From LIBOR to SOFR: A Multi-Maturity Clock Auction Design

Haoxiang Zhu Associate Professor of Finance, MIT Sloan Faculty Research Fellow, NBER

Benchmark Rates Forum New York, June 7, 2018

I thank David Bowman, Songzi Du, Darrell Duffie, Fabian Eser, Bill Goulding, Matt Pritsker, and Bruce Tuckman for helpful discussions.

SOFR as a robust benchmark interest rate

Market liquidity/depth

- SOFR is based on repo transactions with daily volume > \$700B (ARRC 2018).
- Eurodollar futures daily volume \$100-\$300B, Fed Fund futures \$100B (ARRC 2018).
- SOFR futures are recently launched by CME (~1500 contracts/day in May).
- Daily volume of (US) SEF-traded USD interest rate derivatives (including FRA) is about \$400B from 2017 to 2018 Feb, according to the FIA.
- ⇒ Underlying repo volume and derivative volume are comparable, although one could argue swaps volume is more sensitive to benchmark rate given duration.

Methodology

• Volume-weighted median, more difficult to manipulate than the mean.

Governance/supervision

- SOFR's publisher, NY Fed, also retains discretion in its calculation and revision.
- Regulators can cross-check derivatives positions against repo activities.

⇒ The daily SOFR is probably difficult to manipulate, even if all LIBOR contracts fully migrate to SOFR.

The need for a SOFR curve

- SOFR is an overnight rate.
- But markets for swaps and cash products require long-term rates based on SOFR.
- Most LIBOR-based derivatives, loans, and securitized products will mature by 2025, or in 7 years.
- But the fate of LIBOR is uncertain beyond 2021, in 3 years.
- The current CME SOFR futures (traded since May 7, 2018) have liquidity out to about 1 year.
- How do we replace legacy LIBOR contracts by SOFR ones?
- How do we discover a SOFR-based yield curve?

Source: NY Fed/ARRC		Volume	Share Maturing By:			
		(Trillions USD)	End 2021	End 2025	After 2030	After 2040
Over-the-Counter Derivatives	Interest rate swaps	81	66%	88%	7%	5%
	Forward rate agreements	34	100%	100%	0%	0%
	Interest rate options	12	65%	68%	5%	5%
	Cross currency swaps	18	88%	93%	2%	0%
Exchange Traded Derivatives	Interest rate options	34	99%	100%	0%	0%
	Interest rate futures	11	99%	100%	0%	0%
Business Loans ²	Syndicated loans	1.5	83%	100%	0%	0%
	Nonsyndicated business loans	0.8	86%	97%	1%	0%
	Nonsyndicated CRE/Commercial mortgages	1.1	83%	94%	4%	2%
Consumer Loans	Retail mortgages ³	1.2	57%	82%	7%	1%
	Other Consumer loans	0.1				
Bonds	Floating/Variable Rate Notes	1.8	84%	93%	6%	3%
Securitizations	Mortgage -backed Securites (incl. CMOs)	1.0	57%	81%	7%	1%
	Collateralized loan obligations	0.4	26%	72%	5%	0%
	Asset-backed securities	0.2	55%	78%	10%	2%
	Collateralized debt obligations	0.2	48%	73%	10%	2%
Total USD LIBOR E	xposure:	199	82%	92%	4%	2%

Outline

A Multi-Maturity Clock Auction (MCA) Design for Replacing LIBOR by SOFR

Design Considerations in Making
Auctions Work

Why auctions for Libor transition?

• Auctions are familiar to market participants.

- Treasury issuance auctions
- Fed quantitative easing (reverse) auctions
- CDS default auctions
- Market mechanisms as auctions (order book, RFQ)
- Auctions coordinate supply and demand, and provide price discovery.
- Auctions are already proposed in this context, see Darrell Duffie's "<u>auction and protocol</u>" proposal – My suggested auction format is related but different.

GC repo rate vs 3m Libor

Libor-repo spread

Multi-maturity clock auction

- This auction finds the spread adjustments to replace LIBOR cash flows to (compounded) SOFR cash flows at various maturities.
 - Example 1: A firm pays LIBOR + 200 bps on a loan for 5 years. The firm "bids" to receive LIBOR and against SOFR + spread.

 \Rightarrow For the firm, the loan is transitioned from LIBOR to SOFR.

• Example 2: A mortgage bank pays fixed and receives LIBOR on an interest rate swap, as a hedge of the mortgages. The bank "bids" to pay LIBOR against SOFR + spread.

 \Rightarrow For the bank, the swap is transitioned from LIBOR to SOFR.

- Note: The auction aims to replace LIBOR cash flows as much as possible, but not necessarily all of them.
- Note: If end users prefer, they can subsequently convert daily compounded SOFR into "term" SOFR, say with a bank.

Multi-maturity clock auction (1) – Start

Maturity	2у	5y	7у	10y
Spread (bps)	0	0	0	0

- Various maturities open simultaneously.
- Example of a maturity grid: {1y, 1.5y, 2y, 2.5y, 3y, ..., 30y}
 - The grid could be made denser or sparser as desired.
 - For illustration, I only show a sparse grid of {2y, 5y, 7y, 10y}.
 - Multiple maturities encourage arbitrage across maturities.
 - Similar to FCC's spectrum auctions
- LIBOR-SOFR spread on each maturity starts at zero (or sufficiently negative if SOFR is above LIBOR). All spreads are displayed to all bidders—as if on digital clocks.

