010 ). Dark pools, which are automated trading systems

that do not display orders to the public, have grown

fast in market shares and now account for about 15% of

equity trading volume in the U.S., according to industry

http://dx.doi.org/10.1016/j.jfineco.2017.03.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jfec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2017.03.004&domain=pdf
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504 A.J. Menkveld et al. / Journal of Financial Economics 124 (2017) 503–534 

Fig. 1. Dark market share in United States and Europe. This figure shows the market shares of dark trading in the U.S. and in Europe. Panel (a) plots the 

monthly average dark shares of the 30 stocks in the Dow Jones Industrial Average from 2006 to October 2014. We use the stocks that are in the Dow index 

as of November 2014. Volume data are obtained from Bloomberg and Trade and Quote (TAQ). Dark trades are defined by those reported to FINRA (code “D”

in TAQ definition). From May 2006 to February 2007 the estimates are missing because TAQ data mix trades reported to FINRA with some Nasdaq trades. 

Panel (b) plots the averages of dark shares of FTSE100, CAC40, and DAX30 index stocks. These estimates are directly obtained from Fidessa. 
estimates. 1 In Europe, dark venues also face a high degree 

of fragmentation, with at least ten multilateral dark venues 

operating actively. 2 

The fragmentation of trading—between exchanges and 

dark venues, as well as across dark venues—is a double- 

edged sword. It creates a conflict between the efficient 

interaction among investors and investors’ demand for a 

diverse set of trading mechanisms. The SEC (2010) high- 

lights this tradeoff in its Concept Release on Equity Market 

Structure: 

Fragmentation can inhibit the interaction of investor 

orders and thereby impair certain efficiencies and the 

best execution of investors’ orders. … On the other 

hand, mandating the consolidation of order flow in a 

single venue would create a monopoly and thereby 

lose the important benefits of competition among mar- 

kets. The benefits of such competition include incen- 

tives for trading centers to create new products, provide 

high quality trading services that meet the needs of in- 

vestors, and keep trading fees low. 

An important step toward a better understanding of 

this tradeoff is to empirically characterize the degree 

of heterogeneity among trading venues. If venues ap- 
1 Industry estimates are provided by Tabb Group, a consultancy firm, 

and Rosenblatt Securities, a broker. On June 2, 2014, Financial Indus- 

try Regulatory Authority (FINRA) started publishing weekly statistics of 

transaction volumes in alternative trading systems (ATS), with a two- 

week lag. Many dark pools are registered as ATS. For more details, see 

https://www.finra.org/Newsroom/NewsReleases/2014/P519139 . 
2 See “European dark trading analysis,” Fidessa, October 2013, 

available at http://fragmentation.fidessa.com/wp-content/uploads/ 

European- Dark- Trading- Analysis- October- 2013.pdf . 
pear homogeneous, the “liquidity-begets-liquidity” insight 

from early theories (see, for example, Pagano, 1989 ; and 

Chowdhry and Nanda, 1991 ) would imply that fragmen- 

tation is generally harmful; and that the fragmentation of 

dark venues, which provide little or no pre-trade trans- 

parency, causes a particular concern because investors 

cannot observe the presence of counterparties ex ante and 

must engage in costly search in multiple dark venues. In 

contrast, if venues do demonstrate heterogeneity, and if 

theory provides an economic rationale for such behavior, 

then fragmentation could be viewed as a natural equilib- 

rium outcome and not necessarily a concern. For example, 

recent theories of dark pools show that precisely because 

of their pre-trade opacity and the associated execution un- 

certainty, dark venues attract a different type of investors 

from those on the exchanges ( Hendershott and Mendelson, 

20 0 0; Degryse, Van Achter, and Wuyts, 2009; Buti, Rindi, 

and Werner, 2015; Ye, 2011; Zhu, 2014; Brolley, 2014 ). 

Under this “venue heterogeneity” or “separating equilib- 

rium” view, fragmentation is an equilibrium response to 

the heterogeneity of investors and time-varying market 

conditions. 

Pecking order hypothesis. In this paper we characterize the 

dynamic fragmentation of U.S. equity markets. Through 

the lens of dynamic fragmentation we gain insights into 

the degree of heterogeneity among trading venues and 

hence the important tradeoff highlighted in the SEC 

remark. In particular, we propose and test a “pecking 

order hypothesis” (POH): when executing orders investors 

“sort” dark and lit venues by the associated costs (bid-ask 

spread, price impact, information leakage) and immediacy, 

in the form of a “pecking order.” The top of the pecking 

https://www.finra.org/Newsroom/NewsReleases/2014/P519139
http://fragmentation.fidessa.com/wp-content/uploads/European-Dark-Trading-Analysis-October-2013.pdf
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Fig. 2. Pecking order hypothesis. This figure depicts the pecking order hypothesis. Panel (a) shows the generic form. Panel (b) shows the specific form. 

Midpoint-crossing dark pools (DarkMid) are on top. Non-midpoint dark pools (DarkNMid) are in the middle. Lit markets (Lit) are at the bottom. Detailed 

descriptions of various dark pool types are collated in Section 3.1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

order consists of venues with the lowest cost and lowest

immediacy, and the bottom of the pecking order consists

of venues with the highest cost and highest immediacy.

The pecking order hypothesis predicts that, as investors’

trading needs become more urgent, they move from low-

cost, low-immediacy venues to high-cost, high-immediacy

venues. This intuitive sorting is illustrated in Panel (a) of

Fig. 2 . 

More concretely, recent theories of dark pools men-

tioned above predict that dark venues are at the top of

the pecking order, whereas lit venues are at the bottom,

because dark venues provide potential price improvement

but lack execution certainty. In addition, we rank two

important categories of dark pools—midpoint dark pools

(“DarkMid”) and non-midpoint dark pools (“DarkNMid”)—

according to the extent to which prices are constrained

in these venues. Because midpoint dark pools restrict

transaction prices to the midpoint of the national best bid

and offer (NBBO), which confines market clearing, these

dark pools offer the highest potential cost saving but the

lowest immediacy. In contrast, non-midpoint dark pools

are effectively non-displayed limit order books that allow

transactions anywhere within the NBBO. As we show in

a simple model, the cost of trading in these venues is

between that on exchanges and that in midpoint dark

pools, and so is the immediacy. This specific ordering of

the three venue types is illustrated in Panel (b) of Fig. 2 .

This pecking order captures both “exchanges are liquidity

of last resort” and “not all dark pools are created equal.”

We formally develop the specific-form pecking order

hypothesis in a stylized model and thus provide some

micro-foundation for it. The analysis shows that the peck-

ing order obtains in a Bayesian-Nash equilibrium where

large, liquidity-driven investors minimize transaction cost

when hit by exogenous trading needs. It adds to exist-

ing models by focusing on the three-way fragmentation
(DarkMid, DarkNMid, and Lit) as opposed to the standard

dark-lit split in previous studies. 

We test the pecking order hypothesis in U.S. equity

markets by exploring a unique data set on dark trading.

Our data set disaggregates dark transactions into five

categories by trading mechanism, including the two types

of dark pools shown in Panel (b) of Fig. 2 . The other

three categories of dark transactions are retail investors’

trades internalized by broker-dealers, average-price trades,

and other (mostly institutional) trades. The detailed de-

scriptions are provided in Section 3 . To the best of our

knowledge, this data set provides the most comprehensive

and granular view of U.S. dark trading that is accessible

by academics. Without a disaggregated data set like this,

testing the pecking order hypothesis—or conducting any

analysis of dark venue heterogeneity—would be very

difficult because all off-exchange trades in the U.S. are

reported under a single consolidated category called “trade

reporting facilities” (TRFs). Data aggregation at TRFs masks

the very heterogeneity in trading mechanisms that we are

interested in. 

We estimate a panel vector-autoregressive model with

exogenous variables (VARX) to characterize the dynamic

interrelation among dark volumes, endogenous market

conditions, and exogenous shocks (see Section 4 ). Key to

our empirical strategy are three exogenous variables: VIX,

macroeconomic data releases, and earnings surprise. We

use these variables as proxies for shocks to investors’ de-

mand for immediacy. Applied to this setting, the pecking

order hypothesis predicts that the proportional changes

in venue market shares after these shocks should become

progressively more positive (or less negative) the further

down in the pecking order. 

The data support the pecking order hypothesis. Follow-

ing a 0.01% upward shock to VIX, dark pools that cross

orders at the midpoint lose 4.6% of their market share
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(from 2.4% to 2.29%), dark pools that allow some price 

flexibility lose 3.3% of their market share (from 7.52% to 

7.27%), and lit venues gain 1.0% of their market share (from 

76.2% to 77.0%). 

The effect is much larger for macroeconomic data re- 

leases. In the minute right after the macroeconomic news, 

DarkMid and DarkNMid market shares are 38.5% and 22.7% 

lower than their steady-state levels, but Lit market share 

is 9.1% higher than its steady-state level. The same quali- 

tative pattern is observed after surprise earnings, although 

there only the DarkMid change is statistically significant. 

The shifts of market shares are not due to reduced trading 

volumes in dark venues after urgency shocks; instead, 

trading volumes in all venues increase but the increase in 

lit venues significantly outweighs that in dark venues. 

The stylized model that delivers the pecking order 

hypothesis also predicts that the pecking order should be 

more evident in low-volume or high-spread stocks, (i.e., 

illiquid stocks). We verify this heterogeneity by running 

the same VARX model on large, medium, and small stocks 

separately. In these subsamples, the pecking order hypoth- 

esis finds strong support in medium and small stocks, 

but has no statistical significance for large stocks. This 

confirms the model’s prediction. 

We believe the interpretation of our results warrants 

a couple of final remarks. First, while our results suggest 

that the fragmentation among dark venue types can be 

an equilibrium response to investor heterogeneity and 

time-varying market conditions, our analysis is silent on 

the fragmentation within each dark venue type. The latter 

question requires more detailed data on venue identities, 

not only venue types. Second, the pecking order hypothesis 

implicitly assumes that at least some investors make ra- 

tional venue choices based on correct information of how 

these venues operate. This point is important in light of re- 

cent cases that certain dark pools are charged with misrep- 

resenting or failing to disclose information to investors. 3 

Related literature. The primary contribution of this pa- 

per to the literature is the characterization of dynamic 

fragmentation of dark and lit venues through the peck- 

ing order hypothesis. Rather than assessing the market 

composition from a static view, we study how market 

shares evolve dynamically upon certain urgency shocks. 

Our approach of focusing on exogenous shocks (VIX, 

macroeconomic news, and surprise earnings) differs from 

most existing empirical studies on dark venues, which 

typically relate dark trading to endogenous measures of 

market quality (e.g., spread, depth, and volatility). 

Access to unique, comprehensive, and granular data 

on various types of dark trading enabled us to study the 
3 For example, in October 2011, the SEC finds that Pipeline, a dark 

pool operator who claimed to only allow buyside firms to participate, 

had filled the majority of customer orders through its own trading affili- 

ate (see http://www.sec.gov/news/press/2011/2011-220.htm ). On June 25, 

2014, Eric Schneiderman, Attorney General of the State of New York, al- 

leges that Barclays falsified marketing material and misrepresented infor- 

mation to clients about the presence of high-frequency traders in its dark 

pool. In August 2015, SEC charges ITG, a dark pool operator, with operat- 

ing secret trading desks and misusing dark pool subscriber trading infor- 

mation (see http://www.sec.gov/news/pressrelease/2015-164.html ). 
pecking order hypothesis. Most existing studies of dark 

venues use either aggregate off-exchange trades or trades 

in a few selected dark pools. Studies based on aggregate 

dark trades include O’Hara and Ye (2011) , Hatheway, 

Kwan, and Zheng (2013) , and Degryse, de Jong, and van 

Kervel (2015) . Studies based on trades in a few dark pools 

include Hendershott and Jones (2005) (Island ECN), Ready 

(2014) (Liquidnet and POSIT), Buti, Rindi, and Werner 

(2011) (11 anonymous dark pools), Boni, Brown, and Leach 

(2012) (Liquidnet), Nimalendran and Ray (2014) (one 

anonymous dark pool), and Foley, Malinova, and Park 

(2013) (dark order types on Toronto Stock Exchange). 

Equipped with more granular data, a few recent stud- 

ies have devoted attention to dark venue heterogeneity. 

The vast majority of them use non-U.S. data. In the 

Australian equity market, Comerton-Forde and Putni ̧n š

(2015) find that block dark trades and non-block dark 

trades on the Australian Securities Exchange have dif- 

ferent implications for price discovery, as measured by 

autocorrelation, variance ratio, or short-term return pre- 

dictability. Three studies on the Canadian equities explore 

the asymmetric effects of a new “trade-at” regulation on 

midpoint and non-midpoint executions. 4 Foley and Putni ̧n š

(2016) conclude that market quality deteriorates after the 

trade-at rule, but Comerton-Forde, Malinova, and Park 

(2015) and Devani, Anderson, and Zhang (2015) counter 

that little deterioration is detected in their own analyses. 

Comerton-Forde, Malinova, and Park (2015) in particular 

argue that changes in the Canadian dark market share 

after the trade-at rule can be attributed to a single venue 

that takes retail orders. In Dutch equity markets, Degryse, 

Tombeur, and Wuyts (2015) find that hidden orders on 

exchanges and off-exchange dark trades are affected dif- 

ferently by market conditions such as volume, spread, and 

depth. It should be emphasized that the market structures 

in Australia, Canada, and the Netherlands differ signifi- 

cantly from that of the U.S. and conclusions from these 

studies cannot literally be applied to U.S. equity markets. 

The only other academic paper we are aware of that 

has a similar data set for U.S. equities is Kwan, Masulis, 

and McInish (2015) . They examine how the minimum tick 

size affects competitiveness of exchanges relative to dark 

venues, which is a research question very different from 

ours. Using a regression discontinuity design around the 

$1.00 price threshold, they conclude that the tick size 

constraint weakens the competitiveness of exchanges. 

2. A pecking order hypothesis of trading venues 

In this section, we further motivate the pecking order 

hypothesis in its specific form as in Panel (b) of Fig. 2 : 

Dark pools that cross orders at the midpoint of NBBO 

(labeled “DarkMid”) are on the top of the pecking or- 

der, dark pools that allow some price flexibility (labeled 
4 A trade-at rule stipulates that when a marketable order arrives, a 

venue that does not already offer the best quote must provide sufficiently 

large price improvement, unless the order is sufficiently large. The mini- 

mum price improvement mandated by the Canadian trade-at rule is one 

tick, unless the bid-ask spread is one tick, in which case the minimum 

price improvement is a half tick. 

http://www.sec.gov/news/press/2011/2011-220.htm
http://www.sec.gov/news/pressrelease/2015-164.html
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“DarkNMid”) are in the middle, and transparent venues

(labeled “Lit”) are at the bottom. It is this specific-form

hypothesis that will be the main hypothesis discussed and

tested throughout the remainder of the paper. 

The ordering that midpoint dark venues sit on top

of lit venues is predicted by existing theories of dark

pools. For example, Hendershott and Mendelson (20 0 0) ,

Degryse, Van Achter, and Wuyts (2009) , and Zhu (2014) all

model the competition between an exchange (that has

dedicated liquidity providers) and a midpoint dark pool.

They predict that because of execution uncertainty in dark

pools, investors are more likely to send orders to the lit

venue if urgency goes up—driven by either a higher delay

cost for unfilled orders or a higher value of proprietary

information. Buti, Rindi, and Werner (2015) model the

competition between a limit order book and a midpoint

dark pool. They show that dark pool market share is

higher if the order book is more liquid (i.e., have longer

queues). To the extent that a more liquid book reduces

the opportunity cost of unfilled orders, their prediction is

broadly consistent with the other papers. 

DarkNMid is a “lighter shade of dark,” sitting between

DarkMid and Lit. In practice, DarkNMid often operates

as nondisplayed limit order books, in which transactions

can happen anywhere between the national best bid and

national best offer. The execution price can respond to

supply and demand; meanwhile, the trade-through restric-

tion implies that investors still get a price improvement

relative to Lit. In other words, the cost and benefit of using

DarkMid, rather than Lit, should apply to DarkNMid as

well, albeit to a lesser degree. For example, the online ap-

pendix of Zhu (2014) provides a model of a non-midpoint

dark pool, which runs as a uniform-price divisible auction,

but with rationing of orders whenever the dark pool price

hits the constraint imposed by a “trade-at” rule. He shows

that price flexibility in non-midpoint dark pools weakens

its effectiveness in filtering out informed orders. 

According to the pecking order hypothesis, upon ur-

gency shocks, DarkMid and DarkNMid should lose market

share to Lit, and the drop in DarkMid market share should

be particularly large. Section 3.4 discusses our empirical

proxies for urgency. Section 8 proposes a simple model to

micro-found our pecking order hypothesis. 

Before describing the data and conducting empirical

analysis, a few comments and clarifications are in order.

First, the pecking order hypothesis is a dynamic one. It

says that after investors receive urgency shocks in real-

time, volume shares should become progressively larger

down the pecking order. This implies that many stable

or slow-moving determinants of market shares, such as

trading fees and membership restrictions, are orthogonal

considerations. 

Second, the pecking order hypothesis applies to both

aggressive (market order) and passive (limit order) execu-

tion strategies of end investors. After all, each transaction

needs a buyer and a seller. As investors who use aggressive

strategies move down the pecking order, ready to pay a

higher cost, investors using passive strategies would also

move down the pecking order to meet such demand.

If broker-dealers and high-frequency trading firms can

also participate in dark venues, their location of liquid-
ity provision should follow the flow of end investors as

well. 

Third, the specific form of pecking order hypothesis

builds on the key features that dark pool prices are con-

strained by lit quotes and that dark execution is uncertain.

Opacity (“darkness”) is essential, for otherwise the very

purpose of not publicly disclosing trading interest is de-

feated. Rationing and price constraints are also essential,

for otherwise execution risk is much smaller. One could

think of an alternative setting with two competing limit

order books, one lit and the other dark, and the prices in

both can freely move. The pecking order hypothesis cannot

be applied to such a setting, as the trade-through restric-

tion is not satisfied. In other words, if considered outside

the market reality of the U.S. equity market, opacity alone

is not sufficient to generate the pecking order hypothesis. 

