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Abstract

Central counterparties (CCPs) are systemically important. When a clearing member defaults,
the CCP sells the defaulted portfolio to surviving members in an auction, and losses, if any, are
partly absorbed by a cash pool prefunded by the surviving members. We propose a tractable
auction model that incorporates this salient feature. We find that “juniorization” – the CCP first
uses prefunded cash of members who submit bad bids – increases the auction price. Aggressive
juniorization can push the auction price above the fair value and almost eliminate the need
to use prefunded resources. Nonetheless, juniorization generates heterogeneous impact on
members of different sizes, and so does customer participation in the auction.
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1 Introduction

A central counterparty (CCP) stands between a buyer and a seller in a derivatives trade or securities
financing transaction, protecting the two parties from each other’s default. Since the financial crisis
of 2008-09 and the ensuing central clearing mandate for standardized over-the-counter derivatives,
CCPs have grown substantially in size and scope and become systemically important.1 As of the
first half of 2020, about $388 trillion notional amount of interest rate derivatives are cleared by
CCPs, with a gross market value of about $6 trillion (BIS, 2020).

A CCP may come under stress when a clearing member defaults, at which point the CCP
inherits the defaulted portfolio and its directional exposure. If market prices continue to move
against the defaulted portfolio, the CCP is obligated to make payments to the other side, though
it no longer receives payment from the defaulted member. In a market turmoil that can push a
clearing member into default, the CCP’s directional exposures can quickly lead to large losses that
threaten its own stability and the stability of the financial system.

As a key component of risk management, CCPs use auctions to sell the defaulted portfolio,
therefore eliminating the directional exposure and stopping the losses (CPMI-IOSCO, 2012, 2020).
The CCP’s losses are covered by prefunded resources from the defaulting member, the CCP, and
the surviving members, in this order. Importantly, resources that the CCP uses to pay the winners
of the auction partly come from the bidders themselves. In this sense, CCP auctions are unique.

In this paper, we analyze CCP auction design that incorporates this important feature: bidders
are also potential payers. In particular, we study the “juniorization” mechanism of surviving mem-
bers’ resources, known as guarantee funds.2 The principle of juniorization is that members sub-
mitting bad bids will see their guarantee funds used ahead of, i.e., junior to, members submitting
better bids. Building on Du and Zhu (2017), we model a CCP auction as a divisible, uniform-price
auction, which tends to be used for large defaulted portfolios that few or no single bidders have the
capacity to absorb.3

In our baseline model, only surviving members of the CCP can participate in the auction. The
fundamental value of the auctioned portfolio is common knowledge, and bidders incur quadratic
costs for holding inventories, which is equivalent to linearly decreasing marginal values in acquired

1In 2012, the Financial Stability Oversight Council of the United States designated eight systemically important
financial market utilities: The Clearing House Payment Company, CLS Bank International, Chicago Mercantile Ex-
change, the Depositor Trust Company, Fixed Income Clearing Corporation, ICE Clear Credit, National Securities
Clearing Corporation, the Options Clearing Corporation. Among the eight, five are CCPs (CME, FICC, ICE, NSCC,
and OCC). See https://home.treasury.gov/system/files/261/here.pdf.

2The size of members’ guarantee fund contributions is increasing in their required initial margin. Thus, members
who have larger or riskier positions have larger guarantee fund contributions.

3In practice, CCP auctions are generally sealed-bid. Some CCPs such as ICE Credit use divisible auctions, whereas
others such as Nasdaq clearing use indivisible ones.
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quantity. The bidders submit demand schedules and pay for their allocations at the market clearing
price, which can be negative. A very negative price means the CCP has to pay a substantial amount
to the auction winners out of the prefunded resources.

We model the CCP’s resources as two parts. The first part is the defaulters’ and the CCP’s
resources, which is used first to absorb losses. If that is insufficient, the CCP uses the guarantee
funds contributed by the surviving members. Surviving members have heterogeneous guarantee
fund contributions that follow some probability distribution. To model juniorization, we assume
that the use of a member’s guarantee fund is linearly decreasing in the member’s equilibrium
winning amount of the defaulted portfolio, subject to the constraint that the used guarantee fund is
positive and no more than the prefunded amount.4

With juniorization, a bid serves two purposes: making a profit on the defaulted portfolio and
reducing the amount of one’s own guarantee fund that the CCP uses to cover losses. We find that
small members, i.e., those who contribute a low amount of guarantee funds, are barely affected by
juniorization because they only need to purchase a small fraction of the defaulted portfolio to save
all their guarantee funds. Large members, however, are highly incentivized by juniorization due to
the large amount of guarantee funds at stake. Consequently, larger members are more aggressive
bidders in the CCP auction and win a bigger fraction of the defaulted portfolio.

The key design variable is the degree of juniorization, modeled as how much guarantee funds
a bidder can save by buying each additional unit of the defaulted portfolio. On top of the conven-
tional motivation of making a profit, bidders in CCP auctions have an additional incentive to save
their guarantee funds, and this incentive is increasing in the size of one’s own guarantee funds at
stake. We find that more aggressive juniorzation increases the large members’ bids substantially
and raises the price. The higher price, in turn, reduces the demand of small members who bid
primarily to make a profit. As juniorization becomes sufficiently aggressive, the auction price rises
above the fair market value, at which point the only reason a bidder trades at such an inflated price
is to save its own guarantee fund. More starkly, it is possible to raise the auction price to such a
high level that only a tiny amount of guarantee funds is used. It is not possible, however, to com-
pletely eliminate the use of survivors’ guarantee funds because the threat of using their guarantee
funds is the very reason that large members bid aggressively.