Fourth, the pecking order hypothesis is about the coex-

istence of venues. It does not rank market structures that

have one dominant venue. For example, in an extension

of Kyle (1989) with informed liquidity provision, Boulatov

and George (2013) compare a lit-only market with a dark-

only market, and find that the opaque market offers better

price discovery as it encourages more informed traders

to be liquidity providers. In an experimental setting,

Bloomfield, O’Hara, and Saar (2015) show that although

traders’ strategies are greatly affected by the degree of

opacity, market outcomes are largely invariant to opacity.

Insights from these venues are complementary to ours. 

Fifth, the cost-versus-immediacy tradeoff underlying

the pecking order hypothesis is similar in spirit to the

tradeoff between market and limit orders in a centralized

limit order book setting. Parlour and Seppi (2008) survey

the limit order book literature, both theory and empirics.

Given today’s fragmentation and heterogeneous trading

mechanisms, we believe that venue choice is an important

dimension to study over and above the order type choice

studied in the limit order book literature. 

Sixth, we interpret the urgency shocks underlying the

pecking order hypothesis as primarily due to liquidity

needs. Our empirical proxies for urgency discussed in

Section 3.4 are, generally, public information releases, and

our suggestive model of Section 8 assumes symmetric

information about asset fundamentals. Although asym-

metric information is not explicitly dealt with in this

paper, the pecking order hypothesis is also consistent with

existing dark pool models with asymmetric information.

For instance, in a model that combines both asymmetric

information and liquidity needs, Zhu (2014) finds that the

market share of the dark pool tends to decrease in the

value of the proprietary information. 

Lastly, there is an alternative motivation for the pecking

order hypothesis, based on an agency conflict between

investors and their brokers. Its starting point is that bro-

kers decide where to route investors’ orders, and investors

monitor brokers insufficiently. If brokers earn more profits

by routing investors’ orders first to their own dark pools,

then orders would first flow into broker-operated dark

pools and then to other dark and lit venues. Only when

investors tell brokers to execute quickly will they have no

choice but to send it to lit venues. This alternative motiva-

tion is less rich as it does not suggest a particular ranking
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of dark venue types. It simply states that dark venues 

take priority, whatever type of dark venue the broker is 

running, except when investors demand quick execution. 

3. Data and summary statistics 

Our data sample covers 117 stocks in October 2010 (21 

business days). It consists of large-cap, medium-cap, and 

small-cap stocks in almost equal proportions. 5 This section 

presents the various data sources, introduced sequentially 

in the first four subsections. Each subsection also describes 

and motivates the model variables that are based on them. 

The section concludes with presenting summary statistics 

based on the final data sample. 

3.1. Dark volumes 

In the United States, off-exchange transactions in all 

dark venues are reported to trade-reporting facilities 

(TRFs). The exact venue in which the dark trade takes 

place is not reported in public data. More recently, FINRA 

started to publish weekly transaction volumes in alter- 

native trading systems, but these volumes are not on a 

trade by trade basis. 6 The TRF managed by Nasdaq is the 

largest TRF, accounting for about 92% of all off-exchange 

volume in our sample. Our first data set contains all dark 

transactions reported to the Nasdaq TRF. These trades are 

executed with limited pre-trade transparency. 7 A salient 

and unique feature of our data is that the dark trans- 

actions are disaggregated into five categories by trading 

mechanism. The exact method of such disaggregation is 

proprietary to Nasdaq, but we know their generic features. 

The five categories include: 

1. DarkMid. These trades are done in dark pools that 

use midpoint crossing as much as possible. Midpoint 

crossing means that the buyer and the seller in the 

dark venue transact at the midpoint of the National 

Best Bid and Offer (NBBO). “Agency-only” dark pools 

(i.e., those without proprietary order flow from the 

dark pool operators) typically work this way. 

2. DarkNMid. These trades are done in dark pools that 

allow flexibility in execution prices (not necessarily 

midpoint). This feature leads us to believe that dark 

pools operated by major investment banks belong to 

this category. 
5 This sample of stocks is the same as that in the Nasdaq High Fre- 

quency Trading (HFT) data set used by many studies of HFT. The origi- 

nal sample compiled by Nasdaq contains 120 stocks, with 40 stocks in 

each size category. But only 117 of the 120 stocks are present in our sam- 

ple period. Brogaard, Hendershott, and Riordan (2014) state that “The top 

40 stocks are composed of 40 of the largest market capitalization stock- 

s…The medium-size category consists of stocks around the 10 0 0 th largest 

stocks in the Russell 30 0 0…, and the small-size sample category contains 

stocks around the 20 0 0 th largest stock in the Russell 30 0 0.”
6 See https://www.finra.org/Newsroom/NewsReleases/2014/P519139 . 
7 Our dark transaction data do not include trades on electronic com- 

munication networks (ECNs). ECNs are transparent venues that register 

as alternative trading systems (ATS), but they are not exchanges for reg- 

ulatory purposes. In our sample, ECNs account for a very small fraction 

of total transaction volume. BATS and DirectEdge, two major exchanges 

that recently merged, used to be ECNs, but they have converted to full 

exchange status in November 2008 and July 2010, respectively. 
3. DarkRetail. These trades come from retail investors and 

are internalized by broker-dealers. Retail brokers often 

route order flow submitted by retail investors to major 

broker-dealers, who then fill these orders as principal 

or agent. These transactions would be classified as 

DarkRetail. 

4. DarkPrintB. These trades are “average-price” trades. A 

typical example is that an institutional investor agrees 

to buy 20,0 0 0 shares from a broker, at a volume- 

weighted average price plus a spread. This trade of 

20,0 0 0 shares between the investor and the broker 

would be classified as a “print back” trade, abbreviated 

as “PrintB.”

5. DarkOther. These are dark trades not covered by the 

categories above. A typical example in this category 

would be a negotiated trade between two institutions 

on the phone (i.e., not done on any electronic platform). 

We emphasize that each category is not a single trading 

venue, but a collection of venues that are qualitatively 

similar in terms of their trading mechanism. In the in- 

terest of brevity, however, we will use the terms “venue”

and “type of venue” interchangeably. For concreteness, 

Appendix A presents a snippet of the raw data we use. 

Table 1 shows the market shares of the five types of 

dark venues as a fraction of total trading volume in our 

sample. The total trading volume is obtained from Trade 

and Quote (TAQ) by running the algorithm developed by 

Holden and Jacobsen (2014) . We label the complement of 

these five dark venues as the “lit” venues. The “lit” label 

is an approximation. 8 In the first column (full sample), 

we observe that dark venues account for more than 30% 

of total transaction volume in the 117 stocks in October 

2010. Ranked by market shares, the five dark categories 

are DarkRetail (12.9%), DarkNMid (9.1%), DarkOther (6.8%), 

DarkMid (2.5%), and DarkPrintB (1.0%). Columns 2–4 show 

the breakdown of venue market shares for large, medium, 

and small stocks, respectively. DarkMid market shares 

are similar across the three size terciles, but DarkNMid 

market shares seem to decrease in market capitalization. 

DarkRetail market share is visibly smaller for medium 

stocks than for large or small ones. 

It is informative to compare our five-way categoriza- 

tion of dark trading venues to that of the SEC. Securities 

and Exchange Commission (2010) classifies opaque trading 

centers into dark pools and broker-dealer internalization. 

By approximation, our DarkMid and DarkNMid types 

roughly fall into the SEC’s dark pool category, and our 

DarkRetail, DarkPrintB, and DarkOther types roughly fall 

into the SEC’s broker-dealer internalization category. 

Using one week of FINRA audit trail data in 2012, 

Tuttle (2014) reports that about 12.0% of trading volume 

in U.S. equities is executed in off-exchange alternative 

trading systems (ATSs), the majority of which are dark 

pools. She further reports that about 18.8% of U.S. equity 

volume is executed off-exchange without involving ATSs, 

which can be viewed as a proxy for trades intermediated 
8 Since Nasdaq TRF accounts for 92% of all off-exchange trading volume 

in our sample, the “lit” category also contains the remaining 8% of off- 

exchange volume, or about 2.4% of total volume. 

https://www.finra.org/Newsroom/NewsReleases/2014/P519139
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Table 1 

Volume shares of dark venues and the aggregate lit venue. 

This table shows the average volume shares of various venue types. The data sam- 

ple includes dark trading volumes and measures of market conditions for 117 stocks 

in October 2010. Definitions of variables are provided in Table 2 . Each venue share 

is computed as the percentage of the volume executed in that venue over the total 

volume obtained from TAQ in our sample period. 

Full sample Large Medium Small 

DarkMid [percent] 2.48 2.47 2.59 2.62 

DarkNMid [percent] 9.08 9.20 8.11 6.55 

DarkRetail [percent] 12.86 13.19 7.76 11.29 

DarkPrintB [percent] 0.99 1.02 0.47 0.65 

DarkOther [percent] 6.81 6.79 6.29 9.17 

Lit [percent] 67.79 67.32 74.78 69.72 

Table 2 

Variable descriptions. 

This table lists and describes all variables used in this study. An underscore indicates that the variable is used in our baseline econometric model 

( Section 4 ). The subscript j indexes stocks and t indexes minutes. All volume is measured in number of shares. Type Y variables are “endogenous”

variables in the econometric model (VARX) whereas type Z variables are exogenous. 

Type Variable name Description 

Panel A: Dark venue trading volumes 

Y VDarkMid jt Dark volume in midpoint-cross dark pools 

VDarkNMid jt Dark volume in non-midpoint dark pools 

VDarkRetail jt Dark volume due to retail flow internalization 

VDarkPrintB jt Dark volume due to average-price trades (“print back”) 

VDarkOther jt Other dark volume 

VDark jt Total dark volume as the sum of all dark volumes 

VLit jt Total volume minus all dark volume 

Panel B: Nasdaq lit market characterization 

ImbVolume jt Volume imbalance defined as the absolute difference between buyer-initiated and seller-initiated volume 

RelSpread jt Nasdaq lit market bid-ask spread divided by the NBBO midpoint 

InHiddDepth jt Sum of Nasdaq hidden bid depth and ask depth strictly within the displayed quotes 

TopDispDepth jt Sum of Nasdaq visible best bid depth and best ask depth 

AtHiddDepth jt Sum of Nasdaq hidden bid depth and best ask depth at the best quotes 

HFTinTopDepth jt Percentage of depth provided by HFTs’ limit orders at or within the best quotes of the book, including hidden 

orders 

HFTinVolume jt Nasdaq lit volume in which HFT participates divided by total Nasdaq lit volume 

Panel C: Overall market conditions 

TAQVolume jt Total trading volume reported in TAQ 

RealVar jt Realized variance (sum of squared one-second NBBO midquote returns) 

VarRat 10 S jt Variance ratio: ratio of realized variance based on ten-second returns relative to realized variance based on 

one-second returns 

Z dV IX ∗+ t Positive innovation in VIX t , calculated as the residual of an AR(1) estimated for �VIX t 
dV IX ∗−t Negative innovation in VIX t , calculated as the residual of an AR(1) estimated for �VIX t 

VIX t VIX index level 

Pre/PostNewsXmin t Dummy variables indicating whether an observation is within the x -minute window relative to a macro news 

announcement 

PostEA 1, 2, …, 13 jt Earnings per share (EPS) announcement surprise, calculated as the absolute difference in announced EPS and 

the EPS forecast, scaled by share price. All announcements were done overnight. To capture the intraday 

response pattern the announcement variable is multiplied by a time-of-day dummy corresponding to the 13 

half-hour intervals in a trading day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by broker-dealers. The dark pool volume and internalized

volume implied by our data set are comparable to those

reported by Tuttle (2014) . 

Variables used in the empirical analysis. For ease of refer-

ence, all variables that are used in the empirical analysis

are denoted in CamelCase italics and their descriptions

are tabulated in Table 2 . The sample is constructed at

the minute frequency. This is necessary as the sampling

frequency is constrained by Nasdaq order book snap-

shots, which, among all raw data used, is the one with

the lowest frequency. It comprises all minutes during

the trading hours (9:30am to 4:00pm) except the exact
moment of market opening, 9:30am. The final data set

consists of stock-minute data with 117 stocks × 21 days ×
390 min/day = 958,230 observations. 

3.2. Nasdaq: trade and quote data with HFT label 

Our second data set contains detailed trade and quote

data for the Nasdaq market (an electronic limit order

book that is part of the “Lit” market). The data include

identification of the activity of high-frequency trading

firms in this market. These firms are known to engage in

high-speed computerized trading, but their identities and

strategies are unknown to us. This data set has two parts. 
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First, for each transaction on Nasdaq, we observe the 

stock ticker, the transaction price, the number of shares 

traded, an indicator of whether the buyer or seller initiated 

the trade, and an indicator that for each side of the trade, 

tells whether it was an HFT or not. We refer to a trade as 

an HFT trade if at least one side of the trade is an HFT. 

All transactions are time-stamped to milliseconds. Second, 

we observe the minute by minute snapshot of the Nasdaq 

limit order book. For each limit order, we observe the 

ticker, the quantity, the price, the direction (buy or sell), 

a flag on whether the order is displayed or hidden, and a 

flag on whether or not the order is submitted by an HFT. 

An important and well-recognized caveat of the Nas- 

daq HFT data set is that it excludes trades by HFTs that 

are routed through large, integrated brokers, nor does it 

distinguish various HFT strategies, be it market making or 

“front-running.” Given this caveat, a prudent way to inter- 

pret the HFT measures is that they are “control variables,”

needed to capture market conditions. For additional details 

about the Nasdaq HFT data set, see Brogaard, Hendershott, 

and Riordan (2014) . 

Variables used in the empirical analysis. We construct 

the following variables to characterize market conditions 

in the Nasdaq lit market. We use the absolute value of 

Nasdaq signed volume as a measure of volume imbalance, 

ImbVolume . Doing so with Nasdaq data has the advantage 

that the Nasdaq data provide the exact trade direction 

indicator, buy or sell. By contrast, constructing volume 

imbalance from TAQ transaction data would require using 

an imprecise trade-signing heuristic, such as the Lee 

and Ready (1991) algorithm. Ellis, Michaely, and O’Hara 

(20 0 0) find that compared to the actual buy/sell indicator 

in Nasdaq data, the Lee-Ready algorithm misclassifies 

about 19% of Nasdaq trades. 

We further add two commonly used measures of liq- 

uidity: spread and depth. RelSpread is the relative bid-ask 

spread of the Nasdaq lit market. Three depth measures 

are added: InHiddDepth, TopDispDepth , and AtHiddDepth 

(ordered according to execution priority). First, InHid- 

dDepth measures the hidden orders that are posted strictly 

within the bid-ask spread; these orders have the highest 

execution priority. Second, TopDispDepth measures the 

depth provided by displayed limit orders at the best bid 

and ask prices. Third, AtHiddDepth measures the hidden 

depth provided at the best displayed prices. 

Lastly, we use two measures of HFT activity: HFTinVol- 

ume and HFTinTopDepth. HFTinVolume is Nasdaq volume 

where HFT was on at least one side of the transaction, 

divided by total Nasdaq volume. HFTinTopDepth is the 

number of shares posted by HFT at or within the best 

quotes on Nasdaq divided by the total number of shares 

posted at or within the best quotes on Nasdaq. 

3.3. Overall market conditions 

A third data set is used to characterize overall market 

conditions (i.e., based on including all markets, not only 

Nasdaq). The data used for this part are the standard TAQ 

data and millisecond-level NBBO data provided by Nasdaq. 
Variables used in the empirical analysis. For each stock 

and each minute, we calculate total transaction volume 

TAQVolume , realized return variance within the minute Re- 

alVar , and the variance ratio within the minute VarRat10S . 

The first variable is based on TAQ data, whereas the other 

two are based on millisecond-level NBBO data. 

3.4. Proxies for urgency shocks 

We proxy urgency by market-wide volatility VIX, 

macroeconomic data releases, and firms’ earnings sur- 

prises. The first and second variables pertain to the entire 

market, whereas the third is firm-specific. We pick these 

variables for two reasons. First, VIX, macroeconomic data 

releases, and earnings surprises are arguably exogenous to 

the trading process of a particular stock. This is important 

for our purpose. Since VIX is derived from options prices 

and covers the entire equity market, it is unlikely to be 

affected by trading in an individual stock. (An individual 

stock’s volatility, by contrast, is likely endogenous to 

the trading process.) Macroeconomic data releases and 

earnings announcements are scheduled in advance and 

are therefore not affected by trading activities on the 

announcement days. 

Second, we argue that investors’ urgency to trade (i.e., 

the opportunity cost of failing to execute orders), is higher 

following a surprise VIX increase, a macroeconomic data 

release, or an earnings number that is far from market 

expectations. The motivation for using VIX is as follows. If 

an investor is in the market for a trade, he is exposed to 

risks in his current portfolio (either long or short) before 

the order is filled. To the extent that a higher VIX implies 

a general volatility increase, a risk-averse investor’s cost 

of staying on the undesired exposure increases his utility 

cost of not trading. Moreover, a VIX shock, positive or neg- 

ative, is by itself news that could trigger hedging trades 

by which securities move between relatively risk-averse 

investors and relatively risk-loving ones in equilibrium 

(see, e.g., Campbell, Grossman, and Wang, 1993 ). Com- 

bining the inventory-cost and volatility-news effects of 

VIX, we see that a positive shock to VIX unambiguously 

leads to a higher urgency of investors, since inventory 

cost and volatility news both point in this direction. But 

a negative shock to VIX has ambiguous implications for 

urgency, since inventory cost suggests lower urgency and 

volatility news suggests higher urgency. We therefore use 

positive, but not negative, VIX surprises as our proxy for 

urgency. 

The rationale for using macroeconomic data releases 

and earnings announcements is similar in spirit. Following 

important news on the macroeconomy or individual firms, 

investors naturally wish to adjust their positions in the 

stock to take into account the new information. Although 

macroeconomic and earnings news are made publicly, 

trading interests are still generated when investors close 

pre-news positions or interpret the same news differ- 

ently ( Kim and Verrecchia, 1994 ). Sarkar and Schwartz 

(2009) provide evidence that after macroeconomic and 

earnings news, the market generally becomes more “two- 

sided,” that is, the correlation between buyer-initiated 

trades and seller-initiated trades goes up. They conclude 
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that this evidence supports heterogeneous opinions as a

motive to trade. Under this trading motive, trading urgency

goes up precisely after public news. 

Data sources. VIX is a forward-looking volatility measure,

calculated from option prices. The Chicago Board of Ex-

change (CBOE) disseminates VIX every 15 seconds. Minute

by minute VIX data are obtained from pitrading.com. 

Following Brogaard, Hendershott, and Riordan (2014) ,

we collect all the intraday macroeconomic data releases

during October 2010 from Bloomberg. 9 Each of these

releases is accompanied by the exact scheduled announce-

ment time (accurate to the second) and a “relevance

score.” It is quite common to have multiple releases

scheduled at the same time (most often at 10:00 am

ET). With a selection threshold of relevance higher than

70%, we obtain 14 unique release times on ten different

trading days (out of 21) in our sample period. 10 These

macroeconomic data releases are used to construct the

news announcement dummies defined below. 

Of the 117 firms in our sample, 68 announced earn-

ings in October 2010. All these announcements were

made outside trading hours. For each of these earnings

announcements, we download the announcement dates,

time stamps, announced earnings per share (EPS), and

expected earnings per share from Bloomberg. We are able

to collect the EPS forecast from Bloomberg for 67 of these

firms, and hence can construct the earnings surprises

described below. 

Variables used in the empirical analysis. From the raw data

we calculate three types of exogenous variables that will

be included in the empirical analysis: (i) innovations in

VIX, (ii) dummies indicating minutes before and after

macroeconomic data releases, and (iii) earnings surprises

for stocks with earnings announcements. 

As discussed above, only a positive VIX shock unam-

biguously leads to higher urgency. We define the minute

to minute change in VIX as dVIX (t) ≡ VIX (t) − VIX (t − 1) .

Then, we compute VIX innovations as the residuals of an

AR(1) model for dVIX (t) and decompose it by sign into a

positive part and a negative part: 

dVIX (t) = αdVIX (t − 1) + innovation (t) , (1)

dVIX 

∗ (t) = max { 0 , innovation (t) } , (2)
+ 

9 Many macroeconomic data releases are scheduled before the mar- 

ket opens, say, at 8:30am. As there might be surprise events between 

such data releases and the market open time 9:30am, we cannot be sure 

that the stock trading behavior at the market open time is due to the 

macroeconomic data release some time earlier. For this reason, we focus 

on macroeconomic data releases made during trading hours. 
10 The included macroeconomic data releases are University of Michi- 

gan Consumer Sentiment, Institute for Suply Management (ISM) Manu- 

facturing, ISM Prices Paid, Construction Spending, Factory Orders, Pend- 

ing Home Sales, ISM Non-Manufacturing, Wholesale Inventories, Monthly 

Budget Statement, Philadelphia Fed Business Outlook, Leading Economic 

Index, Existing Home Sales, Dallas Fed Manufacturing, Richmond Fed 

Manufacturing, Consumer Confidence, Federal Housing Finance Agency 

(FHFA) House Price, New Home Sales, and Chicago Purchasing Managers. 
dVIX 

∗
−(t) = − min { 0 , innovation (t) } . (3)

The choice of one lag for the autoregressive model is

based on applying the Bayesian Information Criterion (BIC)

model selection criterion. In addition to the VIX innovation

variables, we also include the level of VIX in our analysis,

since both VIX changes and VIX level may affect investors’

urgency to trade. 11 

For each of the 14 unique macroeconomic data release

times, we construct six time dummy variables, Pre-

News1min, PostNews0min, PostNews1min ,…, PostNews4min .

For example, suppose there is a news release scheduled

at 10:00am on October 1, which we treat as the very first

event in the time interval of (10:00,10:01]. The dummy

variable PreNews1min is set to one for all stocks for the

minute ending at 10:00am, i.e., the minute of (9:59,10:00],

on October 1, and zero otherwise; the dummy variable

PostNews0min is set to one for all stocks for the minute

of (10:00,10:01] on October 1, and zero otherwise; the

dummy variable PostNews1min is set to one for all stocks

for the minute of (10:01,10:02] on October 1, and zero

otherwise; and so on. 12 

Consistent with the accounting literature (e.g., Kinney,

Burgsthler, and Martin, 2002 ), the earnings surprise is

calculated as the absolute difference between announced

EPS and the pre-announcement expected EPS, divided by

the closing price on the business day immediately before

the announcement. Since all of our earnings announce-

ments are made outside trading hours, it is not possible

to study the immediate effect of earnings announce-

ment on trading activity using minute-level dummies as

we did with macroeconomic data releases. As such, we

construct 13 intraday variables for the immediate next

business day after an announcement. The dummies are

PostEA1 jt , . . . , PostEA13 jt , one for each of the 13 30-minute

windows in a trading day. If stock j announced its earnings

on a particular day with EPS surprise of x basis points,

then all of { PostEA1 jt , . . . , PostEA13 jt } are set to x for the

corresponding time window on the business day right

after stock j ’s earnings announcement. Otherwise, these

variables are set to zero. 

3.5. Data preparation and summary statistics 

We convert all variables into logs, except the urgency

proxies (i.e., VIX level, VIX innovation, macroeconomic

news, and earnings announcements) because some of

them are dummy variables. A log-linear model has a
11 Since VIX is a stationary process (with slow decay when sampled at 

the minute frequency) and it appears so during our sample period, in- 

cluding it in our regression model does not raise econometric concerns. 
12 Another way to construct the macroeconomic variables is to measure 

how far the announced numbers differ from market expectations. This 

method, however, runs into a problem if multiple macroeconomic data 

releases coincide at the same clock time. For example, on October 1, 2010, 

three macroeconomic data releases happened at 10:00am: ISM Manufac- 

turing, ISM Prices Paid, and Construction Spending. For these situations 

there is no obviously optimal way to synthesize multiple releases into one 

“surprise” measure. For this reason, we use time dummy variables. To the 

extent that the surprise component is missing from these time dummies, 

using time dummies is conservative and goes against us finding any sig- 

nificant result. 
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couple of advantages over a linear model. First, a log- 

linear model comes with a natural interpretation that 

estimated coefficients are elasticities. Second, all endoge- 

nous variables (e.g., volume, realized variance, and depth) 

are guaranteed to remain non-negative. In other words, 

the error term does not need to be bounded from below, 

which would be the case for a linear model. 

To take the log, the data need to be winsorized to 

eliminate zeros. We use the following procedure. If a 

particular dark venue has zero transaction volume for 

stock j and minute t , its volume for that stock-minute is 

reset to one share. If a particular stock j does not trade in 

period t on the Nasdaq market, the HFTinVolume variable 

is undefined. In this case, to avoid losing observations, 

HFTinVolume is forward filled from the start of the day. 

The motivation is that market participants may learn HFT 

activity on Nasdaq by carefully parsing market conditions. 

If there is no update in a particular time interval, they 

might rely on the last observed value. Zero entries for all 

other variables are left-winsorized at the 0.01% level. 

Table 3 contains summary statistics of the model vari- 

ables, before taking the log. Columns 1 through 8 show 

the mean, standard deviation, minimum, and maximum of 

the raw and winsorized data for the full sample. One im- 

portant observation is that the data preparation procedure 

discussed above leaves the data almost unchanged as the 

raw data are very close to the prepared data. 

The summary statistics characterize trading in our 

sample. Total average trading volume per stock-minute is 

10,300 shares. The average bid-ask spread in the Nasdaq 

limit order book is 16.8 basis points. The average displayed 

depth at the best quotes is 4,443 shares. HFT participation 

in the best quotes, HFTinTopDepth , is 37%, whereas HFT 

participation in Nasdaq trades, HFTinVolume , is 40%. The 

averages of dV IX ∗+ and dV IX ∗− are 0.7 basis points per 

minute, and since one of these two innovations is always 

zero each minute by construction, the average absolute 

innovation in the VIX is the sum of the two averages, or 

about 1.4 basis points per minute. The last six columns 

show the mean and standard deviation of all model vari- 

ables for large, medium, and small stocks, respectively. As 

expected, larger stocks have higher volumes in all venues, 

lower spreads, higher depths, and higher HFT participation. 

4. A VARX model of dark volumes 

This section characterizes the dynamic interrelation of 

the various types of dark volume, the various measures 

of market conditions, and the exogenous shocks to ur- 

gency, through a panel vector autoregressive model with 

exogenous variables: a panel VARX. 

4.1. Panel VARX model 

For each stock j and each minute t , all the log- 

transformed endogenous variables, underscored and in the 

Y section of Table 2 , are arranged into a vector y jt . All ex- 

ogenous variables, listed in the Z section of Table 2 , are ar- 

ranged into a vector z jt . Then, the panel VARX model used 

for the main empirical analysis has the following form: 

y jt = α j + �1 y j,t−1 + · · · + �p y j,t−p + �z j,t + ε jt . (4) 
A stock fixed effect αj ensures that only time variation 

is captured, not cross-sectional variation, as our focus is 

on dynamic interrelations among variables. We set the 

number of lags (in minutes) equal to two based on the BIC 

criterion for model selection. Further estimation details 

are provided in Appendix B . 

4.2. Estimation results 

Table 4 presents the VARX estimation results. The 

estimated coefficients { �1 , �2 , �} can be interpreted as 

elasticities. The results lead to a few observations. First, 

VIX shocks, macroeconomic data releases, and earnings 

surprises all forecast higher volumes in dark venues and 

higher total TAQ volume, but the elasticity of TAQ volume 

is higher than that of all types of dark volume which, in 

turn, show large variation. This suggests that the market 

shares of various venue types respond rather differently to 

shocks in the urgency proxies. Moreover, right after those 

exogenous shocks, liquidity conditions in the market tend 

to worsen, as indicated by a wider spread and a lower 

(visible) depth. Second, the various types of dark volume 

seem to respond very differently to changes in market 

condition variables such as spread, depth, and return 

variance, sometimes with opposite signs (as judged from 

the first five rows). We will return to these points later. 

An informative, intuitive, and standard way to sum- 

marize the rich information in the dynamic system is to 

calculate and plot impulse-response functions (IRFs). In 

particular, IRFs reveal not only how shocks transmit across 

variables, but also show how long they last. Thus, we will 

mostly rely on IRFs for exposition in the remainder of 

the paper. As the IRF is a nonlinear function of parameter 

estimates, we establish the 95% confidence bounds of the 

IRF through simulations. In each iteration a value for the 

parameter vector is drawn from a multivariate normal 

with a mean equal to the point estimate and a covariance 

matrix equal to the estimated parameter covariance ma- 

trix. This simulation method is described in more detail 

in Appendix B . Appendix C describes how some variables 

are log-transformed, so that the market shares are always 

between zero and 100% in the simulation exercise. In 

the next section, we use the IRFs based on a shock to 

the exogenous urgency proxies to test the pecking order 

hypothesis. In Section 7 , we present IRFs based on shocks 

to endogenous variables to explore heterogeneity across 

dark venues and across stocks. 

5. Results: pecking order 

In this section we test the pecking order hypothesis 

laid out in Section 2 . We focus on testing the specific 

form of the pecking order hypothesis ( Fig. 2 (b)) because 

it makes stronger (i.e., more specific) predictions. Our em- 

pirical strategy is to start from the steady-state estimate 

of the VARX model and then study how the market shares 

of DarkMid, DarkNMid, and Lit respond to VIX shocks, 

macroeconomic data releases, and earnings surprises. In 

all analysis we will also discuss the behavior of large-cap, 

mid-cap, and small-cap stocks separately. 
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Table 3 

Summary statistics. 

This table reports summary statistics of the variables used throughout the paper (before taking logarithm). The data sample includes dark trading volumes and measures of market conditions for 117 

stocks in October 2010. Definitions of variables are provided in Table 2 . Sample mean, standard deviation, minimum, and maximum are calculated for the full sample before and after data preparation 

(the first 8 columns). For each stock size tercile, subsample mean and standard deviation are then tabulated (in the other columns). The sample frequency is minute. The units of each series is in the 

square brackets. 

Mean (full) StDev (full) Min (full) Max (full) Mean StDev 

Raw Prep/d Raw Prep/d Raw Prep/d Raw Prep/d Large Medium Small Large Medium Small 

VDarkMid [1k shares] 0.256 0.257 2.379 2.379 0.0 0 0 0.001 1297.200 1297.200 0.709 0.045 0.017 4.005 0.730 0.315 

VDarkNMid [1k shares] 0.938 0.939 5.411 5.411 0.0 0 0 0.001 1040.352 1040.352 2.638 0.138 0.040 9.069 1.047 0.379 

VDarkRetail [1k shares] 1.328 1.329 6.181 6.181 0.0 0 0 0.001 1641.229 1641.229 3.783 0.133 0.070 10.219 0.894 0.574 

VDarkPrintB [1k shares] 0.102 0.103 8.001 8.001 0.0 0 0 0.001 3524.920 3524.920 0.294 0.009 0.005 13.827 0.397 0.791 

VDarkOther [1k shares] 0.703 0.704 10.627 10.627 0.0 0 0 0.001 3018.263 3018.263 1.948 0.108 0.057 18.136 1.926 1.942 

VDark [1k shares] 3.437 3.438 41.120 41.120 0.0 0 0 0.001 23616.586 23616.586 9.692 0.431 0.189 70.714 2.674 2.510 

VLit [1k shares] 7.001 7.002 31.413 31.413 0.0 0 0 0.001 9238.898 9238.898 19.306 1.272 0.427 52.102 3.781 1.972 

TAQVolume [1k shares] 10.325 10.329 42.534 42.533 0.0 0 0 0.006 9329.493 9329.494 28.666 1.705 0.616 69.887 5.180 3.334 

ImbVolume [1k shares] 1.282 1.282 5.943 5.943 0.0 0 0 0.001 249.800 249.800 3.476 0.274 0.096 9.883 0.936 0.417 

RelSpread [bps] 16.776 16.776 28.466 28.466 0.162 0.334 66 81.44 9 66 81.44 9 4.100 12.136 34.075 2.860 12.062 42.368 

InHiddDepth [1k shares] 0.178 0.178 1.010 1.010 0.0 0 0 0.001 249.800 249.800 0.238 0.134 0.163 1.418 0.778 0.663 

TopDispDepth [1k shares] 4.443 4.443 13.909 13.909 0.001 0.004 502.515 502.515 11.431 1.327 0.572 22.231 3.398 1.034 

AtHiddDepth [1k shares] 1.170 1.170 6.605 6.605 0.0 0 0 0.001 903.559 903.559 2.099 0.968 0.443 9.061 6.592 1.967 

HFTinTopDepth [percent] 36.744 36.748 27.959 27.953 0.0 0 0 0.029 10 0.0 0 0 10 0.0 0 0 46.778 37.478 25.987 24.021 28.761 26.892 

HFTinVlm [percent] 39.985 37.157 23.939 26.038 0.0 0 0 0.125 10 0.0 0 0 10 0.0 0 0 45.627 38.063 27.708 19.697 26.978 27.539 

RealVar [bps] 6.139 6.188 9.112 9.079 0.0 0 0 0.172 1367.197 1367.197 5.134 5.541 8.0 0 0 4.639 7.348 12.871 

VarRat10S [percent] 99.772 99.778 44.438 44.426 0.0 0 0 0.317 853.407 853.407 101.613 100.834 96.905 47.554 45.698 39.431 

dVIX ∗+ [percent] 0.007 0.007 0.018 0.018 0.0 0 0 0.0 0 0 0.427 0.427 0.007 0.007 0.007 0.018 0.018 0.018 

dVIX ∗- [percent] 0.007 0.007 0.016 0.016 0.0 0 0 0.0 0 0 0.342 0.342 0.007 0.007 0.007 0.016 0.016 0.016 

VIX [percent] 20.626 20.626 1.369 1.369 17.940 17.940 24.330 24.330 20.626 20.626 20.626 1.369 1.369 1.369 

PreNews1min [1/0] 0.002 0.002 0.041 0.041 0 0 1 1 0.002 0.002 0.002 0.041 0.041 0.041 

PostNews0min,…, PosteNews4min [1/0] 0.002 0.002 0.041 0.041 0 0 1 1 0.002 0.002 0.002 0.041 0.041 0.041 

PostEA1,…, PosteEA13 [percent] 0.001 0.001 0.042 0.042 0 0 4.190 4.190 0.0 0 0 0.001 0.001 0.014 0.061 0.037 
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Table 4 

VARX Estimation. 

This table presents VARX estimation results. The data sample includes dark trading volumes and measures of market conditions for 117 stocks in October 2010. Definitions of variables are provided in 

Table 2 . All variables are sampled at a one minute frequency. They are log-transformed except for the exogenous variables: VIX innovation and level, earnings announcement surprises ( PostEA ) and the 

macroeconomic data release dummies. The (unadjusted) R 2 values are reported for each endogenous variable. Statistical inference is based on two-way clustering of the residuals, by stock and by time. 