While juniorization raises the auction price effectively, it has heterogeneous impacts across

4In practice, CCPs tend to sort bidders into discrete tiers according to their bids. For instance, CME CDS/IRS Clear
in its rulebook defines “non-qualifying bidders” as the ones that either submit no bids or their bids are worse than a
pre-defined price range. If the loss from the auction dips into surviving members’ guarantee fund contributions, the
non-qualifying bidders’ contributions will be used first, followed by the non-winning bidders’, whereas the winning
bidders’ guarantee fund contributions have highest seniority. Because bids with higher prices are filled ahead of those
with lower prices in an divisible auction, juniorization based on equilibrium allocation captures the core spirit of this
design and retains analytical tractability.
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members. At a high price, the allocation of the defaulted portfolio concentrates among the largest
members and cause them to incur high inventory costs. The smallest members also suffer from
more aggressive juniorization because the resulting high price prevents them from bidding prof-
itably. It is the members who have intermediate range of guarantee fund contributions that benefit
from juniorization. While unmodeled, it is reasonable to expect the CCP to prefer a high auction
price due to the reputational benefit associated with a successful auction that leads to minimal use
of guarantee funds.

In an extension of the baseline model, we study the auction participation of customers who
have zero guarantee fund contributions. We show that including customers promotes competition
and increases the auction price, which, in turn, reduces the use of guarantee funds and the losses
of the largest clearing members. Small and intermediate-sized clearing members, whose guarantee
funds are not used in equilibrium, tend to suffer from the participation of customers. All these
effects are weaker when juniorization is more aggressive. If juniorization is sufficiently aggressive
that the auction price is above the fair value, customers no longer bid and their participation does
not affect auction outcomes.

Our results shed lights on recent market and regulatory debate around the design of CCP auc-
tions. A case in mind is Nasdaq Clearing. In September 2018, a single (albeit large) trader’s default
loss wipes away two-thirds of surviving members’ guarantee funds in Nasdaq Clearing (Financial
Times, 2018). Out of more than 100 clearing members, Nasdaq Clearing only invited five to the
auction. The restriction to a small number of participants could have contributed to the large de-
fault loss (Faruqui et al., 2018). Our results also suggest that Nasdaq Clearing could have used
juniorization to promote more competitive bidding.

To the best of our knowledge, the only other papers that study CCP auctions are Ferrara, Li
and Marszalec (2020) and Oleschak (2019). Both papers apply the standard model of private-value
indivisible auctions to the CCP setting. Ferrara, Li and Marszalec (2020) introduce a reduced-form
penalty for submitting bad bids, but the penalty is independent of the default losses of the CCP.
Oleschak (2019) finds that the CCP’s loss allocation method does not affect the CCP’s losses or
the bidders’. This is because in his model, loss allocations are not constrained by the prefunded
amount of guarantee funds. Our model incorporates key institutional details of CCP auctions and
derive novel results, in particular, the effect of juniorization on prices, bidding strategies, and profits
across hetergeneous bidders.

Our results contribute to the broad literature on central clearing. In particular, the strategic in-
centives of clearing members to bid in CCP auctions can be combined with other known aspects of
the economics of central clearing, including netting efficiency (Duffie and Zhu, 2011), risk sharing
and risk management (Haene and Sturm, 2009; Biais, Heider and Hoerova, 2016; Raykov, 2017),
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loss allocation rules (Elliott, 2013; Nahai-Williamson et al., 2013; Wang, Capponi and Zhang,
2021), and the choice between for-profit and utilities (Huang, 2019), among others. Menkveld and
Vuillemey (2020) provide an in-depth review of the literature on central clearing.

2 A Model of CCP Default Management Auctions

A CCP inherits a portfolio from its defaulting members and need to sell it in an auction. The
portfolio has size Q > 0. The auction is uniform price and fully divisible. We assume that the
auction is held immediately after default, and the mark-to-market value of the portfolio is zero.
Let p denote the per unit price of the portfolio paid by the bidders. Typically, p < 0, so −pQ > 0
is the loss from the auction that the CCP has to pay from the prefunded resources.

The CCP has three types of prefunded resource to absorb the loss: (i) the defaulting mem-
bers’ initial margin and guarantee funds; (ii) the CCP’s skin-in-the-game; and (iii) the surviving
member’s guarantee funds. Resources (i) and (ii) add up to M > 0, whereas resource (iii) is G > 0.

For analytical simplicity, we assume that there is a continuum of infinitesimal surviving mem-
bers of mass one.5 Member i contributes gi ≥ 0 into the guarantee fund, where gi has the probability
distribution function F with support [0,∞). Hence, the total guarantee fund is the integral of all
individual guarantee fund contributions, i.e., G ≡

∫
gdF(g).

The fundamental value of the defaulted portfolio is v per unit, reflecting the bidders’ view that
the value of the defaulted portfolio may continue to decline (v < 0) or rebound (v > 0) after the
auction.6

The distribution function F(·), as well as v,Q,M and G, is common knowledge to all bidders.
Once the auction produces a price p for the defaulted portfolio, there are three scenarios:
I. pQ + M ≥ 0: The defaulters’ and CCP’s resources are sufficient to cover the auction losses,

and there is no need to use the guarantee fund.
II. pQ + M < 0 ≤ pQ + M + G: The defaulters’ and CCP’s resources are insufficient, but the

guarantee fund is sufficient to cover the losses.
III. pQ + M + G < 0: The resources from the defaulters, the CCP, and the surviving clear-

ing members are insufficient to cover losses, and the auction “fails.” The CCP resorts to

5In practice, of course, there are finitely many members, and some are very large. The main advantage of using
infinitesimal members is that they have zero price impact and hence do not wish to affect the auction price. This
simplification shortens the analytical solutions dramatically. One can extend this model to allow for finitely many
clearing members and positive price impact.

6In reality, the fundamental value of the defaulted portfolio is not necessarily common knowledge to all bidders and
the CCP. But modeling such asymmetric information makes the model intractable quickly. This paper proposes a pro-
totype model in which the novelty comes from heterogeneous guarantee fund contributions and associated incentives,
while keeping all other dimensions as simple as possible.
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more extreme methods of default management such as variation margin gains hair-cutting
(VMGH) and partial tear-ups, among others. If these mechanisms are not credible or their
consequences are not deemed to be acceptable, the official sector may step in and resolve the
CCP.