VDarkMid VDarkNMid VDarkRetail VDarkPrintB VDarkOther TAQVolume ImbVolume RelSpread InHiddDepth TopDispDepth AtHiddDepth HFTinTopDepth HFTinVlm RealVar VarRat10S 

Endogenous variables: 1-minute lag 

VDarkMid (-1) 0 .210 ∗∗ 0 .032 ∗∗ 0 .026 ∗∗ 0 .005 ∗∗ 0 .038 ∗∗ 0 .011 ∗∗ 0 .010 ∗∗ −0 .0 0 0 0 .001 0 .001 ∗ 0 .003 −0 .0 0 0 0 .001 0 .002 −0 .001 ∗

VDarkNMid (-1) 0 .028 ∗∗ 0 .190 ∗∗ 0 .048 ∗∗ 0 .004 ∗∗ 0 .045 ∗∗ 0 .034 ∗∗ 0 .019 ∗∗ −0 .0 0 0 0 .004 ∗ 0 .004 ∗∗ 0 .002 0 .001 0 .001 0 .002 −0 .002 ∗∗

VDarkRetail (-1) 0 .019 ∗∗ 0 .034 ∗∗ 0 .110 ∗∗ 0 .003 ∗∗ 0 .038 ∗∗ 0 .017 ∗∗ 0 .021 ∗∗ −0 .0 0 0 −0 .003 ∗ −0 .0 0 0 0 .001 −0 .001 0 .003 ∗∗ 0 .005 ∗∗ 0 .001 ∗∗

VDarkPrintB (-1) 0 .010 ∗∗ 0 .008 ∗∗ 0 .011 ∗∗ 0 .054 ∗∗ 0 .019 ∗∗ 0 .006 ∗ 0 .008 ∗ 0 .001 −0 .002 0 .001 −0 .002 0 .002 0 .001 0 .007 ∗∗ 0 .0 0 0 

VDarkOther (-1) 0 .021 ∗∗ 0 .036 ∗∗ 0 .036 ∗∗ 0 .002 ∗∗ 0 .143 ∗∗ 0 .017 ∗∗ 0 .018 ∗∗ −0 .001 ∗ 0 .001 −0 .001 0 .006 ∗∗ −0 .001 −0 .002 ∗ 0 .004 ∗∗ −0 .001 

TAQVolume (-1) −0 .004 ∗ 0 .022 ∗∗ 0 .020 ∗∗ 0 .001 0 .007 ∗ 0 .169 ∗∗ 0 .072 ∗∗ −0 .002 ∗∗ 0 .004 0 .002 ∗∗ 0 .007 ∗ −0 .008 ∗∗ −0 .014 ∗∗ 0 .002 0 .003 ∗

ImbVolume (-1) −0 .001 −0 .002 0 .009 ∗∗ 0 .001 ∗ 0 .008 ∗∗ 0 .010 ∗∗ 0 .079 ∗∗ 0 .0 0 0 −0 .003 −0 .002 ∗∗ 0 .0 0 0 −0 .003 ∗ 0 .004 ∗∗ 0 .007 ∗∗ −0 .001 ∗

RelSpread (-1) −0 .077 ∗∗ −0 .120 ∗∗ −0 .080 ∗∗ −0 .003 −0 .130 ∗∗ −0 .429 ∗∗ −0 .876 ∗∗ 0 .388 ∗∗ 0 .051 ∗ −0 .043 ∗∗ −0 .219 ∗∗ −0 .113 ∗∗ −0 .143 ∗∗ 0 .189 ∗∗ −0 .046 ∗∗

InHiddDepth (-1) 0 .007 ∗∗ 0 .018 ∗∗ 0 .006 ∗∗ 0 .001 0 .018 ∗∗ 0 .023 ∗∗ 0 .032 ∗∗ −0 .002 ∗∗ 0 .318 ∗∗ 0 .001 ∗∗ 0 .046 ∗∗ 0 .004 −0 .009 ∗∗ −0 .011 ∗∗ 0 .0 0 0 

TopDispDepth (-1) 0 .077 ∗∗ 0 .136 ∗∗ 0 .071 ∗∗ 0 .004 0 .080 ∗∗ 0 .130 ∗∗ 0 .208 ∗∗ −0 .025 ∗∗ −0 .038 ∗∗ 0 .372 ∗∗ 0 .090 ∗∗ −0 .021 0 .002 −0 .108 ∗∗ 0 .016 ∗∗

AtHiddDepth (-1) 0 .011 ∗∗ 0 .013 ∗∗ 0 .008 ∗∗ 0 .001 0 .015 ∗∗ 0 .008 ∗∗ 0 .019 ∗∗ −0 .002 ∗∗ 0 .023 ∗∗ 0 .003 ∗∗ 0 .329 ∗∗ −0 .001 −0 .002 ∗ −0 .011 ∗∗ −0 .001 ∗∗

HFTinTopDepth (-1) −0 .003 ∗∗ −0 .004 ∗∗ −0 .002 ∗ 0 .0 0 0 −0 .007 ∗∗ −0 .001 −0 .012 ∗∗ −0 .002 ∗∗ 0 .001 −0 .0 0 0 −0 .002 0 .369 ∗∗ 0 .046 ∗∗ 0 .004 ∗∗ 0 .003 ∗∗

HFTinVlm (-1) −0 .003 ∗ −0 .005 ∗∗ −0 .001 −0 .0 0 0 −0 .007 ∗∗ −0 .004 ∗∗ −0 .007 ∗∗ 0 .0 0 0 −0 .004 ∗ −0 .0 0 0 −0 .0 0 0 0 .004 ∗ 0 .544 ∗∗ −0 .0 0 0 0 .0 0 0 

RealVar (-1) −0 .025 ∗∗ −0 .044 ∗∗ −0 .020 ∗∗ −0 .0 0 0 −0 .038 ∗∗ −0 .045 ∗∗ 0 .005 0 .006 ∗∗ −0 .010 ∗∗ −0 .012 ∗∗ −0 .042 ∗∗ 0 .011 ∗∗ 0 .005 ∗ 0 .219 ∗∗ −0 .023 ∗∗

VarRat10S (-1) 0 .002 −0 .002 0 .014 ∗∗ 0 .002 0 .001 0 .006 ∗ 0 .007 ∗ 0 .003 ∗∗ −0 .0 0 0 −0 .002 ∗ −0 .006 0 .006 ∗ 0 .005 ∗ 0 .016 ∗∗ 0 .047 ∗∗

Endogenous variables: 2-minute lag 

VDarkMid (-2) 0 .175 ∗∗ 0 .019 ∗∗ 0 .014 ∗∗ 0 .003 ∗∗ 0 .027 ∗∗ 0 .004 ∗∗ 0 .004 0 .0 0 0 −0 .0 0 0 0 .002 ∗∗ 0 .006 ∗∗ −0 .0 0 0 −0 .002 ∗ 0 .001 −0 .0 0 0 

VDarkNMid (-2) 0 .016 ∗∗ 0 .136 ∗∗ 0 .031 ∗∗ 0 .002 ∗ 0 .029 ∗∗ 0 .017 ∗∗ 0 .008 ∗∗ 0 .001 ∗∗ 0 .007 ∗∗ 0 .004 ∗∗ 0 .010 ∗∗ −0 .0 0 0 −0 .002 ∗ −0 .002 −0 .0 0 0 

VDarkRetail (-2) 0 .014 ∗∗ 0 .022 ∗∗ 0 .088 ∗∗ 0 .002 0 .027 ∗∗ 0 .013 ∗∗ 0 .015 ∗∗ 0 .0 0 0 −0 .003 ∗∗ 0 .0 0 0 −0 .0 0 0 −0 .0 0 0 0 .001 0 .006 ∗∗ 0 .002 ∗∗

VDarkPrintB (-2) 0 .010 ∗∗ 0 .006 0 .011 ∗∗ 0 .030 ∗∗ 0 .007 0 .001 0 .003 0 .0 0 0 0 .004 0 .001 0 .007 0 .001 −0 .001 0 .0 0 0 −0 .0 0 0 

VDarkOther (-2) 0 .010 ∗∗ 0 .021 ∗∗ 0 .028 ∗∗ 0 .0 0 0 0 .111 ∗∗ 0 .008 ∗∗ 0 .010 ∗∗ −0 .001 ∗ 0 .004 ∗∗ −0 .0 0 0 0 .006 ∗∗ −0 .003 ∗ −0 .001 0 .001 −0 .0 0 0 

TAQVolume (-2) −0 .012 ∗∗ 0 .015 ∗∗ 0 .015 ∗∗ 0 .003 ∗∗ −0 .004 0 .118 ∗∗ 0 .039 ∗∗ −0 .004 ∗∗ 0 .007 ∗∗ 0 .004 ∗∗ 0 .009 ∗∗ −0 .006 ∗ −0 .006 ∗∗ −0 .010 ∗∗ 0 .001 

ImbVolume (-2) 0 .001 −0 .002 0 .008 ∗∗ 0 .0 0 0 0 .002 0 .004 ∗ 0 .052 ∗∗ −0 .004 ∗∗ −0 .008 ∗∗ 0 .002 ∗∗ 0 .009 ∗∗ −0 .008 ∗∗ 0 .005 ∗∗ −0 .002 0 .001 ∗

RelSpread (-2) 0 .010 0 .034 ∗∗ 0 .024 ∗∗ 0 .002 0 .027 ∗∗ 0 .040 ∗∗ 0 .059 ∗∗ 0 .200 ∗∗ 0 .005 −0 .014 ∗∗ −0 .126 ∗∗ −0 .116 ∗∗ −0 .009 0 .041 ∗∗ 0 .009 ∗∗

InHiddDepth (-2) −0 .0 0 0 0 .002 −0 .001 −0 .001 0 .002 0 .001 −0 .001 −0 .001 ∗∗ 0 .176 ∗∗ 0 .001 0 .030 ∗∗ 0 .005 ∗∗ −0 .001 −0 .005 ∗∗ 0 .0 0 0 

TopDispDepth (-2) −0 .003 0 .025 ∗∗ −0 .005 0 .003 −0 .032 ∗∗ −0 .019 ∗∗ −0 .025 ∗∗ −0 .003 −0 .009 0 .217 ∗∗ 0 .071 ∗∗ −0 .001 −0 .009 ∗ −0 .068 ∗∗ 0 .006 ∗∗

AtHiddDepth (-2) 0 .002 0 .003 ∗ 0 .001 0 .0 0 0 0 .002 ∗ 0 .001 0 .001 −0 .001 ∗∗ 0 .017 ∗∗ 0 .002 ∗∗ 0 .186 ∗∗ 0 .003 ∗ 0 .0 0 0 −0 .009 ∗∗ −0 .001 

HFTinTopDepth (-2) 0 .0 0 0 −0 .0 0 0 −0 .001 0 .0 0 0 −0 .002 −0 .004 ∗∗ −0 .008 ∗∗ −0 .003 ∗∗ 0 .001 0 .001 0 .006 ∗ 0 .192 ∗∗ 0 .010 ∗∗ −0 .001 0 .0 0 0 

HFTinVlm (-2) 0 .001 0 .001 −0 .001 −0 .0 0 0 0 .002 −0 .0 0 0 0 .004 ∗ −0 .001 ∗∗ −0 .003 ∗ 0 .0 0 0 0 .001 0 .017 ∗∗ 0 .115 ∗∗ 0 .005 ∗∗ 0 .001 

RealVar (-2) −0 .010 ∗∗ −0 .023 ∗∗ −0 .010 ∗∗ −0 .002 −0 .012 ∗∗ −0 .017 ∗∗ 0 .024 ∗∗ 0 .007 ∗∗ −0 .006 ∗∗ −0 .009 ∗∗ −0 .030 ∗∗ 0 .005 ∗ −0 .001 0 .128 ∗∗ −0 .012 ∗∗

VarRat10S (-2) −0 .003 −0 .008 ∗∗ 0 .002 0 .0 0 0 −0 .005 ∗ −0 .009 ∗∗ −0 .008 ∗∗ 0 .002 ∗∗ −0 .001 0 .001 −0 .006 0 .002 0 .003 −0 .005 ∗ 0 .029 ∗∗

( continued on next page ) 
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Table 4 ( continued ) 

VDarkMid VDarkNMid VDarkRetail VDarkPrintB VDarkOther TAQVolume ImbVolume RelSpread InHiddDepth TopDispDepth AtHiddDepth HFTinTopDepth HFTinVlm RealVar VarRat10S 

Exogenous variables 

dVIX ∗+ 2 .337 ∗∗ 3 .510 ∗∗ 3 .306 ∗∗ 0 .154 3 .845 ∗∗ 6 .874 ∗∗ 8 .056 ∗∗ 0 .489 ∗∗ −0 .108 −0 .198 ∗∗ −0 .272 0 .594 ∗∗ 2 .129 ∗∗ 6 .387 ∗∗ 0 .687 ∗∗

dVIX ∗- 2 .704 ∗∗ 3 .540 ∗∗ 2 .855 ∗∗ −0 .172 3 .777 ∗∗ 7 .169 ∗∗ 9 .058 ∗∗ 0 .498 ∗∗ 0 .075 −0 .183 ∗∗ −0 .543 0 .365 2 .459 ∗∗ 6 .956 ∗∗ 0 .550 ∗∗

VIX −0 .002 0 .020 ∗∗ −0 .014 ∗ 0 .007 ∗ 0 .022 ∗∗ 0 .048 ∗∗ 0 .053 ∗∗ 0 .002 ∗ −0 .012 0 .001 0 .008 −0 .008 0 .010 ∗∗ 0 .045 ∗∗ 0 .0 0 0 

PreNews1min −0 .135 ∗ −0 .214 ∗∗ −0 .197 ∗∗ 0 .118 ∗∗ −0 .174 ∗∗ −0 .282 ∗ −0 .371 0 .099 ∗∗ −0 .024 −0 .058 ∗∗ −0 .074 −0 .485 ∗∗ −0 .064 −0 .216 −0 .032 

PostNews0min 0 .304 ∗∗ 0 .534 ∗∗ 0 .391 ∗∗ 0 .021 0 .532 ∗∗ 0 .802 ∗∗ 0 .777 ∗∗ 0 .178 ∗∗ 0 .251 ∗∗ −0 .107 ∗∗ −0 .071 ∗ 0 .251 ∗∗ 0 .269 ∗∗ 0 .890 ∗∗ −0 .016 

PostNews1min −0 .225 ∗∗ −0 .137 ∗∗ −0 .116 ∗ −0 .015 −0 .155 −0 .037 −0 .010 0 .035 0 .100 ∗∗ −0 .025 ∗∗ −0 .070 −0 .064 −0 .020 −0 .044 0 .128 ∗∗

PostNews2min −0 .089 ∗∗ −0 .031 −0 .109 −0 .049 −0 .013 0 .016 0 .004 −0 .063 ∗∗ −0 .127 ∗ −0 .009 −0 .017 0 .183 ∗ 0 .048 −0 .005 0 .140 ∗∗

PostNews3min 0 .035 0 .021 −0 .061 0 .007 0 .046 0 .015 0 .010 −0 .031 ∗∗ −0 .072 ∗∗ −0 .008 0 .207 ∗∗ −0 .148 ∗ −0 .033 ∗ 0 .098 0 .085 ∗∗

PostNews4min −0 .014 0 .025 −0 .021 −0 .062 ∗∗ 0 .070 −0 .057 −0 .054 0 .025 0 .027 −0 .031 −0 .142 0 .055 −0 .006 0 .056 0 .004 

PostEA1 0 .280 ∗ 0 .315 ∗ 0 .574 ∗∗ 0 .066 0 .251 0 .640 ∗∗ 0 .668 ∗∗ 0 .008 −0 .0 0 0 0 .006 0 .219 ∗∗ −0 .049 0 .074 0 .245 ∗ −0 .003 

PostEA2 0 .135 0 .394 ∗∗ 0 .571 ∗∗ 0 .021 0 .158 ∗ 0 .551 ∗∗ 0 .430 ∗∗ 0 .011 0 .059 −0 .013 −0 .022 0 .104 ∗ 0 .131 ∗∗ 0 .166 ∗∗ −0 .045 ∗

PostEA3 0 .164 0 .421 ∗∗ 0 .280 ∗∗ 0 .105 0 .171 ∗ 0 .479 ∗∗ 0 .389 ∗∗ 0 .011 0 .227 ∗ 0 .019 0 .031 0 .072 0 .029 ∗ 0 .171 ∗∗ −0 .009 

PostEA4 0 .217 ∗ 0 .251 ∗ 0 .238 ∗∗ 0 .084 0 .189 0 .506 ∗∗ 0 .421 ∗∗ 0 .005 0 .055 0 .013 −0 .029 0 .092 0 .090 0 .236 ∗∗ 0 .025 

PostEA5 0 .099 ∗∗ 0 .179 ∗ 0 .184 ∗∗ 0 .080 ∗ 0 .098 0 .281 ∗∗ 0 .301 ∗∗ −0 .018 −0 .002 −0 .015 0 .147 0 .063 0 .001 0 .140 ∗∗ 0 .013 

PostEA6 0 .052 0 .138 ∗ 0 .169 ∗∗ 0 .102 0 .078 0 .270 ∗∗ 0 .175 −0 .023 −0 .059 0 .0 0 0 0 .070 −0 .026 −0 .003 0 .062 0 .017 

PostEA7 0 .048 0 .129 ∗ 0 .244 ∗∗ 0 .077 ∗ 0 .131 ∗ 0 .273 ∗∗ 0 .214 ∗ 0 .018 0 .246 ∗∗ 0 .009 −0 .034 0 .184 ∗∗ 0 .016 0 .053 0 .015 

PostEA8 0 .105 ∗∗ 0 .242 ∗ 0 .252 ∗∗ 0 .088 ∗ 0 .160 ∗ 0 .252 ∗ 0 .254 ∗ 0 .019 0 .163 ∗∗ 0 .015 −0 .105 0 .115 0 .048 0 .192 ∗∗ 0 .003 

PostEA9 0 .066 ∗ 0 .154 ∗∗ 0 .133 0 .100 ∗ 0 .199 ∗∗ 0 .244 ∗∗ 0 .235 ∗ 0 .001 −0 .077 ∗ 0 .001 −0 .104 −0 .068 −0 .027 0 .052 −0 .002 

PostEA10 0 .068 ∗ 0 .176 ∗ 0 .217 ∗ 0 .102 ∗ 0 .159 ∗ 0 .213 ∗ 0 .188 0 .008 0 .036 0 .0 0 0 0 .001 0 .055 0 .113 ∗ 0 .080 0 .024 

PostEA11 0 .062 0 .202 ∗ 0 .121 0 .111 ∗ 0 .017 0 .295 ∗∗ 0 .195 0 .007 0 .017 −0 .011 0 .030 0 .025 0 .095 ∗∗ 0 .061 −0 .003 

PostEA12 0 .032 0 .128 0 .136 0 .100 0 .079 0 .291 ∗∗ 0 .166 ∗ 0 .018 0 .057 0 .010 0 .045 0 .021 0 .026 0 .084 0 .003 

PostEA13 0 .067 0 .213 0 .232 ∗ 0 .076 ∗ 0 .154 0 .296 ∗∗ 0 .192 ∗ 0 .009 0 .017 0 .008 0 .155 0 .012 0 .033 0 .061 0 .060 

R 2 0 .114 0 .111 0 .055 0 .005 0 .077 0 .107 0 .071 0 .277 0 .184 0 .286 0 .215 0 .236 0 .398 0 .122 0 .008 

# obs. 943563 943563 943563 943563 943563 943563 943563 943563 943563 943563 943563 943563 943563 943563 943563 

[ ∗ , ∗∗] Significant, respectively, at 5%, and 1%. All tests are two sided. 
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5.1. A VIX shock 

Starting with our estimated VARX model, we shock 

dVIX 

∗+ by +0.01% to examine how the volume shares 

of DarkMid, DarkNMid, and Lit change relative to their 

steady-state levels. 13 This steady-state level is equal to the 

overall average volume share. While the VARX model is 

specified in terms of volume, the calculation of market 

shares is straightforward from the estimated coefficients. 14 

A shock size of +0.01% is approximately equal to a one 

standard deviation of dVIX 

∗+ . The volume shares are de- 

noted by SDarkMid, SDarkNMid , and SLit , respectively. 