In this paper, we focus on Scenarios I and II. Because Scenario I is the best outcome and
is relatively straightforward, most of our modeling effort is devoted to Scenario II. Scenario III
threatens the viability of the CCP itself and will likely involve the official sector and its political
constraints, which are beyond the scope of our simple model.

Now we turn to the auction mechanism and the preference of bidders. In the main model, the
auction is open only to clearing members. In the auction, each bidder i submits a demand curve
xi(p), that is, at the price p bidder i is willing to purchase quantity xi(p). As in practice, bidders
cannot release additional supply in the auction, so xi(p) ≥ 0. The market-clearing condition is∫

i
xi(p)di = Q. (1)

As described before, CCPs typically adopt a “juniorization” mechanism to incentivize bids. If
a clearing member fails to submit bids or submits “bad” bids relative to peers, its guarantee fund
contribution is “juniorized,” that is, used before the guarantee fund contribution of other members
who submit better bids. To model juniorization, we directly specify the use of bidder i’s guarantee
fund to be

Ti = max
[
−(pQ + M)

A
gi − cxi, 0

]
, (2)

where xi ≥ 0 is the equilibrium allocation to bidder i, and A > 0 and c ≥ 0 are constants to be
determined by the CCP. Once they are set, A and c are common knowledge. All else equal, a bidder
who wins more in the auction sees a less amount of her guarantee funds used by the CCP. As it
becomes clear shortly, A is chosen to balance the CCP’s budget, so it is a function of c. This leaves
c to be the only design variable. A special case is the “pro-rata” use of guarantee funds: c = 0,
A = G, and Ti = −(pQ + M) gi

G , where the transfer Ti is proportional to guarantee fund contribution
gi.

Finally, each bidder i maximizes the risk-adjusted profit

πi ≡ (v − p)xi − 0.5λx2
i − Ti. (3)

The first term (v − p)xi is the profit made for purchasing the portfolio at the price p, but with fair
value v; the second term −0.5λx2

i is the inventory cost of acquiring a part of the defaulted portfolio
in the auction, where λ > 0 is a constant; and the last term −Ti, given in (2), represents the use of
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bidder i’s guarantee fund.

3 Equilibrium and Properties

In this section, we analyze the equilibrium bidding strategies. For simplicity, we omit the subscript
i whenever there is no potential confusion.

3.1 Equilibrium for Scenario I

The first and simplest scenario is if the defaulters’ resource M is sufficient to cover the CCP’s
losses, that is, p∗Q + M ≥ 0. In this case, survivors’ guarantee funds are not used at all, i.e., Ti = 0.
Everyone bids

x(p) =
1
λ

(v − p). (4)

And the equilibrium price satisfies 1
λ
(v − p) = Q, or

p∗ = v − λQ. (5)

The condition for obtaining this case of equilibrium is that p∗Q + M = (v − λQ)Q + M ≥ 0.

3.2 Equilibrium for Scenario II: Pro-rata allocation

Before analyzing juniorization, it is useful to first examine the special case of pro-rata allocation
of losses, i.e., c = 0 and A = G. The pro-rata use of guarantee funds means Ti =

−(pQ+M)
G gi, and

thus
∫

i
Ti = −(pQ + M), i.e., budget balance is satisfied.

Because the guarantee fund use Ti is independent of xi, the bidding strategy is the same as
Scenario I: x =

v−p
λ

. And the equilibrium price is p∗ = v − λQ.
To ensure that this equilibrium indeed belongs to Scenario II, we need p∗Q + M < 0 ≤ p∗Q +

M + G, or (v − λQ)Q + M < 0 ≤ (v − λQ)Q + M + G.

3.3 Equilibrium for Scenario II: Juniorization with p ≤ v

Now let’s turn to the key part of the analysis with juniorization, i.e., c > 0. Important for the equi-
librium characterization of juniorization is the fact that T has a kink at x =

−(pQ+M)
A g/c. Therefore,

a bidder’s profit π is differentiable in x in the interval
[
0, −(pQ+M)

A g/c
)

and
(
−(pQ+M)

A g/c,∞
)
, but not

at the kink.
We start by conjecturing that there are three possible cases of equilibrium:
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1. x < −(pQ+M)
A g/c, and T > 0;

2. x =
−(pQ+M)

A g/c, and T = 0; and
3. x > −(pQ+M)

A g/c, and T = 0.
Case 1 and Case 3 are “interior” cases in the sense that if a bidder changes her demand slightly, she
remains in the same case. But Case 2 is at the kink because a slight decrease in x pushes a bidder
into Case 1 and a slight increase in x pushes the bidder into Case 3. Therefore, the first-order
conditions of Case 1 and Case 3 are equalities, whereas the first-order condition of Case 2 should
be inequalities.

We further conjecture that there are two thresholds, gL and gH ≥ gL, such that Case 1 applies if
g > gH, Case 2 applies if g ∈ [gL, gH], and Case 3 applies if g < gL.

The first-order conditions of Case 1 and Case 3 are, respectively,

v − p − λx1 + c = 0; (6)

v − p − λx3 = 0. (7)

The corresponding demand functions are

x1(p) =
1
λ

(v − p + c) ; (8)

x3(p) =
1
λ

(v − p). (9)

Obviously, for x3 to be positive, we need p ≤ v. We will look for equilibrium with p ≤ v in this
subsection. The case for p > v is deferred until the next subsection.

In Case 2, x2 =
−(pQ+M)

A g/c is conjectured to be optimal. An increase of x2 pushes a bidder
into Case 3 (where juniorization is ineffective), and a decrease of x2 pushes the bidder into Case 1
(where juniorization is effective). Thus, for g ∈ (gL, gH), we have

v − p − λ
−(pQ + M)

A
g
c

+ c > 0, (10)

v − p − λ
−(pQ + M)

A
g
c
< 0. (11)

At the equilibrium price p∗, the boundary conditions are

v − p∗ − λ
−(p∗Q + M)

A
gH

c
+ c = 0, (12)

v − p∗ − λ
−(p∗Q + M)

A
gL

c
= 0. (13)
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The market clearing condition is

Q =

∫ gL

0
x3 f (g)dg +

∫ gH

gL

x2 f (g)dg +

∫ ∞

gH

x1 f (g)dg,

= F(gL)
1
λ

(v − p∗) +

∫ gH

gL

−(p∗Q + M)
A

g
c

f (g)dg + (1 − F(gH))
1
λ

(v − p∗ + c). (14)

The budget balance constraint is

p∗Q + M +

∫ ∞

gH

[
−(p∗Q + M)

A
g − c

v − p∗ + c
λ

]
f (g)dg = 0, (15)

where the integral starts with gH because only bidders with guarantee funds at least gH lose part of
it. Substituting (12), or v − p∗ + c = λ−(p∗Q+M)

A
gH
c , into (15) and simplifying, we get

A =

∫ ∞

gH

(g − gH) f (g)dg, (16)

which depends on c only through gH. From (12) and (13), we get

−(p∗Q + M)
A

(gH − gL) =
c2

λ
. (17)

Substitute the above expression into (14), we get an alternative expression of the market-clearing
condition

Q = F(gL)
1
λ

(v − p∗) +
c
λ

1
gH − gL

∫ gH

gL

g f (g)dg + (1 − F(gH))
1
λ

(v − p∗ + c). (18)

The equilibrium price can be rewritten as

p∗ = v −
λQ − c

gH−gL

∫ gH

gL
g f (g)dg − c(1 − F(gH))

F(gL) + 1 − F(gH)
. (19)

Before characterizing the equilibrium, it is useful to characterize the solutions p∗, gH, and gL.

Lemma 1. For a fixed c > 0, let gH, gL, and p∗ solve (12), (13), and (19), where the constant A is
given by (16). As c→ 0, we have

gH → 0, gL → 0, A→ G,
d(gH − gL)

dc
→ 0, p∗ → v − λQ. (20)

Proof. By (17), we have limc→0(gH − gL) = 0. In the numerator of the expression of p∗ in (19),
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we can use the intermediate value theorem to write
∫ gH

gL
g f (g)dg = (gH − gL)g′ f (g′) for some

g′ ∈ [gL, gH]. Then the term c
gH−gL

∫ gH

gL
g f (g)dg simplifies to cg′ f (g′), which converges to zero as

c→ 0. Thus, p∗ → v − λQ as c→ 0.
Since gH−gL → 0, either both converge to the same finite value or both diverge. If both diverge

to infinity, then (12) and (13) cannot hold, as A is bounded above by G. So they must converge to a
finite value, implying that A has a well-defined limit that is positive. Now taking the limit on both
sides of (13), we have λQ − λ−((v−λQ)Q+M)

limc→0 A limc→0
gL
c = 0. Since limc→0 A > 0, we have gL → 0,

which implies gH → 0 and A→ G.
Finally, taking the derivative with respect to c on both sides of (17), we have

d
dc

(
−(p∗Q + M)

A

)
(gH − gL) +

−(p∗Q + M)
A

d(gH − gL)
dc

=
2c
λ
. (21)

Taking the limit on both sides as c→ 0 and using gH − gL → 0, we have d(gH−gL)
dc → 0 as well. �

The above result establishes a form of continuity in Scenario II. As juniorization becomes
weaker and weaker, the solution converges to the pro-rata case. Now we are ready to characterize
the equilibrium with juniorization.

Proposition 1. Suppose that −G < (v − λQ)Q + M < 0. There exists some c1 > 0 such that for all
c < c1, the following is an equilibrium:

Let gH, gL, and p∗ solve (12), (13), and (19), where the constant A is given by (16). Each bidder
uses the strategy

x(p) =


1
λ
(v − p + c), if g > gH

−(pQ+M)
A

g
c , if g ∈ [gL, gH]

1
λ
(v − p), if g < gL

. (22)

In this equilibrium, the auction price satisfies p∗ < v, −G < p∗Q + M < 0 and 0 ≤ Ti ≤ gi.

Proof. The equilibrium strategy is already derived in the discussion proceeding this proposition.
To see the final part, note that as c → 0, A → G and p∗ → v − λQ. Combining these with the
assumption that −G < (v−λQ)Q+M < 0, we see that by continuity, p∗ < v and −G < p∗Q+M < 0
for any sufficiently small c. Also by continuity, p∗Q + M + A ≥ 0, so Ti ∈ [0, gi]. �

Note that the condition p∗ < v guarantees that bidders in case 3 (small guarantee funds, buying
(v − p)/λ) acquire positive quantities, and the condition p∗Q + M < 0 guarantees that bidders in
case 2 (buying −(pQ+M)

A
g
c ) also acquire positive quantities. Under these conditions, bidders in case

1 always acquire positive quantities as x1 = x3 + c/λ > 0.

10



With the two results, we can ask whether juniorization is effective in increasing the auction
price, relative to pro-rata use of the guarantee fund. The next proposition shows that dp∗/dc > 0
when c is sufficiently small, that is, pro-rata is dominated by a mild use of juniorization.

Proposition 2. In the equilibrium of Proposition 1, there exists some c2 > 0 such that dp∗/dc > 0
for c < c2.