The pecking order hypothesis stated in Section 2 predicts 

that, after VIX shocks, the proportional changes of Lit, 

DarkNMid, and DarkMid market shares are positive, mildly 

negative, and most negative, respectively. The model 

developed in Section 8 develops this prediction formally. 

The left-most column in Fig. 3 depicts our findings for 

the overall sample. The ordering of the three venue types 

conforms to the pecking order hypothesis. In the con- 

temporaneous minute of the VIX shock, SDarkMid shows 

the most negative reaction, falling from a steady-state 

level of 2.40–2.29%, a 4.6% reduction. SDarkNMid also falls 

from a steady-state level of 7.52–7.27%, but the fractional 

loss is smaller: 3.3%. By contrast, SLit increases from 

76.2% to 77.0%, a gain of 1.0%. The reduction in market 

shares of DarkMid and DarkNMid remains significant over 

the two/three-minute horizon, but the response of Lit is 

significant only in the minute of the VIX shock. For all 

three venue types, the effects on market shares die out 

completely within five minutes. 15 

To examine which stocks “drive the result” we estimate 

the VARX model separately for large, medium, and small 

stocks, and for each size tercile we repeat the analysis of 

shocking VIX by +0 . 01% . The three right-most columns in 

Fig. 3 depict our findings. We see that for medium and 

small stocks the pecking order hypothesis is generally sup- 

ported: DarkMid and DarkNMid lose market share and Lit 

gains market share, and the magnitudes of market share 

changes relative to the steady state are comparable to or 

larger than their full-sample counterparts. By contrast, 

for large stocks the market shares of the three venues 

do not respond to VIX shocks in a statistically significant 

manner. As we see will shortly, this lack of significance for 

large stocks also applies to macroeconomic data releases 

and earnings announcements. Possible explanations are 

discussed at the end of this section. 
13 We are careful to also shock the VIX level by the amount implied by 

the shock to its innovation. This ensures the resulting IRF is internally 

consistent. 
14 Specifically, we use the estimated VARX coefficients and their covari- 

ance matrix to simulate 10,0 0 0 processes. In each simulation, we calcu- 

late the contemporaneous and subsequent volume changes following a 

VIX shock at the steady state. These volume changes then translate into 

shocked market share series in each simulation. We then compute, and 

plot in Fig. 3 below, the mean and the confidence bounds across the 

10,0 0 0 simulations. 
15 As discussed in Section 2 , the pecking order hypothesis does not 

make unambiguous predictions for a negative VIX shock. In unreported 

results, we find that a negative VIX shock leads to a smaller dark market 

share and a larger lit market share, although the statistical significance is 

borderline and the economic magnitude is smaller. 
The sorting of the three venue types shown in Fig. 3 is 

supported by formal econometric tests of the following 

two null hypotheses: 

Null 1: The proportional changes of SDarkMid and 

SDarkNMid to VIX shocks are the same; 

Null 2: The proportional changes of SDarkNMid and SLit 

to VIX shocks are the same. 

We perform the tests by constructing the 95% confi- 

dence bounds on the differences between the proportional 

changes in market shares. These confidence bounds are 

plotted in Fig. 4 . In the full sample, after a +0.01% shock in

dVIX 

∗, the percentage change of SDarkMid is significantly 

more negative than that of SDarkNMid in the contempora- 

neous minute and in the first two minutes, thus rejecting 

Null 1. The percentage change of SDarkNMid is signifi- 

cantly more negative than that of SLit contemporaneously 

and only marginally significant in the first minute, thus 

rejecting Null 2. For large stocks, Null 1 is rejected also 

for minutes 1–3 (marginally so at minute 2), but Null 2 is 

not. For medium and small stocks, the rejection of Null 1 

is slightly weaker (after the contemporaneous minute), 

while for Null 2 the rejection is very strong. Overall, the 

evidence from VIX shocks supports the pecking order 

hypothesis, except the DarkNMid-Lit step for large stocks. 

5.2. Macroeconomic data releases 

Recall that the effects of macroeconomic data releases 

on dark market shares are captured by the six time dummy 

variables in the VARX. The left-most column in Fig. 5 plots 

the market shares of DarkMid, DarkNMid, and Lit in the 

six time windows, estimated using the full sample. In the 

contemporaneous minute of macroeconomic data releases, 

DarkMid and DarkNMid market shares see distinctive 

drops of 38.5% and 22.7% relative to their steady-state 

levels, whereas the Lit market share increases by 9.1%. 

In all three venues, the 95% bounds show that the first 

minute response is statistically significant for all market 

shares. The response lasts for about two to three minutes 

before becoming indistinguishable from the steady state. 

We repeat the analysis for the three stock size terciles, 

and the results are shown in the three right-most columns 

of Fig. 5 . Just like the VIX result, medium and small stocks 

show strong support for the pecking order hypothesis, 

whereas market share changes are insignificant for large 

stocks. For medium stocks and in the minute after macroe- 

conomic news, DarkMid and DarkNMid market shares are 

at 40% and 66% of their steady-state levels, respectively. 

For small stocks and in the minute after macroeconomic 

news, DarkMid and DarkNMid market shares are 44% and 

58% of their steady-state levels. 

As in the VIX analysis, we also formally test the two 

null hypotheses: after macroeconomic data releases, (i) 

the proportional changes of SDarkMid and SDarkNMid are 

equal, and (ii) the proportional changes of SDarkNMid 

and SLit are equal. The simulated confidence bounds on 

the differences in proportional market share changes are 

plotted in Fig. 6 . The two nulls are rejected in the full 

sample and for medium stocks. Null 2 is also rejected for 

small stocks, albeit only in the first minute after the news 
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Fig. 3. Pecking order following a shock in VIX. This figure plots the impulse response functions of the market shares of DarkMid, DarkNMid, and Lit 

following a +0.01% shock to dVIX ∗ . The data sample includes dark trading volumes and measures of market conditions for 117 stocks in October 2010. 

Definitions of variables are provided in Table 2 . The 95% confidence bounds are constructed by simulation. Panel (a) shows the result for all stocks and 

panels (b) through (d) show the results by stock size category. Minute 0 after the shock corresponds to the contemporaneous minute. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

release. Summarizing, the evidence from macroeconomic

data releases also supports the pecking order hypothesis,

except for large stocks. 

5.3. Earnings announcements 

The third shock we explore is the earnings surprises

of individual firms. Starting with the estimated VARX

model, we shock the earnings surprise by 1% (similar in

size to the EPS surprise standard deviation: 0.89%) and

calculate the new steady-state market shares of DarkMid,

DarkNMid, and Lit. Since 13 intraday effect variables are

included in the VARX model, we are able to identify an

intraday pattern of how the firm-specific urgency proxy

affects market share. 

The left-most column of Fig. 7 plots the results for the

full sample. A 1% higher earnings surprise significantly

reduces SDarkMid by about 20%, on average, throughout

the day. A similar pattern but of smaller magnitude is

seen for SDarkNMid , while SLit shows overall increases.

For both SDarkMid and SDarkNMid , the effects are stronger

in the earlier trading hours. While most intraday effects

are not statistically significant (except for some SDarkMid

estimates), the point estimates echo what we found for

VIX shocks ( Fig. 3 ) and macro data releases ( Fig. 5 ). The
limited statistical significance here is due to low power

of the test as we only have 67 such stock-day observa-

tions (out of 117 × 21). The hypothesis tests similar to

Figs. 4 and 6 do not show any statistical significance and

are therefore not included. 

The right-most columns of Fig. 7 plot the results for the

large, medium, and small stocks, respectively. Consistent

with the patterns around VIX shocks and macroeconomic

data releases, DarkMid shows a significant drop in its

market share after surprise earnings announcements for

medium and small stocks, but not for large stocks. Since

the number of firms that have earnings announcements

is significantly reduced by partitioning the full sample

into size terciles, these results are more telling about how

strong the statistical significance is for medium and small

stocks rather than how weak it is for large stocks. 

5.4. A discussion of large stocks 

A consistent empirical pattern observed in the three

tests above is that the pecking order hypothesis is sup-

ported by medium and small stocks, but venue shares of

large stocks are statistically irresponsive to these exoge-

nous shocks. In this section we propose two candidate

explanations. 
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Fig. 4. Testing the pecking order hypothesis: VIX shock. This figure plots the difference between the percentage market share changes of DarkMid and 

DarkNMid following a +0.01% VIX shock in the left column and the difference between DarkNMid and Lit in the right column. The data sample includes 

dark trading volumes and measures of market conditions for 117 stocks in October 2010. Definitions of variables are provided in Table 2 . In each panel, 

the point estimate of the difference (solid line) and the 95% confidence bounds (shaded area) are shown for all stocks and separately for all stock size 

categories. The confidence bounds are constructed by simulation. Minute 0 after the shock corresponds to the contemporaneous minute. 

16 The betas are calculated from a one-factor Capital Asset Pricing Model 

(CAPM), using the daily stock returns in the one-year period before our 
The first candidate explanation is that because large 

stocks on average have lower betas than medium and 

small stocks, large stocks should respond less to market- 

wide urgency shocks like a higher VIX or macroeconomic 

data releases. Indeed, the average betas of the subsam- 

ples are decreasing in stock sizes: 1.37 for small, 1.12 
for medium, and 1.01 for large stocks. 16 We find further 

evidence in support of this conjecture by repeating the 
sample month (October 2010). Since we only have 117 stocks, the average 

beta of these stocks need not be one. 
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Fig. 5. Pecking order around macroeconomic data releases. This figure plots the venue market shares from one minutes before to four minutes after 

macroeconomic data releases. The data sample includes dark trading volumes and measures of market conditions for 117 stocks in October 2010. Definitions 

of variables are provided in Table 2 . The 95% confidence bounds are constructed by simulation. Panel (a) shows the results for all stocks and panels (b) 

through (d) show them by stock size category. Minute 0 after the shock corresponds to the contemporaneous minute. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

same analysis for the beta-sorted terciles. After an upward

VIX shock, DarkMid loses market share while Lit gains

market shares in all three beta-sorted terciles; both effects

are statistically significant. While the point estimates for

DarkNMid suggest that it also loses market share after

the VIX shock, only in the high-beta tercile is the effect

statistically significant. This set of results is suppressed

to conserve space but is available upon request. Given

this evidence, it appears that the lack of responsiveness

of large stocks to urgency shocks can be partly, but not

entirely, attributed to their low systematic risk (low beta). 

The second candidate explanation is that large stocks

are so liquid and traded so fast that effective delay cost in

dark venues caused by execution risk is very small. Some

formal support for this conjecture is derived in Section 8 ,

which analyzes a simple model to derive the pecking

order hypothesis in equilibrium. The analysis shows that

the pecking order pattern is weaker if the spread is lower

or volume is higher. To examine this conjectured weaker

result for liquid stocks, we sort the 117 stocks by trading

volume (measured in September 2010), and the three

volume terciles are very close to the corresponding size

terciles. As expected, the results for the volume terciles

are the same as those for size terciles: evidence from

medium-volume and low-volume stocks supports the
pecking order hypothesis, but venue shares for high-

volume stocks show no significant response. We repeat

the same exercise using relative-spread-sorted terciles

and absolute-spread-sorted terciles, and the results are

the same: urgency shocks affect the venue shares of the

high- and medium-spread terciles, but not the low-spread

tercile. The volume-sorted and spread-sorted results are

not reported to conserve space but are available upon

request. This evidence suggests that the superior liquidity

of large stocks could be an explanation why their venue

shares are less sensitive to urgency shocks. 

6. A brief discussion of DarkRetail 

So far in the paper we have focused on DarkMid and

DarkNMid. They are the key ingredients of the pecking

order hypothesis and the focus of recent theories of dark

pools. In this section, we briefly discuss how DarkRetail

responds to the same three shocks. DarkRetail is the

largest single category of dark venues, and the behavior of

retail internalization is of key interest to regulators. 

Fig. 8 shows how the DarkRetail market share responds

to a 0.01% VIX shock (row 1), to a macroeconomic data

release (row 2), and to a 1% earnings surprise (row 3). The

four columns correspond to the full sample, large stocks,



520 A.J. Menkveld et al. / Journal of Financial Economics 124 (2017) 503–534 

Fig. 6. Testing the pecking order hypothesis: Macro news releases. This figure plots the difference between the percentage market share changes of DarkMid 

and DarkNMid around macro data releases in the left column and the difference between DarkNMid and Lit in the right column. The data sample includes 

dark trading volumes and measures of market conditions for 117 stocks in October 2010. Definitions of variables are provided in Table 2 . In each column, 

the point estimate of the difference (solid line) and the simulated 95% confidence bounds (shaded area) are shown separately for the full sample and the 

three stock size categories. The horizontal axis labels indicate the minute relative to the announcement time. Minute 0 after the shock corresponds to the 

contemporaneous minute. 
medium stocks, and small stocks, respectively. Three 

features stand out. First, the market share of DarkRetail 

drops after VIX shocks and macroeconomic data releases. 

Second, these results are largely driven by medium and 

small stocks; large stocks are irresponsive. These two 

patterns are very similar to those observed for DarkMid 

and DarkNMid. The third feature of DarkRetail is that 
there is no statistically significant reduction in DarkRe- 

tail market share in any of the size terciles following a 

surprise in earnings announcement, although the point 

estimates suggest that both medium and small stocks see 

sizable market share drops throughout the trading day. 

The statistical insignificance here may be a consequence of 

a small sample of firm-days with earnings announcements. 
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Fig. 7. Pecking order following a shock in earnings surprises. This figure plots the steady-state values of venue market shares for days with no earnings 

announcements (EA) and the corresponding venue market shares, for all 13 half-hour trading intervals, after a 1% EPS surprise. The data sample includes 

dark trading volumes and measures of market conditions for 117 stocks in October 2010. Definitions of variables are provided in Table 2 . The 95% confidence 

bounds (2.5% and 97.5%) are constructed by simulation. Panel (a) shows the results for all stocks and panels (b) through (d) show them by stock size 

category. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical significance aside, it may also suggest that retail

investors tend to trade more after firm-specific news

than after VIX shocks or macroeconomic news, relative to

institutional investors. 

7. Dark market shares and market conditions 

We have shown that DarkMid, DarkNMid, and DarkRe-

tail have reduced market shares after exogenous urgency

shocks. The pecking order hypothesis of DarkMid, Dark-

NMid, and Lit is supported in the data. These results are

primarily driven by medium and small stocks. 

In this section we turn to the relation between dark

venue shares and endogenous market conditions, such

as spread, depth, volume, and volatility. We study how

shocks to market conditions predict dark pool market

shares in subsequent minutes. Because market conditions

and dark pool activities are endogenous , we will not draw

any causal conclusions. That said, documenting the dy-

namic relation is still a valid and interesting exercise. As

before, we focus on DarkMid, DarkNMid, and DarkRetail.

All impulse-response functions are calculated by starting

the VARX at the steady state and shocking one variable at
a time. This analysis is run for the full sample of stocks

and for three size terciles separately. 

Fig. 9 shows market shares of DarkMid, DarkNMid, and

DarkRetail respond to an upward shock in relative spread

on Nasdaq, displayed depth at the best quote on Nasdaq,

total TAQ volume, and realized return variance. The shock

sizes are set to the mean level of the respective variables.

Since these variables are in their logarithms in the VARX

model, the shock size is ln 2. Such shock sizes are not

particularly large given the standard deviations of these

variables (see Table 3 ). Each panel corresponds to a shock

in one of the market conditions variables. In each panel,

the three rows correspond to the three dark venue types,

and the four columns correspond to the four possible

sample selections. 

An inspection of the 48 (12 × 4) subplots reveals the

following patterns. First, there is heterogeneity across

stock size regarding how dark market shares respond to

shocks in market conditions. Second, within the three dark

venues, the responses of DarkMid and DarkNMid seem

mostly consistent with each other but from time to time

differ from that of DarkRetail. We discuss these observa-

tions in detail below and provide tentative explanations

that are motivated from the existing literature. 
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Fig. 8. Impulse response of DarkRetail venue share. This figure depicts the impulse response function for DarkRetail market share following shocks to 

the three exogenous variables: a 0.01% VIX shock, a macro data release, and a 1% earnings announcement surprise (corresponding to rows 1, 2, and 3, 

respectively). The data sample includes dark trading volumes and measures of market conditions for 117 stocks in October 2010. Definitions of variables 

are provided in Table 2 . The four columns correspond to the full sample, large, medium, and small stocks, respectively. Minute 0 after the shock corresponds 

to the contemporaneous minute. 

17 The informed strategies are a little involved. Zhu (2014) shows that 

if adverse selection is severe, a smaller fraction of informed investors use 

the dark pool because their one-sided orders imply a low execution prob- 

ability. 
Observation 1: Heterogeneity across large, medium, 

and small stocks. 

• For medium and small stocks, DarkMid and DarkNMid 

generally gain market share following low liquidity 

conditions, such as a high Lit spread, low Lit depth, low 

total volume, and high return variance. The only excep- 

tions are medium stocks in DarkNMid after shocks in 

TAQVolume and RealVar . 

• For large stocks, DarkMid and DarkNMid generally gain 

market share following high liquidity conditions, such 

as low Lit spread, high Lit volume, high total volume, 

and low return variance. 

Clearly, large stocks behave very differently from 

medium and small stocks. We have seen heterogeneity 

across the size terciles in their response to exogenous 

shocks in Section 5 . To explain this heterogeneity in 

economic terms, we highlight one feature from recent 

dark pool theories which is the degree to which in- 

vestors seeking liquidity post limit orders in lit venues. 

In the models of Hendershott and Mendelson (20 0 0) , 

Degryse, Van Achter, and Wuyts (2009) , and Zhu (2014) , 

the lit venue is operated by market makers who provide 

quotes, and investors either send market orders or use 
the (midpoint) dark pool. In these models, a wider spread 

encourages (uninformed) investors to use the dark pool 

more frequently. 17 The evidence from medium and small 

stocks supports these models. By contrast, investors in the 

model of Buti, Rindi, and Werner (2015) can post limit 

orders in the lit venue, in addition to sending market 

orders and using the dark pool. This implies that when the 

order book has a wide spread or a low depth, incoming 

investors prefer posting limit orders to earn the spread, 

which lowers dark pool usage. The evidence from large 

stocks supports their model. 