Proof. For simplicity of notation, we can write p∗ = v − B1
B2

, where B1 and B2 are the numerator
and denominator in the (19). As shown in the previous proposition, B1 → λQ and B2 → 1 as
c → 0. Again, by the intermediate value theorem, write

∫ gH

gL
g f (g)dg = (gH − gL)g′ f (g′) for some

g′ ∈ [gL, gH]. The derivatives are

dB1

dc
= −g′ f (g′) − (1 − F(gH)) + c f (gH)

dgH

dc
→ −1, (23)

dB2

dc
= f (gL)

dgL

dc
− f (gH)

dgH

dc
→ − f (0)

d(gH − gL)
dc

→ 0. (24)

Hence, as c→ 0,
dp∗

dc
→ −

(−1)(1) − (λQ)(0)
12 = 1. (25)

By continuity, dp∗/dc > 0 in an open neighborhood of c = 0 as well. �

The intuition of Proposition 2 could be seen as follows. For any sufficiently small c, we know
that gL and gH are both close to zero, i.e., the vast majority of clearing members are in Case 1.
Their demand function is xi(p) = (v− p + c)/λ. A higher c directly translates into a higher demand
from almost all members, hence a higher price.7

The main conclusion from Proposition 2 is that switching from pro-rata to (mild) juniorization
increases the equilibrium price. If price maximization is part of the CCP’s objective, this result is
consistent with the practice of juniorization used by CCPs.

A numerical procedure for finding equilibrium with p∗ < v. While the analytical characteri-
zation in Proposition 1 requires c be sufficiently close to 0, it is possible to numerically search for
an equilibrium for any c > 0. Specifically, for c > 0, let gH, gL, and p∗ solve (12), (13), and (19),
where the constant A is given by (16). If p∗ < v and −A ≤ p∗Q + M < 0, then it is an equilibrium
that each bidder uses the same bidding function as in Proposition 1. In this equilibrium, the auction
price is p∗, and 0 ≤ Ti ≤ gi.

7This logic may or may not work if c is already high and gH is sufficiently far from zero. Any further increase
in c raises the demand from Case-1 members (demand (v − p + c)/λ) but reduces the demand from Case-2 members
(demand −(pQ+M)

A gi/c). The net impact is not obvious.
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3.4 Equilibrium for Scenario II: Juniorization with p ≥ v

So far, we have focused on equilibrium in which p∗ < v and even bidders whose guarantee funds
are very close to zero win a positive amount of the auctioned portfolio. Now, we look for an
equilibrium in which p∗ ≥ v.

With p∗ ≥ v, only Case 1 and Case 2 apply, since the Case-3 demand (v− p)/λ hits the floor of
zero. The first-order condition for Case 1 remains (6). Bidders in Case 2 still bid −−(pQ+M)

A g/c. At
the equilibrium price, the boundary condition is still (12). The budget balance constraint remains
unchanged, which means that A is still (16).

The market clearing condition, however, changes to

Q =

∫ gH

0
x2 f (g)dg +

∫ ∞

gH

x1 f (g)dg =

∫ gH

0

−(p∗Q + M)
A

g
c

f (g)dg + (1 − F(gH))
1
λ

(v − p∗ + c),

=
v − p∗ + c

λ

(
1

gH

∫ gH

0
g f (g)dg + (1 − F(gH))

)
. (26)

The equilibrium price is

p∗ = v + c −
λQ

1
gH

∫ gH

0
g f (g)dg + (1 − F(gH))

= v + c − λQ
gH

G − A
. (27)

Substituting (12) into the above equation, we have

−(p∗Q + M)
A

=
cQ

G − A
(28)

Thus, −(p∗Q + M) > 0 because 0 ≤ A ≤ G, c > 0 and Q > 0. In other words, if p∗ ≥ v, then at this
price, the CCP will need to use the guarantee fund.

Proposition 3. Suppose vQ + M < 0. There exist some c4 > c3 > 0 such that for any c ∈ [c3, c4],
the following is an equilibrium:

Let gH and p∗ solve (12) and (27), where the constant A is given by (16). Each bidder uses the
strategy

x(p) =


1
λ
(v − p + c), if g > gH

−(pQ+M)
A

g
c , if g ≤ gH

. (29)

In this equilibrium, the price p∗ > v and 0 ≤ Ti ≤ gi. Moreover, p∗ is increasing in c.

Proof. The full proof is in the Appendix, but we outline the main steps here. The equilibrium strat-
egy is already derived in the discussion proceeding this proposition. We first show that dp∗/dc > 0
if the equilibrium exists. To see that, we take the total derivatives of (16), (28) and (27). Next,
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to prove the existence of this equilibrium, we establish the continuity between the equilibrium in
Proposition 1 and the equilibrium in this proposition around the price p∗ = v. Finally, we show
that when c ∈ [c3, c4], −(p∗Q + M)/A ≤ 1 so that Ti ≤ gi for all xi. �

The above results show that a large c can increase the equilibrium price above the fundamental
value v. If the CCP’s objective is to increase the auction price, it has a strong incentive to set a high
c. We stress, however, that c cannot be too high, for otherwise p∗Q + M would become positive
and juniorization would not be effective.

A numerical procedure for finding equilibrium with p∗ ≥ v. The analytical characterization
of the equilibrium in Proposition 3 requires c be in a particular range. But as before, it is possible
to numerically search an equilibrium with p∗ ≥ v. Suppose vQ + M < 0. For any c > 0, let gH and
p∗ solve (12) and (27). If the resulting p∗ satisfies p∗ ∈ [v,−M/Q), then the equilibrium bidding
strategy is given in (29). Compared to the analytical characterization, the numerical procedure
involves verifying p∗ ∈ [v,−M/Q) ex post.

Our last analytical result is the impact of juniorization c on the members’ profits.

Proposition 4. In an equilibrium with p∗ ≥ v, as c increases, the profit of a member with gi ≤ gH

decreases, the profit of a member with gi ∈ (gH,
G

G−AgH) increases, and the profit of a member with
gi ≥

G
G−AgH decreases.

Proof. When p∗ ≥ v and gi ≤ gH, by Proposition 3, one has xi =
Q

G−Agi and πi = (v − p∗)xi −
λ
2 x2

i .
Furthermore, from the proof of Proposition 3, one has dp∗/dc ∈ (0, 1). Suppressing p∗ as p
and taking the total derivative of xi, one has dxi = Qgid 1

G−A =
Qgi

(G−A)2 dA. Thus, dxi/dc can be

written as dxi
dc = dxi

dA
dA

dgH

dgH
dc = −

Qgi
cG

(
dp
dc + A

G−A

)
< 0. Taking the total derivative of πi, one has dπi =

(v − p − λxi)dxi − xidp. Thus,

dπi

dc
=

dp
dc

(
λQgi − cG

cG
Qgi

G − A
+

Qgi

G
−

Qgi

G
λQgH

c(G − A)

)
+

Qgi

cG
A

G − A

(
c −

λQgH

G − A
+ λ

Qgi

G − A

)
;

<
Qgi

G

(
λQgi − cG
c(G − A)

+ 1 −
λQgH

c(G − A)
+

A
G − A

(
1 −

λQgH

c(G − A)
+ λ

Qgi

c(G − A)

))
;

=
Qgi

G
G

G − A
λQ(gi − gH)

c(G − A)
< 0; (30)

where the first inequality comes from dp
dc ∈ (0, 1) and the second one comes from gi ≤ gH. Thus,

for a member with gi ≤ gH, his profit decreases in c.
When p > v and gi > gH, xi and πi can be written as xi =

QgH
G−A and πi = λ

2 x2
i −

cQ
G−Agi.

Thus, one has dxi = (dc − dp)/λ. Similarly, one has dπi = λxidxi − Qgid c
G−A =

QgH
G−A (dc − dp) −

13



Qgi
G−A

(
dc + c

G−AdA
)
. Replacing dA = −

(G−A)2

cG

(
dp + A

G−Adc
)
, one has

dπi

dc
=

QgH

G − A

(
1 −

dp
dc

)
− Qgi

(
1

G − A
−

1
G

dp
dc
−

A
G(G − A)

)
=

( QgH

G − A
−

Qgi

G

) (
1 −

dp
dc

)
. (31)

As dp/dc ∈ (0, 1) when p ≥ v, for gi ∈ (gH,
G

G−AgH), dπ/dc > 0; for gi ≥
G

G−AgH, dπ/dc < 0. �

Proposition 4 shows that, in the case of p∗ > v, members with very small or very large guarantee
funds suffer from more aggressive juniorization, while members with medium size guarantee funds
benefit from it. The intuition is the following. More aggressive juniorization raises the price,
which leads to a loss to those members who purchase at this inflated price, but it also reduces
the shortfall −(p∗Q + M), which means a smaller amount of the guarantee funds is used. For the
largest clearing members, who have the highest demand, the loss from buying at inflated prices
dominates. For members with intermediate guarantee fund contribution, the benefit of a smaller
shortfall dominates. For the smallest members who bid only to save their guarantee funds, it turns
out that the cost of buying at a higher price dominates.

3.5 A numerical illustration of the impact of juniorization c

To summarize, we have shown, analytically, that if c is sufficiently small, the equilibrium price
p∗ is below v and is increasing in c. If c is sufficiently large, the equilibrium price p∗ is above v
and is also increasing in c; moreover, increasing c has heterogeneous impacts on the cross section
of clearing members. For intermediary values of c, we have a numerical procedure to find the
equilibrium in both cases (p∗ < v and p∗ ≥ v). While our analytical characterization does not
preclude multiple equilibria, numerical calculations have produced a unique equilibrium for each
parameter set.

To further illustrate the results and the intuition, we now conduct a numerical exercise by setting
the model parameters to plausible magnitude in the interest rate swaps market. The CFTC (2019)
finds that as of September 5, 2018, LCH has a guarantee fund of 6.6 billion USD and a skin-in-
the-game of 56 million USD. The CFTC stress testing results show that in the stress scenario of
Lehman’s default on 15 September, 2008, the shortfall in excess of the defaulter’s initial margin in
LCH would be 0.31 billion USD.

Based on these statistics, we set v = −0.31, M = 0.056, and G = 6.6, all with the unit of
billions of USD. (The $0.31 billion shortfall is before the use of the defaulter’s guarantee fund
contribution, so the mapping to the model is not exact.) We normalize Q = 1. These parameters
already imply that vQ + M < 0, i.e., the defaulter’s and CCP’s resources are insufficient to cover
the losses. The last parameter, λ, does not have a direct empirical counterpart, so we provisionally
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set it to be 0.31, so that the loss beyond initial margin would double if the defaulted portfolio is
sold without juniorization (i.e., v − λQ = −0.62).

For simplicity, we will use the exponential distribution of default fund contributions:

f (g) =
1
β

e−
g
β , if g ≥ 0, (32)

where β is the mean of the distribution and is equal to G as the mass of clearing members is
normalized to be one.

In the equilibrium case with p∗ < v, the equilibrium price can be written as

p∗ = v −
λQ − e−

gH
β c − c

gH−gL

(
(β + gL)e−

gL
β − (β + gH)e−

gH
β

)
1 − e−

gL
β + e−

gH
β

. (33)

In the equilibrium case with p∗ ≥ v, the equilibrium price can be written as

p∗ = v + c −
λQgH

β(1 − e−
gH
β )
. (34)

Figure 1 shows the comparative statics of market outcomes with respect to c, the aggressiveness
of juniorization, as well as the equilibrium allocations and profits as functions of g. In the first and
second rows, the vertical line indicates the threshold value of c (= 0.5 in this example) at which
p∗ = v. As characterized in Propositions 2 and 3, p∗ is monotone increasing in c, and it is reaching
−M/Q if c is sufficiently high (top left plot). Consistent with Lemma 1, when c is close to zero,
A is close to G and p∗ is close to v − λQ (top plots). When p∗ > v, the Case-3 demand hits the
floor so that gL hits zero (bottom left plot). Except for a small region, the aggregate profit of all
members is generally decreasing in c, suggesting worsening allocative efficiency associated with
juniorization (bottom right plot).