Viewed this way, the heterogeneity across size terciles 

has an intuitive interpretation. For investors who are not 

financial intermediaries, posting limit orders is a more 

attractive execution strategy for large stocks because they 

trade highly frequently, so the model of Buti, Rindi, and 

Werner (2015) is more applicable. But using limit orders 

for relatively inactive medium and small stocks may 
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Fig. 9. Response of venue shares to market condition shocks. This figure shows the impulse response functions of three venue shares, DarkMid, DarkNMid, 

and DarkRetail, to four types of shocks: RelSpread in panel (a), TopDispDepth in panel (b), TAQVolume in panel (c), and RealVar in panel (d). The data sample 

includes dark trading volumes and measures of market conditions for 117 stocks in October 2010. Definitions of variables are provided in Table 2 . In each 

panel, twelve figures are shown in a three by four matrix, where each column indicates a different sam ple and each row indicates the three venues: 

DarkMid, DarkNMid, and DarkRetail. The shock sizes are set to the sample mean of these variables (see Table 3 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

involve a long waiting time, so the investors are better

off as “liquidity takers.” For those stocks the models of

Hendershott and Mendelson (20 0 0) , Degryse, Van Achter,

and Wuyts (2009) , and Zhu (2014) are more applicable.

This interpretation parsimoniously rationalizes the first

two rows of each panel of Fig. 9 . 

As a side point, our time-series results on dark pool

market shares should be distinguished from the cross-

section evidence in the prior literature, such as Buti, Rindi,

and Werner (2011) and Ready (2014) . Using voluntarily

reported data in 11 U.S. dark pools, Buti, Rindi, and Werner

(2011) find that dark pool market shares are higher for

stocks with lower spreads, higher depths, higher trading

volume, and lower volatilities. Ready (2014) finds that

Liquidnet and POSIT are used more for stocks with less

adverse selection (a component of stock volatility driven

by order flows) and lower percentage spread. Together,

the cross-section evidence suggests that dark pools tend

to have higher market shares for liquid stocks. Therefore,

the liquidity-dark pool market share relation in the cross-

section and in the time series agree on large stocks but

disagree on medium and small stocks. 

 

Observation 2: DarkRetail. 

• DarkRetail gains market share following low liquidity

conditions, such as high Lit spread, low Lit depth,

and high return variance. The exception is that retail

activity also goes up following high volume and high

depth in large stocks. 

The DarkRetail results in Fig. 9 are intuitive. DarkRetail

reactions to spread, depth, and variance are similar to

dark pool reactions to the same variables. For example,

a high spread is followed by a higher DarkRetail market

share. Intuitively, since retail orders are uninformed on

average and dealers handling these orders only give retail

investors a small price improvement, a wider spread in-

creases the profit of absorbing retail order flows. A similar

interpretation holds for the DarkRetail reaction to shal-

lower depth. Interestingly, retail investors seem to become

more active following high individual stock volatility for

medium and small stocks or high trading volume or depth

for large stocks. These patterns are consistent with Barber

and Odean ’s (2008) finding that individual investors are

particularly active in attention-grabbing stocks, such as
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stocks in the news, stocks experiencing high abnormal 

trading volume, and stocks with extreme one-day returns. 

8. Pecking order as an equilibrium outcome 

This section shows that the pecking order hypoth- 

esis obtains in equilibrium in a simple stylized model. 

Section 8.1 introduces the model and develops the result. 

Section 8.2 analyzes the benchmark case in which all 

venues are consolidated into a single one. Section 8.3 then 

compares the fragmented market structure and the con- 

solidated one in terms of investor transaction cost and 

discusses the difference. 

8.1. A simple stylized model of fragmented market trading 

This section proposes a simple model that characterizes 

investors’ choices among three venue types: DarkMid, 

DarkNMid, and Lit. Relative to existing theories of dark 

pools, our simple model distinguishes different types of 

dark venues. The model and its analysis formalize the 

intuition that led to the pecking order hypothesis. 

8.1.1. Model setup 

Asset. There is one traded asset. Its fundamental (com- 

mon) value is normalized to zero. All players in this model 
have symmetric information about the asset and value it 

at zero. To formalize a pecking order hypothesis based 

on the urgency of trades, a symmetric-information setting 

suffices. 

Investors and timing. There are potentially two in- 

vestors, a buyer who has an inventory shock −Q < 0 units 

of the asset, and a seller who has an inventory shock 

Q > 0 units. While the liquidity-driven trading demand Q 

is common knowledge, the presence of the buyer or seller 

is uncertain. Specifically, a buyer is present with proba- 

bility φ ∈ (0, 1), and likewise for the seller. The presence 

of the buyer is independent of the presence of the seller. 

Thus, conditional on the presence of one, the probability 

of the presence of the other is also φ. 

There is one trading round. Before trading, Nature 

determines whether the buyer is present and whether the 

seller is present. If present, an investor then chooses the 

optimal trading strategies in the three venues explained 

below. Venues execute trades simultaneously according to 

their specific trading protocols explained below. 

If an investor (buyer or seller) is left with a nonzero 

inventory q after the trading round, he incurs a quadratic 

cost of ( γ /2) q 2 , with γ > 0. Here, γ could be an inventory

cost, a proxy for risk aversion, or the cost of a missed 

opportunity to trade on a short-lived private signal. The 

parameter γ is the key parameter of the model. We 
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interpret it broadly as investors’ urgency to trade: The

higher is γ , the larger is the cost of holding a nonzero net

position, and hence investors are more eager to trade. 18 

Venues and trading protocols. There are three trading

venues: Lit, DarkMid, and DarkNMid. 

• Lit is populated by infinitely many competitive and

infinitesimal liquidity providers who have the same

marginal cost β ( > 0) for taking on one unit of the as-

set per capita, either long or short. The cost can be an

operation cost or a margin cost. Together, these liquid-

ity providers supply infinite depth at prices β and −β .

This construct is similar to the “trading crowd” assump-

tion in, for example, Seppi (1997) and Parlour (1998) . 

If present, the buyer’s (seller’s) strategy in Lit is repre-

sented by the size of the market buy order x + 
L 

(size of

the market sell order x −
L 

). 

• DarkMid crosses buy and sell orders at the midpoint

price, i.e., at zero. If unbalanced, only the matched part

of the order flow gets executed. For example, if there

are buy orders for 100 units in total and sell orders for

40 units then only 40 units are matched and executed. 
18 For example, the interpretation of risk aversion is consistent with 

Campbell, Grossman, and Wang (1993) , who argue that the market’s ag- 

gregate risk aversion—which is correlated with VIX, for example—reflects 

the change of (a subset of) individual investors’ risk aversion. 
If present, the buyer’s (seller’s) strategy in DarkMid is

represented by the size of the buy order x + 
M 

(size of

the sell order x −
M 

). 

• DarkNMid is run by a single competitive liquidity

provider who starts with inventory zero, but incurs

an inventory cost of −ηy 2 / 2 for taking a net (long or

short) position of y , where η > 0. The liquidity provider

quotes price p b and quantity q b for the buyer, and price

p s and quantity q s for the seller. 19 

If present, the buyer’s (seller’s) strategy in DarkNMid is

represented by the size of his buy order x + 
N 

at price p b
(size of his sell order x −

N 
at price p s ). 

A brief remark on model assumptions. This stylized

model omits asymmetric information of the asset value.

This restrictive assumption is made for tractability. Zhu

(2014) models the coexistence of a midpoint dark pool

and an exchange, allowing information asymmetry. He

finds that as long as informed traders use the dark pool,

the dark pool market share tends to decrease in the value

of proprietary information. Solving a model that combines

asymmetric information with the three types of venues is

challenging and beyond the empirical focus of this paper. 
19 Our main results on the pecking order hypothesis are robust to var- 

ious ways of modeling DarkNMid. For instance, the DarkNMid provider 

can also post two price schedules. 
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8.1.2. Equilibrium 

Without loss of generality, we fix the seller’s strategy 

x −
i 

and consider the buyer’s choice of x + 
i 

when the buyer is 

present. Note that from the buyer’s perspective, the seller’s 

order sizes x −
i 

are Bernoulli random variables: The seller is 

present only with probability φ. Let V + 
M 

:= min { x + 
M 

, x −
M 

} be 

the trading volume in DarkMid. Then, the buyer’s expected 

profit is 

π+ = 

Price to pay 

in DarkMid ︷ ︸︸ ︷ 
−E 

[
0 ·V 

+ 
M 

]
Price to pay 

in DarkNMid ︷ ︸︸ ︷ 
−p + N x 

+ 
N 

Price to pay 

in Lit ︷ ︸︸ ︷ 
−β ·x + L (5) 

pt 

+ E 

[
0 ·

(
Q − V + M 

− x + N − x + L 

)]
︸ ︷︷ ︸ 

Liquidation value of remaining position 

−γ

2 
E 

(
Q − V + M 

− x + N − x + L 

)2 

︸ ︷︷ ︸ 
Quadratic cost for failing to trade 

, (6) 

which can be simplified to 

π+ = −γ

2 
E 

(
Q − V + M 

− x + N − x + L 

)2 − p + N x 
+ 
N − βx + L . (7) 

The buyer thus chooses three parameters, x + 
M 

, x + 
N 
, and x + 

L 
, 

to maximize his expected profit (7) . 

We will focus on a symmetric-strategy equilibrium, i.e., 

the buyer or the seller, if present, chooses the same order 

sizes (but different signs): x + 
i 

= x −
i 

for all venues i ∈ { M, N, 
L }. And the DarkNMid provider chooses prices p b = p N > 0 

and p s = −p N , and quantities q b = q s . In the equilibrium

we characterize, the DarkNMid provider’s offered quanti- 

ties are greater than or equal to the investors’ DarkNMid 

order size, i.e., q b = q s ≥ x N . 

Because we look for a symmetric equilibrium, from this 

point on we suppress the superscript “+” or “−” unless we 

need to explicitly distinguish a buyer from a seller. 

Proposition 1 (Equilibrium order flows). If 

Q < � := 

β

1 − φ

(
1 

γ
+ 

1 

γ + η

)
(8) 

then there exists an equilibrium with the following strate- 

gies: 

x M 

= 

γ + η

2 γ + η
Q , x N = 

γ

2 γ + η
Q , x L = 0 , 

p N = (1 − φ) γ Q 

γ + η

2 γ + η
, (9) 

and q b and q s are arbitrary quantities not smaller than x N . 

If Q ≥ �, then there exists an equilibrium with the 

following strategies: 
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x M 

= 

β

(1 − φ) γ
, x N = 

β

(1 − φ)(γ + η) 
, 

x L = Q − x M 

− x N , p N = β, (10)

and q b and q s are arbitrary quantitites not smaller than x N . 

(All proofs are collated in Appendix D .) 

Let us now briefly discuss the intuition of the equi-

librium. If an investor is present, for example, a buyer,

he faces various tradeoffs when minimizing his expected

trading cost for the liquidity shock Q . The following

heuristic argument illustrates how he balances various

costs across the venues. 

The buyer’s expected marginal cost of sending in an

order to DarkMid is (1 − φ) γ x M 

: With probability φ, his

order can be matched with the seller; and with proba-

bility (1 − φ) , there is no match and he suffers inventory

cost from the remaining inventory. The marginal cost of

sending in an order to DarkNMid is p N . In equilibrium,

we should have (1 − φ) γ x M 

= p N . The marginal cost of

sending in an order to Lit is β . 

For relatively small Q , we show in the proof that

(1 − φ) γ x M 

= p N < β, which implies that the buyer will

not use Lit and, therefore, x N = Q − x M 

. Given this demand,

the DarkNMid provider solves the optimal p N and q N
to maximize profit. This case corresponds to Q < � in

Proposition 1 . 

When Q is large enough, we have a corner solution

of (1 − φ) γ x M 

= p N = β . The buyer then finds the opti-

mal x N at p N = β, knowing that he could trade the rest of

his position Q − x M 

− x N at the same price β in Lit. 

Note that in both cases, the order sizes sent to the

three venues add up to Q , and there is no reason to send

more than Q . 20 

Finally, we note that the equilibrium of Proposition 1 is

not unique. For example, there exists another, less interest-

ing equilibrium in which neither the buyer nor the seller

uses DarkMid, which has the counterfactual implication

that DarkMid has zero market share. 

8.1.3. Urgency elasticity of venue market shares 

To establish the pecking order hypothesis, we are

interested in how the market share of each of the three

venues responds to a change in investor urgency. We first

compute the expected market shares in equilibrium and

then rank the venues according to their market share

elasticities with respect to the urgency parameter, γ . 

The focus on market shares as opposed to raw volume

is consistent with existing empirical studies of dark pools
20 This is because an excess order sent to DarkMid is unfilled for sure, 

and an excess order sent to DarkMid and DarkNMid incurs positive costs. 

Although an investor either executes the entire desired quantity Q or 

strictly less, he does balances the risk of trading “too much” and trad- 

ing “too little.” Conditional on both investors being present, both appar- 

ently send “too little” to DarkMid—“too little” because, ex post, they could 

send their entire position Q to DarkMid and execute it at zero cost. There- 

fore, even though they have executed the exact quantity Q , they have 

done so at a cost that is too high ex post. Conversely, conditional on only 

one investor being present, say the buyer, the buyer sends “too much”

to DarkMid—“too much” because his DarkMid order is not executed at 

all. Put differently, if it turns out both investors are present, then they 

wish they had sent more to DarkMid; if it turns out only one investor is 

present, then the present investor wishes he had sent less to DarkMid. 

 

 

 

 

 

 

 

 

and fragmentation (see, for example, O’Hara and Ye, 2011;

Buti, Rindi, and Werner, 2011 ; and Ready, 2014 ) as well as

the empirical tests conducted in Section 5 . 

A positive γ shock is naturally thought of as the

model equivalent of VIX shocks, macroeconomic news,

or surprise earnings in the empirical sections. It raises

investors’ opportunity cost of not trading. One could argue

that the elevated volatility following those shocks also

raises inventory cost for intermediaries in DarkNMid and

Lit, and therefore their opportunity cost of not trading is

raised as well. The additional volume that follows these

shocks, however, leads us to believe that at least part

of the shock is attributable to a disproportionately large

shock to investors as compared to intermediaries. 

In calculating volume and market shares, we will focus

on the Q ≥ � case of Proposition 1 , since in the data Lit

venue has positive market share. 

The expected volume in the three venues and the total

volume are given by 

v̄ M 

= φ2 (2 x M 

) + (1 − φ) 2 (2 × 0) + 2 φ(1 − φ)(2 × 0) 

= 

2 φ2 β

(1 − φ) γ
, (11)

v̄ N = φ2 (2 x N ) + (1 − φ) 2 (2 × 0) + 2 φ(1 − φ)(x N + 0) 

= 

2 φβ

(1 − φ)(γ + η) 
, (12)

v̄ L = φ2 (2 x L ) + 2 φ(1 − φ) x L 

= 2 φ

(
Q − β

(1 − φ) γ
− β

(1 − φ)(γ + η) 

)
, (13)

v̄ = v̄ M 

+ ̄v N + ̄v L = 2 φQ − 2 φβ

γ
. (14)

Note that in the above calculation we double-count volume

in DarkMid. In practice, operators of DarkMid typically

act as buyer to the seller and seller to the buyer, so one

match shows up as two trades. Our pecking order results

are not affected if DarkMid volume is single-counted. 

The volume shares of different venues are defined as, 

s i := 

v̄ i 
v̄ 

, for i ∈ { M, N, L } . (15)

Signing partial derivatives of volume shares with respect

to γ yields the model’s main proposition. It formalizes

this paper’s pecking order hypothesis, depicted in Panel

(b) of Fig. 2 . 

Proposition 2 (Venue share and urgency). As investor ur-

gency increases, lit volume share increases and dark volume

share decreases. Furthermore, DarkMid is more sensitive to

urgency than DarkNMid: 

∂s M 

/s M 

∂γ /γ
< 

∂s N /s N 
∂γ /γ

< 0 < 

∂s L /s L 
∂γ /γ

. (16)

This pecking order hypothesis is empirically supported

by evidence shown in Section 5 . 

To understand what market conditions might affect

the elasticities of venue market shares to urgency, we

evaluate second-order partial derivatives of the venue
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shares s i with respect to β and Q . This exercise generates 

predictions on how strongly the pecking order hypothesis 

would show up in the cross-section of stocks. The result is 

stated in the following proposition. 

Proposition 3 (Cross-section of venue share elasticities). As 

the half-spread β in the lit exchange widens or as the trading 

interest Q decreases, the two dark venues’ share elasticities 

(with respect to urgency γ ) become more negative, while the 

lit elasticity becomes more positive. Mathematically, 

∂ 

∂β

(
∂ s M 

∂γ

γ

s M 

)
< 0 , 

∂ 

∂β

(
∂ s N 
∂γ

γ

s N 

)
< 0 , 

and 
∂ 

∂β

(
∂ s L 
∂γ

γ

s L 

)
> 0 ; (17) 

∂ 

∂Q 

(
∂ s M 

∂γ

γ

s M 

)
> 0 , 

∂ 

∂Q 

(
∂ s N 
∂γ

γ

s N 

)
> 0 , 

and 
∂ 

∂Q 

(
∂ s L 
∂γ

γ

s L 

)
< 0 . (18) 

Proposition 3 implies that the pecking order hypothesis 

should find stronger support in the data if spread is wider 

or if trading volume is smaller, which are characteristics of 

relatively illiquid stocks. This result can partly explain the 

lack of statistical significance for large stocks, as shown in 

Section 5 . 

8.2. A consolidated market benchmark 

We have solved a model with a three-way volume 

fragmentation among Lit, DarkMid, and DarkNMid. The 

pecking order hypothesis follows from the model natu- 

rally. In this subsection we consider an alternative market 

structure with a single consolidated venue. 

There is more than one way to model a consolidated 

market. Perhaps a trivial way is to consolidate Dark- 

Mid, DarkNMid, and Lit into a single order book, in the 

following manner: 

• Lit providers post unlimited depth at ±β; 

• The DarkNMid provider posts limit sell order at p N 
and limit buy order at −p N , as well as the associated 

quantities; 

• The order book allows midpoint orders that can only 

be executed at the midpoint price, 0; 

• The buyer chooses the size x M 

of midpoint order, the 

size x N of order that executes against the DarkNMid 

provider’s limit orders, and the size x L of market order 

to be executed at β . 

Clearly, this consolidated market is equivalent to the 

fragmented market in the previous subsection. 