Figure 2 shows that more aggressive juniorization (e.g., a higher c) raises the auction price and
reduces the demand from smaller members (top left plot). As a result, as shown in Proposition 4,
profits of members with very small or very large guarantee funds decrease in c, while members
with guarantee fund size in between have higher profits when c is larger (top right plot).

We further decompose the profit πi into the auction profit (v−p)xi−0.5λx2
i and the lost guarantee

fund −Ti. A higher c raises the auction price and reduces the profits of members with sufficiently
small guarantee funds and sufficiently large guarantee funds (bottom left plot). On the other hand,
by raising the price a higher c strictly reduces the use of large members’ guarantee funds, whereas
the use of small members’ remains zero (bottom right plot). Combining the two components, the
smallest and largest members suffer from a higher c, but members with medium-size guarantee
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funds benefit from it.

Figure 1: Comparative statics w.r.t. c

The plots show comparative statics with respect to c. The base case is λ = 0.31,Q = 1,M = 0.056, v =

−0.31,G(= β) = 6.6. The vertical line is the threshold of c(= 0.5) below which p∗ is smaller than v.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
c

0.6

0.4

0.2
v

v Q

M
Q

Equlibrium price

0.00 0.25 0.50 0.75 1.00 1.25 1.50
c

0

2

4

6

Auction parameters
A

0.00 0.25 0.50 0.75 1.00 1.25 1.50
c

0.00

0.25

0.50

0.75

1.00

Thresholds of g
gL

0.00 0.25 0.50 0.75 1.00 1.25 1.50
c

0.55

0.50

0.45

Total profit

0.10

0.15

0.20
(p * Q + M)

A

0

10

20
gH

4 Customer participation

In the baseline model, only members of the clearinghouse can participate in the auction. Now, we
turn to the case in which customers, of mass µ > 0, can also participate. Customers contribute zero
guarantee funds. A customer’s risk-adjusted profit is similar to that of a member (3), except that
the customer does not have the term of guarantee fund usage:

πc = (v − p)xc − 0.5λx2
c . (35)

The customers’ first-order condition gives rise the following demand function

xc(p) =
1
λ

(v − p), (36)

which is the same as that of a member in Case 3. Apparently, the customers will only buy a positive
amount of the portfolio when p < v.

For Scenario I, i.e., p∗Q + M > 0, the equilibrium price should satisfy (v − p∗)(1 + µ)/λ = Q,
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Figure 2: Equilibrium allocations and profits for bidders

The plots report the equilibrium allocations and profits as functions of g. The base case is λ = 0.31,Q =

1,M = 0.056, v = −0.31,G(= β) = 6.6. “High c” produces a price p∗ > v and “Low c” produces a price
p∗ < v.

0 2 4 6 8 10
g

0.0

0.5

1.0

1.5

x * (g)

Low c
High c

0 2 4 6 8 10
g

0.8

0.6

0.4

0.2

0.0

* (g)

0 2 4 6 8 10
g

0.4

0.3

0.2

0.1

0.0

Auction profit

0 2 4 6 8 10
g

0.8

0.6

0.4

0.2

0.0
T * (g)

which is
p∗ = v −

λQ
1 + µ

. (37)

As a result, increasing the mass of participating customers pushes up the equilibrium price.
The condition for obtaining this case of equilibrium is that

(
v − λQ

1+µ

)
Q + M > 0, which is also less

stringent when the mass of customers is larger.
For Scenario II, the special case of the pro-rata use of guarantee funds (i.e., c = 0 and A = G)

leads to the same equilibrium price in (37). Juniorization (i.e., c > 0) can give rise to equilibrium
outcomes with p∗ < v or those with p∗ ≥ v. When p∗ < v, customers actively participate in the
auction and buy a positive amount of the portfolio. The market clearing condition (14) becomes

Q = µxc +

∫ gL

0
x3 f (g)dg +

∫ gH

gL

x2 f (g)dg +

∫ ∞

gH

x1 f (g)dg,

= (µ + F(gL))
1
λ

(v − p∗) +

∫ gH

gL

−(p∗Q + M)
A

g
c

f (g)dg + (1 − F(gH))
1
λ

(v − p∗ + c). (38)
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The equilibrium price, thus, can be rewritten as

p∗ = v −
λQ − c

gH−gL

∫ gH

gL
g f (g)dg − c(1 − F(gH))

µ + F(gL) + 1 − F(gH)
. (39)

Similar to the proof for Lemma 1, we can establish a form of continuity because p∗ → v −
λQ
1+µ

when c → 0. Given p∗ < v, a wider customer participation (i.e., larger µ) increases the
auction price. Proposition 5 characterizes the equilibrium with active customer participation and
juniorization.

Proposition 5. Suppose that −G < (v − (λQ)/(1 + µ))Q + M < 0. There exists some c′1 > 0 such
that for all c < c′1, the following is an equilibrium: Let gH, gL, and p∗ solve (12), (13), and (39),
where the constant A is given by (16). Each customer uses the strategy xc(p) = (v− p)/λ and each
member uses the strategy in (22).

In this equilibrium, the auction price satisfies p∗ < v, −G < p∗Q + M < 0 and 0 ≤ Ti ≤ gi.
There exists some c′2 > 0 such that dp∗/dc > 0 and dπ∗c/dc < 0 for c < c′2. Furthermore, p∗

increases in µ.

Proof. As a customer’s strategy is the same as that of a small member in Case 3, customers’
participation is equivalent to an increase of the mass of these small members. Thus, the addition
of customers does not change the bidding strategy for the members. The equilibrium outcomes
are not affected materially, except replacing F(gL) in (19) with (µ + F(gL)) in (39). The proofs of
Proposition 1 and 2 also carry through given the continuity discussed previously. The part about
dπ∗c/dc comes from the fact that π∗c = (v − p∗)2/(2λ). �

When the juniorization scheme results in p∗ ≥ v, the equilibrium outcomes are not affected by
the customers as they remain inactive and buys nothing in equilibrium.