A more interesting way to set up a consolidated market 

is to enforce a single trading mechanism. In particular, 

it would be interesting to let investors submit limit or- 

ders and make markets for each other. Toward this end, 

for the remainder of this subsection we will consider a 

consolidated market that allows investors to post demand 

schedules, equivalent to a set of limit orders. This mech- 

anism is similar to an open auction or a close auction on 

stock exchanges. 
The asset and market participants are the same as 

in Section 8.1 . The investors and the DarkNMid provider 

trade in a single Walrasian auction. If an investor is 

present, the investor submits a demand schedule x ( p ). The 

demand schedule says that at the price p , the investor 

is willing to buy x ( p ) units. A negative x ( p ) is a sale. If

an investor is not present, he of course cannot submit 

this demand schedule. The DarkNMid provider is always 

present and submits a demand schedule y ( p ). At price ±β , 

Lit liquidity providers are willing to accommodate any 

supply/demand imbalance, so the equilibrium price never 

goes outside of [ −β, β] . Once the market-clearing price 

p ∗ is determined, the investors, the DarkNMid provider, 

and those Lit providers who execute some orders trade at 

the same price p ∗. We refer to this consolidated market 

structure as “Lit++” (the double plus indicates the addition 

of both DarkMid and DarkNMid to Lit). 

We assume that both investors and the DarkNMid 

provider take prices as given and maximize profit. Price- 

taking is a standard assumption in many models, such as 

rational expectations equilibrium (REE) models following 

Grossman and Stiglitz (1980) . 

We first solve the DarkNMid provider’s competitive 

price schedule. His problem is 

max 
y 

−py − η

2 

y 2 , (19) 

whose solution is 

y (p) = − p 

η
, p ∈ [ −β, β] . (20) 

If the buyer is present, the buyer’s problem is 

max 
x 

−px − γ

2 

(Q − x ) 2 , (21) 

which implies 

x B (p) = Q − p 

γ
, p ∈ [ −β, β] . (22) 

By the same argument, the seller’s demand schedule is 

x S (p) = −Q − p/γ , p ∈ [ −β, β] . 

If both investors are present, the market-clearing con- 

dition is x B (p) + x S (p) + y (p) = 0 , which implies that the

equilibrium price is zero and both investors execute the 

full quantity Q . 

If only one investor is present, the equilibrium price 

can be either interior (within the range (−β, β) ) or corner 

(equal to β or −β), depending on Q . Without loss of 

generality, suppose that only the buyer is present. An 

interior p solves 0 = x B (p) + y (p) , or 

p = 

Q 

1 /γ + 1 /η
. (23) 

The condition of an interior price ( −β) < p < β gives 

Q < β

(
1 

γ
+ 

1 

η

)
. (24) 

Conversely, a corner price of p = β applies if 

Q ≥ β

(
1 

γ
+ 

1 

η

)
. (25) 

At such a corner, x B = Q − β/γ , the β/ η of which is 

bought by the DarkNMid provider and the rest by the 
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Lit providers. This completes the characterization of the

equilibrium. 

8.3. Comparing Lit++ to three-way fragmentation 

In this subsection, we compare allocative efficiency of

the two market structures. Since in reality all three venues

have positive market shares, we will focus on sufficiently

large Q so that the Lit providers execute some orders in

both market structures. That is, we are working under the

parameter assumption 

Q ≥ β

1 − φ

(
1 

γ
+ 

1 

γ + η

)
and Q ≥

(
1 

γ
+ 

1 

η

)
β. (26)

To measure allocative inefficiency, we need to compute

the first-best allocation, which is achieved if every unit

of the asset is distributed to whoever has the lowest

marginal cost for holding it. There are two cases. When

both investors are present, clearly, the first-best allocation

is to let the buyer and the seller exchange their inven-

tory entirely so that all three types of agents hold zero

inventory. The aggregate inventory cost in this case is

zero. When only one investor is present, for example, the

buyer, the first-best allocation under a large Q satisfying

Eq. (26) is such that the marginal inventory costs of the

buyer and the DarkNMid provider are equal to β . Thus,

the buyer will hold β/ γ units of the asset; the DarkNMid

provider will hold β/ η units; and the Lit providers hold

the rest. The aggregate inventory cost in this case is 

γ

2 

(β/γ ) 2 + 

η

2 

(β/η) 2 + (Q − β/γ − β/η) β

= βQ − β2 

2 

(
1 

γ
+ 

1 

η

)
. (27)

Summing up the two cases, under Eq. (26) , the expected

aggregate inventory cost under the first-best allocation is 

k 0 = φ2 · 0 + 2(1 − φ) φ ·
[
βQ − β2 

2 

(
1 

γ
+ 

1 

η

)]

= 2(1 − φ) φ ·
[
βQ − β2 

2 

(
1 

γ
+ 

1 

η

)]
. (28)

In fact, we observe that the first-best allocation is

achieved under the consolidated market structure. This is

not surprising because the investors and the DarkNMid

provider are price takers in the consolidated market; they

adjust their holdings such that the market-clearing price

is equal to the marginal inventory cost, guaranteeing full

efficiency. 

Under fragmentation, the total expected cost incurred

by all the agents is 

k MNL = φ2 2 x L β + 2(1 − φ) φ
(

x L β + 

η

2 

x 2 N + 

γ

2 

x 2 M 

)

= 2 φβQ − φ

1 − φ
β2 

(
1 

γ
+ 

2 γ + η

(γ + η) 2 

)
. (29)

The allocative inefficiency of the fragmented market

structure is then 
k MNL − k 0 = 2 φ2 βQ − φ

1 − φ
β2 

(
1 

γ
+ 

2 γ + η

(γ + η) 2 

)

+(1 − φ) φβ2 

(
1 

γ
+ 

1 

η

)
, (30)

which we can verify is positive under Eq. (26) . 

There is a simple intuition why allocations are less

efficient under fragmentation. Since Lit providers have the

highest inventory holding cost, it is desirable to use them

only when necessary. The consolidated market has exactly

this feature: Lit providers execute orders if and only if one

investor is present, but not both. In contrast, under frag-

mentation, because an investor sends Lit orders without

knowing if the other side is present, the Lit providers are

used more often than necessary. Thus, the more efficient

use of Lit providers favors consolidation for a sufficiently

large Q . Likewise, the consolidated market structure uses

the DarkNMid provider more efficiently (i.e., he executes

orders if and only if one investor is present but not

the other). This result captures the folk intuition that

concentrating liquidity to a single venue enhances welfare.

We emphasize that the consolidated market achieves

the first-best because the investors and the DarkNMid

providers take price as given, i.e., they do not strategically

take into account their impact on the price. Dropping this

price-taking assumption is likely to complicate the analysis

substantially and lead to ambiguous welfare ranking. For

example, Duffie and Zhu (2016) model the effect of adding

a single “size discovery” mechanism, which matches buy

and sell orders at a fixed price, to a sequential double

auction market with strategic investors. Because strategic

investors mitigate their own price impact by trading less

aggressively than competitive investors, their consolidated

market (sequential double auctions) does not achieve the

first-best. However, adding a size discovery mechanism,

which freezes the price, improves allocative efficiency

because investors trade more aggressively without concern

of price impact. If we were to repeat their analysis in our

context, we would expect the same benefit of fragmenta-

tion due to DarkMid, hence an ambiguous welfare ranking

between consolidation and fragmentation. 

9. Conclusion 

We propose and test a pecking order hypothesis for

the dynamic fragmentation of U.S. equity markets. The

hypothesis posits that investors disperse their orders

across various venue types according to a pecking order.

The position of venue types on the pecking order depends

on the tradeoff between trading cost (price impact) and

immediacy (execution certainty). On top of the pecking

order are the low-cost, low-immediacy venues such as

midpoint dark pools (DarkMid), whereas at the bottom are

high-cost, high-immediacy venues such as lit exchanges

(Lit); in the middle of the pecking order are non-midpoint

dark pools (DarkNMid). A positive shock to investors’

urgency to trade tilts their order flow from the top of the

pecking order to the bottom; therefore, the elasticities of

venue market shares to urgency shocks are progressively

less negative and more positive further down the pecking
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order. We micro-found the pecking order hypothesis with 

a stylized model of strategic venue choice among DarkMid, 

DarkNMid, and Lit. 

We test the pecking order hypothesis using a unique 

U.S. equity data set that, for each trade, identifies in what 

type of venue it transpired. The data set distinguishes five 

venue types: two types of dark pools, namely, DarkMid 

and DarkNMid, and three types of broker-dealer inter- 

nalization, namely, retail trades, average-price trades, and 

other trades. We use three exogenous variables as proxies 

for investors’ urgency to trade: VIX, macroeconomic data 

releases, and earnings announcements. These three vari- 

ables are used in a panel VARX model that characterizes 

the dynamic interrelation between dark trading volumes 

and (endogenous) measures of market conditions such as 

spread, depth, and volatility. 

As predicted by the pecking order hypothesis, a positive 

shock to VIX substantially reduces the market share of 

DarkMid, moderately reduces the market share of DarkN- 

Mid, but increases the market share of Lit. Macroeconomic 

data releases show a similar but stronger pattern. After 

surprise earnings announcements, the share of midpoint 

pools also declines significantly. After disaggregating 

across by size, we find strong support for the pecking 

order hypothesis for small and medium stocks, but no 

significant pattern for large stocks. This weak result for 

large stocks is predicted by our stylized model. 

Appendix A. Snippet of disaggregated dark transaction 

data 

The following table provides a snippet of the raw trans- 

action data of Alcoa, disaggregated to five types of dark 

venues. The bolded field has the five categories explained 

in the text: DarkMid (MP), DarkNMid (DP), DarkRetail (RT), 

DarkPrintB (PB), and DarkOther (OT). 

date time symbol type contra buy

1-Oct-10 9301833 AA DP BD 

1-Oct-10 9301834 AA DP BD 

1-Oct-10 9301941 AA OT BD 

1-Oct-10 9301989 AA DP BD 

1-Oct-10 9302005 AA MP BD 

1-Oct-10 9302148 AA RT BD 

1-Oct-10 9302204 AA RT BD 

1-Oct-10 9302224 AA RT BD 

1-Oct-10 9302249 AA DP BD 

1-Oct-10 9302343 AA DP BD 

1-Oct-10 9302540 AA DP BD 

1-Oct-10 9302546 AA RT BD 

… … … … …

1-Oct-10 10100150 AA PB 

Appendix B. Details on the implementation of the 

panel VARX model 

In this appendix we discuss the details of the panel 

VARX model. The estimation is implemented via ordinary 

least squares (OLS) by stacking the observations associated 

with different stocks into a single vector. The stock fixed 

effect is accounted for by adding dummy variables to the 

set of regressors. Lags of the variables are only constructed 
price shares cond1 cond2 cond3 cond4 

2.2875 100 @ 

2.2875 100 @ 

12.28 100 @ 

12.285 200 @ 

12.285 100 @ 

12.29 90 0 0 @ 

2.2701 300 @ 

12.27 100 @ 

12.28 100 @ 

12.28 100 @ 

2.2805 100 @ 

12.29 160 @ 

… … … … … …

12.285 179379 @ 4 B 

intraday. Time-of-day dummies (13 in total, one for each 

half-hour trading interval) are also included for each stock. 

The optimal number of lags p is chosen according to 

Bayesian Information Criterion (BIC). Specifically, for each 

of the 117 stocks, the VARX model is estimated for all p 

∈ {1, 2, …, 10}. Then the best (according to BIC) lag is 

chosen for stock j . That is, we confine the search of the 

optimal lags within ten lags for the endogenous variables. 

The above procedure generates 117 optimal lags of { p j } 117 
j=1 

. 

There are 16 p j that are found to be one, 93 to be two,

and the other eight to be three. We hence choose p = 2 

for parsimony. 

The standard errors for panel data estimators should 

account for potential correlation through time and across 

stocks. One standard way to account for these issues is to 

do “double-clustering” ( Petersen, 2009 ). The laborious (but 

most flexible) way of implementing such clustering is by 

calculating 

cov ( ̂  βi , 
ˆ β j ) = 

(
X 

′ X 

)−1 
V 

(
X 

′ X 

)−1 
with v ij 

= 

∑ 

kt,ls 

x ikt ̂  ε ikt ̂  ε jls x jls × 1 A (ktls ) , (31) 

where i, j ∈ { 1 , . . . , N} where N is the number of regres-

sors, k, l ∈ { 1 , . . . , J} where J is the number of stocks, and

s, t ∈ { 1 , . . . , T } where T is the number of time periods.

1 A ( ktls ) is the indicator function where the subset A of 

the index value space identifies which auto- or cross- 

correlations a researcher worries about. If error terms are 

independent and identically distributed (i.i.d.), then the 

indicator function equals one if k = l and t = s . The subset

A for an indicator function in a standard double-clustering 

is such that: 

1 A (ktls ) = 

{
1 if k = l or s = t, 
0 otherwise. 

(32) 

A researcher can easily be more conservative and also ac- 

count for nonzero cross-autocorrelations by also including 

changing the s = t condition by, say, | s − t| ≤ 5 . 

The cumulative impulse response function is most 

easily calculated by stacking the estimated � matrices, 

as any VAR can always be written as a first-order VAR. 
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Consider, for example, a VAR with two lags. This VAR can

be written as [
y t 

y t−1 

]
= 

[
�1 �2 

I 0 

]t [
y t−1 

y t−2 

]
+ 

[
ε t 
0 

]
. (33)

The t -period cumulative impulse response of the j th vari-

able to a unit impulse in the i th variable is the j th element

of the vector [
�1 �2 

I 0 

]t 

e k , (34)

where I is the identity matrix and e k is the unit vector

where the k th element is one and all other elements

are zeros. When an exogenous variable is shocked, one

can simply scale the shock size by the contemporaneous

responses of endogenous variables to the exogenous shock

by resorting to the estimates � . 

Confidence intervals on the impulse response function

(IRF) are obtained through simulation. The IRF is a non-

linear transformations of the VARX coefficient estimates

denoted by ˆ θ . Each simulation involves a draw from the

multivariate normal distribution N ( ̂  θ, � ˆ θ
) , where � ˆ θ

is

the estimated double-clustered covariance matrix of the

coefficients. Note that this distribution is asymptotically

true given the assumption that the VARX model is cor-

rectly specified with normal residual terms. We perform

10,0 0 0 independent draws of the coefficients ˆ θ and for

each draw compute the IRFs at all lags. Thus, we obtain,

for each IRF, an i.i.d. sample of size 10,0 0 0. The confidence

bounds are then chosen at the 2.5 and the 97.5 (or 0.5

and 99.5) percentiles of the simulated IRFs. The signifi-

cance levels shown in Table 4 are based on whether the

estimates exceed the confidence bounds found above. 

Appendix C. Transformation between logarithms and 

levels of market share variables 

In the VARX model implementation, the variables are

log-transformed (except EpsSurprise ). Log-transformation

has several advantages. For example, the strictly positive

variables (e.g., volume, spread, depth, etc.) are converted

to a possibly negative support; the concavity in logarithm

discourages the abnormal effects of outliers; the estima-

tion coefficients can be readily interpreted as elasticity.

The key variables of our focus are the (logged) trading vol-

umes in the five dark venues and the lit venue, denoted by

log v 1 , …, log v 5 , and log v 6 , where the first five are for the

five dark venues and the last v 6 is for the trading volume

in the lit. (Each of these variables has stock-day-minute

granularity.) For the pecking order hypothesis, it is how-

ever useful to think in terms of market shares, defined as 

s j = 

v j ∑ 

j v j 
for j ∈ {1, …, 6}. 

The purpose of this appendix is to derive the closed-

form, exact transformation formula from a shock in trading

volume in one venue to the response of all market shares.

Specifically, given a shock of �log v i , we want to know the

immediate response �s j , for all j ∈ {1, …, 6}. Reverse di-

rections from �s i to �log v j will also be dealt with. These
formulas are used in generating the impulse responses in

testing the pecking order hypothesis. 

In the derivation below, we shall use the following ad-

ditional notations. Let v be the total volume: v = 

∑ 

j v j . We

shall use a superscript of “+” to denote the variables after

a shock; for example, log v + 
j 

= log v j + � log v j . Similarly,

while s j denotes the market share of venue j , s + 
j 

denotes

the market share after the shock. In the IRF exercise, the

pre-shock values will be chosen as the stock-day-minute

average across all raw sample observations. Consider the

following cases. 

From �log v i to �s j . By construction, log v + 
i 

= log v i +
� log v i . Taking the exponential on both sides gives the

level of the post-shock trading volume: v + 
i 

= v i exp � log v i .
The post-shock market share by construction is 

s + 
i 

= 

v + 
i 

v + 
= 

v + 
i 

v + (v + 
i 

− v i ) 
. 

Substituting with the expression of v + 
i 

and then subtract-

ing s i = v i / v yields 

�s i = s + 
i 

− s i = ... = s i ·
(
e � log v i −� log v − 1 

)
, (35)

where � log v = log v + − log v = log ( 
∑ 

j � = i v j + v + 
i 
) − log v .

The above formula actually applies to both the venue i

whose volume is shocked and any other venue j � = i whose

volume is not shocked. The only difference is, as can be

seen after substituting the index i with a different j , that

� log v j = 0 for j � = i . Finally, we can immediately derive

the dark volume share change as the complement of the

change in the lit share: 
∑ 

j≤5 �s j = −�s 6 , simply because

the identity of s 6 = 1 − ∑ 

j≤5 s j . 

From �log v to �s i , assuming proportionally scaling

across all venues. Now we shock the total volume such

that log v + = log v + � log v and make the assumption that

the increase in volume is proportionally scaled across all

venues. That is, for each venue i , v + 
i 

− v i = s i · (v + − v ) , or 

v + 
i 

= v i + s i �v = s i v + s i �v = s i · ( v + �v ) = s i v + . 

Taking logarithm on both sides gives log v + 
i 

=
log s i + log v + . Substitute log s i with log s i = log (v i / v ) =
log v i − log v and then 

log v + 
i 

= log v i − log v + log v + 	⇒ � log v i = � log v . (36)

Substituting Eq. (36) into Eq. (35) immediately gives

�s i = 0 . Clearly, this holds for all i ∈ {1, …, 6}. 

From �s i to �log v j by shocking log v i and propor-

tionally offsetting in other venues, without changing total

volume v . Finally we do the reverse. Suppose we shock

s i by �s i . Such a change in market share must be driven

by some change(s) in trading volume(s). Here, a particular

change is considered: Let v i change in the same direction

as s i but all other v j � = i move in the other direction so that

the total volume does not change, i.e., v = v + . We want to

know, given the size of �s i , what are the sizes of �log v j
for all j ∈ {1, …, 6}. 

First, consider j = i . By construction, �s i = v + 
i 
/ v + − s i .

Because the total volume is assumed to be unchanged,

we have v + 
i 

= (s i + �s i ) v . This enables the second



532 A.J. Menkveld et al. / Journal of Financial Economics 124 (2017) 503–534 

 

 

equality below: 

� log v i = log v + 
i 

− log v i = log (s i + �s i ) + log v − log v i 

= log (s i + �s i ) + log 
v 
v i 

= log (s i + �s i ) − log s i 

= log 

(
1 + 

�s i 
s i 

)
. (37) 

Consider next j � = i . To offset �v i , summing over all 

j � = i gives 
∑ 

j � = i �v j = −�v i . Because the changes are 

proportional according to s j , we have 

v + 
j 

= v j −
s j ∑ 

h � = i s h 
�v i = s j ·

(
v − �v i ∑ 

h � = i s h 

)
. 

Take logarithm on both sides and expand log s j = 

log v j − log v to get 

log v + 
j 

− log v j = � log v j = − log v + log 

(
v − �v i ∑ 

h � = i s h 

)

= log 

(
1 − �v i / v ∑ 

h � = i s h 

)
= log 

(
1 − �s i ∑ 

h � = i s h 

)
, (38) 

where the last equality follows because the total vol- 

ume is assumed to be unchanged: �v i / v = v + 
i 
/ v − v i / v =

v + 
i 
/ v + − v i / v = s + 

i 
− s i = �s i . 

Appendix D. Proofs 

Proof of Proposition 1 . By symmetry, we only focus on the 

buyer’s strategy. 

Interior solution. To begin with, suppose the equi- 

librium DarkNMid price is interior, i.e. p N ∈ [0, β). This 

means that the buyer prefers not to trade in Lit, where the 

marginal cost of trading is β . Splitting Q across DarkMid 

and DarkNMid means that in equilibrium, the marginal 

costs equate each other: 

(1 − φ) γ x M 

= p N . (39) 

Using Q = x M 

+ x N , we have 

x N = Q − p N 
(1 − φ) γ

. (40) 

We conjecture, and later verify, that the DarkNMid 

provider is willing to execute the entire quantity x N . 

We then solve the equilibrium p N set by the DarkNMid 

provider. Recall that the DarkNMid liquidity provider 

maximizes profit, which is 

� = 2 φp N x N − 2 φ(1 − φ) 
1 

2 
ηx 2 N = 2 φp N 

(
Q − p N 

(1 − φ) γ

)

−φ(1 − φ) η

(
Q − p N 

(1 − φ) γ

)2 

. (41) 

Taking the first-order condition with respect to p N , we can 

solve 

p N = 

γ (γ + η) 

2 γ + η
(1 − φ) Q . (42) 

An interior solution requires p N < β , or 

Q < � := 

β

1 − φ

(
1 

γ
+ 

1 

γ + η

)
. (43) 
Under the above interior p N , we immediately have 

x M 

= 

γ + η

2 γ + η
Q, x N = 

γ

2 γ + η
Q, x L = 0 . (44) 

We now verify that, at p N , the DarkNMid provider does 

not wish to execute less than x N . Fixing the quotes to the 

seller, consider a deviation of the quote to the buyer to 

( p N , q ), with q ≤ x N . The DarkNMid provider’s profit made

from the buyer is then 

φp N q − φ(1 − φ) 
1 

2 
ηq 2 , (45) 

which implies that the marginal profit of increasing q 

is φ(p N − (1 − φ) ηq ) . Substitute in the solution p N and 

q = x N , we see that the marginal profit of increasing 

quantity is φ times: 

γ (γ + η) 

2 γ + η
(1 − φ) Q − (1 − φ) η

γ

2 γ + η
Q > 0 . (46) 

That is, the DarkNMid provider actually wishes to execute 

more than x N at p N . This completes the characterization of 

the interior solution of the equilibrium. 

Corner solution. At the corner solution, p N = β . Equat- 

ing the marginal cost in DarkMid, (1 − φ) γ x M 

, to β gives 

x M 

= β/ ((1 − φ) γ ) . 

To solve x L and x N , consider the decision of the buyer 

to split between DarkMid and DarkNMid after sending x L 
to Lit. Using the same argument as above, the optimal x N 
chosen by the buyer at the price p N ≤ β is 

x N = Q − x L − p N 
(1 − φ) γ

. (47) 

Again, conjecture (and later verify) that the DarkNMid 

provider is willing to execute the full quantity x N . Substi- 

tuting the above x N into profit � and taking the first-order 

condition, we have 

p N = 

γ (γ + η) 

2 γ + η
(1 − φ)(Q − x L ) . (48) 

Since p N = β is the optimal solution, we have 

Q − x L = 

β

1 − φ

2 γ + η

γ (γ + η) 
= x M 

+ x N = 

β

(1 − φ) γ
+ x N , 

(49) 

from which we get 

x N = 

β

(1 − φ)(γ + η) 
. (50) 

Obviously, x L ≥ 0 implies Q ≥ �. Moreover, as in the 

interior solution, we verify that, at p N = β, the marginal 

profit of increasing quantity is φ times: 

β − (1 − φ) η · β

(1 − φ)(γ + η) 
> 0 . (51) 

So the DarkNMid provider executes the full quantity x N at 

β . �

Proof of Proposition 2 . Direct calculation shows: 

s M 

= 

φβ

(γ Q − β)(1 − φ) 
, (52) 

s N = 

βγ

(γ Q − β)(γ + η)(1 − φ) 
, (53) 
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∂ s M 

∂γ
= − φβQ 

(γ Q − β) 2 (1 − φ) 
< 0 , 

∂ s N 
∂γ

= − β(γ 2 Q + βη) 

(γ Q − β) 2 (γ + η) 2 (1 − φ) 
< 0 , 

∂ s L 
∂γ

= 1 − ∂ s M 

∂γ
− ∂ s N 

∂γ
> 0 , 

where the last line follows from s M 

+ s N + s L = 1 . 

It remains to rank the volume share sensitivity to urgen

∂ s M 

∂γ

γ

s M 

− ∂ s N 
∂γ

γ

s N 
= − η

γ + η
< 0 . 

Hence, the sensitivities of volume shares to urgency can be

Proof of Proposition 3 . It is easy to compute the venue shar

∂ s M 

∂γ

γ

s M 

= − γ Q 

γ Q − β
< 0 

∂ s N 
∂γ

γ

s N 
= − β

γ Q − β
− γ

γ + η
< 0 . 

Hence, these two elasticities are increasing in Q and decrea

The venue share elasticity for the lit venue has the follo

∂ s L 
∂γ

γ

s L 
= 

β(βη + Q(γ 2 + (γ + η) 2 φ)) 

(γ Q − β)(γ + η) 2 (1 − φ)(Q − �) 
. 

The cross-derivatives are: 

∂ 

∂β

(
∂ s L 
∂γ

γ

s L 

)
= γ Q 

2 Qβγ 2 η(1 − φ) + Q 

2 γ 2 (1 − φ)(γ 2 + (γ

(γ Q − β) 2 (Qγ (γ +

∂ 

∂Q 

(
∂ s L 
∂γ

γ

s L 

)
= −βγ

2 Qβγ 2 η(1 − φ) + Q 

2 γ 2 (1 − φ)(γ 2 + (γ

(γ Q − β) 2 (Qγ (γ

So it only remains to sign the common numerator of th

increasing in Q . Its minimum is achieved if Q = �. Substitu

β2 (2 γ 2 + 2 γ η + η2 )(γ + (γ + η) φ) 2 

(γ + η) 2 (1 − φ) 
> 0 , 

implying that the numerator is strictly positive on the supp

∂ 

∂β

(
∂ s L 
∂γ

γ

s L 

)
> 0 and 

∂ 

∂Q 

(
∂ s L 
∂γ

γ

s L 

)
< 0 . 

This completes the proof. �

References 

Barber, B.M. , Odean, T. , 2008. All that glitters: the effect of attention and
news on the buying behavior of individual and institutional investors.

Review of Financial Studies 21, 785–818 . 
Bloomfield, R. , O’Hara, M. , Saar, G. , 2015. Hidden liquidity: some new light

on dark trading. Journal of Finance 70, 2227–2273 . 
Boni, L. , Brown, D.C. , Leach, J.C. , 2012. Dark pool exclusivity matters. Un-

published working paper . University of New Mexico, University of Ari-

zona, and University of Colorado at Boulder. 
Boulatov, A. , George, T.J. , 2013. Hidden and displayed liquidity in secu-

rities markets with informed liquidity providers. Review of Financial
Studies 26, 2095–2137 . 

Brogaard, J. , Hendershott, T. , Riordan, R. , 2014. High frequency trading and

price discovery. Review of Financial Studies 27, 2267–2306 . 
(54)

(55)

(56)

the two dark venues. Direct calculation shows: 

(57)

d as stated in Proposition 2 . �

icities for the two dark venues: 

(58)

(59)

n β . 

expression: 

(60)

) − β2 (η2 φ + 2 γ 2 (1 + φ) + 2 γ η(1 + φ)) 

φ) − β(2 γ + η)) 2 
, (61)

 φ) − β2 (η2 φ + 2 γ 2 (1 + φ) + 2 γ η(1 + φ)) 

 − φ) − β(2 γ + η)) 2 
. (62)

o cross-derivatives. Note that this numerator is quadratic

into this numerator yields a minimum of 

(63)

 Q ≥ �. Therefore, 

(64)

Brolley, M. , 2014. Should dark pools improve upon visible quotes? The
impact of trade-at rules. University of Toronto . Unpublished working

paper. 

Buti, S. , Rindi, B. , Werner, I.M. , 2011. Diving into dark pools. Fisher College
of Business, Ohio State University . Unpublished working paper. 

Buti, S., Rindi, B., Werner, I.M., 2015. Dark pooltrading strategies, mar-
ket quality and welfare. Journal of Financial Economics. doi: 10.1016/

j.jfineco.2016.02.002 . 
Campbell, J.Y. , Grossman, S.J. , Wang, J. , 1993. Trading volume and serial

correlation in stock returns. The Quarterly Journal of Economics 108,

905–939 . 
Chowdhry, B. , Nanda, V. , 1991. Multimarket trading and market liquidity.

Review of Financial Studies 4, 483–511 . 
c

 

e

s

w

+
 η

+

e

t

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0001
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0001
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0001
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0002
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0002
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0002
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0002
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0003
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0003
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0003
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0003
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0003
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0004
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0004
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0004
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0005
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0005
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0005
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0005
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0006
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0006
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0006
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0007
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0007
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0007
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0007
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0007
http://dx.doi.org/10.1016/j.jfineco.2016.02.002
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0009
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0009
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0009
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0009
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0010
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0010
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0010


534 A.J. Menkveld et al. / Journal of Financial Economics 124 (2017) 503–534 

Comerton-Forde, C., Malinova, K. Park, A., 2015. The impact of the dark 
trading rules. Report prepared for the Investment Industry Regulatory 

Organization of Canada. 
Comerton-Forde, C. , Putni ̧n š, T. , 2015. Dark trading and price discovery. 

Journal of Financial Economic 118, 70–92 . 
Securities and Exchange Commission 2010. Concept release on equity 

market structure. Release No. 34–61358; File No. S7-02-10. 

Degryse, H. , de Jong, F. , van Kervel, V. , 2015. The impact of dark trading 
and visible fragmentation on market quality. Review of Finance 19, 

1587–1622 . 
Degryse, H. , Tombeur, G. , Wuyts, G. , 2015. Two shades of opacity: Hidden 

orders versus dark trading. KU Leuven and Tilburg University . Unpub- 
lished working paper. 

Degryse, H. , Van Achter, M. , Wuyts, G. , 2009. Dynamic order submission 
strategies with competition between a dealer market and a crossing 

network. Journal of Financial Economics 91, 319–338 . 

Devani, B. , Anderson, L. , Zhang, Y. , 2015. Impact of the dark rule amend- 
ments. Trading review and analysis . Investment Industry Regulatory 

Organization of Canada. 
Duffie, D., Zhu, H., 2016. Size discovery. Review of Financial Studies. 

doi: 10.1093/rfs/hhw112 . 
Ellis, K. , Michaely, R. , O’Hara, M. , 20 0 0. The accuracy of trade classifica- 

tion rules: evidence from nasdaq. Journal of Financial and Quantita- 

tive Analysis 35, 529–551 . 
Foley, S. , Malinova, K. , Park, A. , 2013. Dark trading on public exchanges. 

University of Toronto . Unpublished working paper. 
Foley, S. , Putni ̧n š, T. , 2016. Should we be afraid of the dark? dark trading 

and market quality. Journal of Financial Economics 122, 456–481 . 
Grossman, S. , Stiglitz, J. , 1980. On the impossibility of informationally ef- 

ficient markets. American Economic Review 70, 393–408 . 

Hatheway, F. , Kwan, A. , Zheng, H. , 2013. An empirical analysis of market 
segmentation on U.S. equities markets. The NASDAQ OMX Group, the 

University of New South Wales, and the University of Sydney . Unpub- 
lished working paper. 

Hendershott, T. , Jones, C.M. , 2005. Island goes dark: transparency, frag- 
mentation, and regulation. Review of Financial Studies 18, 743–793 . 

Hendershott, T. , Mendelson, H. , 20 0 0. Crossing networks and dealer 

marekts: competition and performance. Journal of Finance 55, 
2071–2115 . 

Holden, C.W. , Jacobsen, S. , 2014. Liquidity measurement problems in fast, 
competitive markets: expensive and cheap solutions. Journal of Fi- 

nance 69, 1747–1785 . 

Kim, O. , Verrecchia, R.E. , 1994. Market liquidity and volume around earn- 
ings announcements. Journal of Accounting and Economics 17, 41–67 . 

Kinney, W. , Burgsthler, D. , Martin, R. , 2002. Earnings surprise “material- 
ity” as measured by stock returns. Journal of Accounting Research 40, 

1297–1329 . 
Kwan, A. , Masulis, R. , McInish, T. , 2015. Trading rules, competition for or- 

der flow and market fragmentation. Journal of Financial Economics 

115, 330–348 . 
Kyle, A.S. , 1989. Informed speculation with imperfect competition. The Re- 

view of Economic Studies 56, 317–355 . 
Lee, C. , Ready, M. , 1991. Inferring trade direction from intraday data. Jour- 

nal of Finance 46, 733–746 . 
Nimalendran, M. , Ray, S. , 2014. Informational linkages between dark and 

lit trading venues. Journal of Financial Markets 17, 230–261 . 
O’Hara, M. , Ye, M. , 2011. Is market fragmentation harming market quality? 

Journal of Financial Economics 100, 459–474 . 

Pagano, M. , 1989. Trading volume and asset liquidity. Quarterly Journal of 
Economics 104, 255–274 . 

Parlour, C.A. , 1998. Price dynamics in limit order markets. The Review of 
Financial Studies 11, 789–816 . 

Parlour, C.A. , Seppi, D.J. , 2008. Limit order markets: a survey. In: Boot, A., 
Thakor, A. (Eds.), Handbook of Financial Intermediation and Banking. 

Elsevier, Amsterdam, pp. 63–96 . 

Petersen, M.A. , 2009. Estimating standard errors in finance panel data 
sets: comparing approaches. Review of Financial Studies 22, 435–480 . 

Ready, M.J. , 2014. Determinants of volume in dark pool crossing networks. 
University of Wisconsin-Madison . Unpublished working paper. 

Sarkar, A. , Schwartz, R.A. , 2009. Market sidedness: insights into motives 
for trade initiation. Journal of Finance 64, 375–423 . 

Seppi, D.J. , 1997. Liquidity provision with limit orders and a strategic spe- 

cialist. Review of Financial Studies 10, 103–150 . 
Tuttle, L. , 2014. OTC trading: description of non-ATS OTC trading in na- 

tional market system stocks. White paper, Securities and Exchange 
Commission . 

Ye, M. , 2011. A glimpse into the dark: price formation, transaction costs 
and market share of the crossing network. University of Illinois . Un- 

published working paper. 

Zhu, H. , 2014. Do dark pools harm price discovery? Review of Financial 
Studies 27, 747–789 . 

http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0011
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0011
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0011
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0012
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0012
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0012
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0012
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0013
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0013
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0013
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0013
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0013
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0014
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0014
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0014
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0014
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0015
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0015
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0015
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0015
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0015
http://dx.doi.org/10.1093/rfs/hhw112
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0017
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0017
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0017
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0017
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0018
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0018
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0018
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0018
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0018
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0019
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0019
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0019
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0020
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0020
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0020
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0021
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0021
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0021
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0021
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0021
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0022
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0022
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0022
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0023
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0023
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0023
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0024
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0024
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0024
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0025
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0025
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0025
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0026
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0026
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0026
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0026
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0027
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0027
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0027
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0027
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0028
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0028
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0029
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0029
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0029
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0030
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0030
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0030
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0031
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0031
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0031
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0032
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0032
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0033
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0033
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0034
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0034
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0034
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0035
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0035
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0036
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0036
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0036
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0037
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0037
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0037
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0038
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0038
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0039
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0039
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0040
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0040
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0040
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0041
http://refhub.elsevier.com/S0304-405X(17)30041-7/sbref0041

	Shades of darkness: A pecking order of trading venues
	1 Introduction
	2 A pecking order hypothesis of trading venues
	3 Data and summary statistics
	3.1 Dark volumes
	3.2 Nasdaq: trade and quote data with HFT label
	3.3 Overall market conditions
	3.4 Proxies for urgency shocks
	3.5 Data preparation and summary statistics

	4 A VARX model of dark volumes
	4.1 Panel VARX model
	4.2 Estimation results

	5 Results: pecking order
	5.1 A VIX shock
	5.2 Macroeconomic data releases
	5.3 Earnings announcements
	5.4 A discussion of large stocks

	6 A brief discussion of DarkRetail
	7 Dark market shares and market conditions
	8 Pecking order as an equilibrium outcome
	8.1 A simple stylized model of fragmented market trading
	8.1.1 Model setup
	8.1.2 Equilibrium
	8.1.3 Urgency elasticity of venue market shares

	8.2 A consolidated market benchmark
	8.3 Comparing Lit++ to three-way fragmentation

	9 Conclusion
	Appendix A Snippet of disaggregated dark transaction data
	Appendix B Details on the implementation of the panel VARX model
	Appendix C Transformation between logarithms and levels of market share variables
	Appendix D Proofs
	 References