Figure 3 illustrates the comparative statics of various market outcomes with respect to c in the
model with customer participation. If p∗ < v, customer participation increases the auction price. It
increases the total profit of all clearing members, as well as giving rise to a positive customer profit.
That said, not all clearing members are affected the same. Somewhat surprisingly, the profits of the
largest clearing members (π1) increase. This is because only the largest clearing members’ guaran-
tee funds are used in equilibrium, and customer participation reduces the amount of guarantee fund
needed. Profits of clearing members who do not lose guarantee funds in equilibrium (i.e., π2 and
π3) decline with customer participation because customers directly compete with them. Customers
are obviously better off if they can participate. All these effects become more muted as junioriza-
tion becomes more aggressive. Once juniorization pushes p∗ above v, customer participation has
no impact on the equilibrium outcome.
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Figure 3: Comparative statics w.r.t. c with customers

The plots show comparative statics with respect to c with customers. The base case is λ = 0.31,Q = 1,M =

0.056, v = −0.31,G(= β) = 6.6, µ = 0.5. The vertical line is the threshold of c(= 0.5) below which p∗ is
smaller than v. Green line indicates the case with customer participation.
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5 Concluding Remarks

This paper proposes a tractable modeling framework for CCP auctions, with the unique feature that
some financial resources that the CCP uses to pay auction winners come from the bidders them-
selves. We find that the juniorization of guarantee funds is an effective mechanism to encourage
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aggressive bidding and raise the auction price. As juniorization becomes sufficiently aggressive,
the price can become so high that only a tiny amount of survivors’ guarantee funds is used.

The model framework of this paper can be adapted to analyze other dimensions of CCP auc-
tions. For example, one could incorporate heterogeneous inventory costs {λi}, assuming they are
common knowledge. In that setup, 1/λ in the market clearing condition becomes an integral of
1/λi. This extension involves additional complexity because clearing members would be sorted by
the combination of {gi} and {λi}.

Another potential dimension is to model the end of the waterfall. Under variation margin gain
hair-cutting or partial tear-up, the in-the-money side does not receive the full value. To the extent
that some surviving members are on the opposite side of the defaulted portfolio, the potential to
lose some of the mark-to-market profit adds another layer of heterogeneous bidding incentives.

A third possibility is to incorporate the pre-auction hedging by the CCP, which may be con-
ducted secretly. This calls for a dynamic model: a hedging stage conducted in the open market,
followed by an auction stage that we already modeled. In this case, the juniorization of guarantee
funds should probably recognize the liquidity provision of surviving members in the hedging stage.
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Appendix

Proof of Proposition 3. First, we show dp∗/dc > 0 if the equilibrium exists. Taking the total
derivatives of (16), (28) and (27), we gets

dp∗

dc
=

cG(G − A)(1 − F(gH)) − λQA
∫ gH

0
g f (g)dg

(G − A)
(
cG(1 − F(gH)) + λQ

∫ gH

0
g f (g)dg

)
where the denominator is positive; and it is larger than the numerator as G > 0. Thus, dp∗/dc < 1.
For a ĉ that the equilibrium of Proposition 3 exists, there is a set of {Â, ĝH, p̂∗} that satisfies (16),
(12) and (27). Substituting ĉ = (p̂∗ − v) + λQ ĝH

G−Â
and using p̂∗ − v ≥ 0, the numerator of dp

dc is

ĉG(G − Â)(1 − F(ĝH)) − λQÂ
∫ ĝH

0
g f (g)dg ≥ λQ

(
GĝH(1 − F(ĝH)) − Â

∫ ĝH

0
g f (g)dg

)
.

(A1)

Let n1 denote ĝH(1 − F(ĝH)) and n2 denote
∫ ĝH

0
g f (g)dg. Note that n1 <

∫ ∞
ĝH

g f (g)dg, which means
G > n1 + n2. The above expression can be written as

ĉG(G − Â)(1 − F(ĝH)) − λQÂ
∫ ĝH

0
g f (g)dg ≥ λQ

(
Gn1 − Ân2

)
= λQ (Gn1 − (G − n1 − n2)n2) ,

=λQ ((n1 − n2)G + (n1 + n2)n2) > λQ ((n1 − n2)(n1 + n2) + (n1 + n2)n2) = λQ (n1(n1 + n2)) > 0.
(A2)

Thus, dp
dc > 0 for any c in the equilibrium of Proposition 3.

Next, we establish the continuity between the equilibrium in Proposition 1 and that in this
proposition around p∗ = v. Rewriting (19) as

p∗ = v + c −
(λQ + cF(gL))gH

G − A −
∫ gL

0
g f (g)dg + gHF(gL)

(A3)

and substituting gL = 0, p∗ is the same as that in (27). Moreover, in this special case when p∗ = v,
one can rewrite (12) and (27) as c = λ−(vQ+M)

A
gH
c and c =

λQ
G−AgH. Thus, gH can be solved by

gH A
(G−A)2 =

−(vQ+M)
λQ2 , and there exists a c3 such that when c > c3, p∗ is larger than v.

Finally, for Ti ≤ gi to hold for all xi, we need to ensure there exists some c4 > c3 such that
when c ≤ c4, −(p∗Q+M)

A ≤ 1. To see that, take the total derivatives of (16), (28) and (27), we have
dA

dgH
< 0 and dgH

dc =
(

dp
dc + A

G−A

)
(G−A)2

cG(1−F(gH)) > 0. Thus, we have dA/dc < 0.
By (28), one can solve explicitly A when c = c3. Let A3 denote A|c=c3 , which can be written as

G/( c3Q
−(vQ+M) +1). Let c4 denote (G−A3)/Q, which can be written explicitly as c3G/(c3Q−(vQ+M)).

When c3 ≤ c ≤ c4, one can show that −(p∗Q+M)
A =

cQ
G−A ≤

G−A3
G−A ≤ 1, in which the first inequality

comes from c ≤ c4 and the second one comes from dA/dc < 0 and c ≥ c3.
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