Multi-maturity clock auction (2) – Bidding

Maturity	2у	5y	7y	10y
Spread (bps)	0	0	0	0
Demand (\$b)	0	0	0	0
Supply (\$b)	100	200	200	250

- If the current spread on maturity j is s_j , each participant submits a quantity q_j .
- $q_i > 0$ means demand: pay LIBOR, receive SOFR $+s_i$.
- $q_j < 0$ means supply: pay SOFR + s_j , receive LIBOR.
- The process allows limit orders and market orders—they are automatically translated into bids at each step.

Multi-maturity clock auction (3) – Price discovery

		-			
Maturity	2у	5y	7у	10y	
Spread (bps)	20	20	20	20	
Demand (\$b)	0	0	0	0	
Supply (\$b)	100	200	200	250	
Demand (\$b)	75	120	150	150	
Supply (\$b)	80	180	180	200	

- As long as Total Supply > Total Demand on a maturity, the algorithm raises the spread by a pre-defined increment.
- The new spreads will refresh the supply and demand.
- This iteration repeats.
- Since LIBOR > SOFR in the long run, s_j should come out positive.

Multi-maturity clock auction (4) – Closing

Maturity	2у	5y	7у	10y
Spread (bps)	25	30	32	35
Demand (\$b)	77	160	169	178
Supply (\$b)	78	158	170	180

- Once Demand and Supply are sufficiently balanced on all maturities (say within 5% of each other), the auction closes on all maturities simultaneously.
 - Spreads across maturities are linked by arbitrage relations.
- Heavy side is rationed (e.g. pro-rata or time priority).

Multi-maturity clock auction (5) – Post auction

Maturity	2у	5y	7у	10y
Spread (bps)	25	30	32	35

- Voluntary conversion at the final auction spreads
 - After the auction, if two counterparties not in the auction both find the price acceptable, they can convert their legacy LIBOR contracts into SOFR ones at the market clearing price.

Compression

- Fine-tune the maturity of settled contracts
- Example: A firm's LIBOR floating loan is due in 2.25 years, with face value \$200m. The firm wins \$200m in the auction to pay LIBOR and receive SOFR + 25 bps for 2 years. It could use compression to move the 2-year LIBOR-SOFR swap to a 2.25 year one.

What's the advantage relative to sealed bid?

- If bidders observe prices in real time, it reduces adverse selection and encourage participation.
- It also reduces guesswork in forming strategies—the only decision is submit demands at given prices.
- In sealed-bid auctions, it is not easy to condition on prices of other maturities.
- Treasury issuance auctions are sealed bids, but the whenissued market already reflects valuable information about supply and demand.
- Overall, transparent prices and simultaneous close encourage market making and arbitrage across the curve.

Is this kind of auction used elsewhere? Yes!

• FCC spectrum auctions since early 1990s

- Bidders bid on multiple licenses that are substitutes or complements.
- All prices are displayed and all licenses close simultaneously.
- These auctions have been very successful in revenue generation.

Is this kind of auction used elsewhere? Yes!

- Open and close auctions on US equity markets are close to "multi-stock clock auctions".
 - Before settlement prices are determined, indicative prices are shown to the market—on all stocks.
 - Market participants submit buy and sell orders in each stock into the respective auctions, given the indicative prices on all stocks.
 - All auctions closes at 4pm, i.e., simultaneously.
 - Differences: In stock auctions, prices adjust two-way, and sometimes restrictions are placed on the direction of orders.
 - Open and close auctions are also very successful.

Outline

• A Multi-Maturity Clock Auction (MCA) Design for Replacing LIBOR by SOFR

Design Considerations in Making Auctions Work

What maturities?

- One possibility: Use a dense enough maturity grid to cover popular maturities.
- Example of FRN from ARRC (2018):

• Should supply-demand imbalance be displayed or hidden?

- My instinct is to have them displayed, maybe with some range but not the exact numbers.
- Open auctions and close auctions on stock exchanges disseminate order imbalances before prices are finally determined.
- How large are the spread increments?
 - Increments should be large at the beginning of the auction and small toward the end
 - Use data on price impact to come up with rules of thumb.

- How long does each round last? And how long does the whole auction last?
 - It should be fast enough before market moves dramatically.
 - Desirable to run auction in "normal" times
 - Auctions in US equity markets use little time to run.
- How closely should supply and demand match before auction finishes?
- If rationing is needed, which method?
 - Pro-rata, time priority, size priority

Who would run these auctions?

• The official sector, industry group like ISDA, or private firms like exchanges or clearinghouses?

• Should market participants be charged?

• Lower fee would generates more participation and less incentive to trade outside of the auction.

Encourage participation and bidding

• How to attract participation?

- Auctions could start with dealers, then expand to buy-side and end users.
- Allow "non-competitive" bids. Example: Pay LIBOR and receive SOFR + spread for \$100M and 5-year, at the market clearing spread.
- Allow "limit orders." Example: A firm specifies "Bid to receive LIBOR and pay SOFR + spread for \$200m as long as the spread is less than 30 bps and if maturity is between 4.5 years and 5.5 years".
- Non-competitive bids and limit orders can be easily translated into bidding strategies in clock auctions by an algorithm.

Encourage participation and bidding

- Multi-maturity clock auctions encourage participation of "market makers" and "arbitrageurs".
 - Example: the 4-year maturity sees very large demand to pay SOFR + spread and receive LIBOR, relative to 3-year and 5-year. Market makers or arbitrageurs can respond by supplying SOFR at the 4-year maturity and receive SOFR at the 3-year and 5-year maturities (against LIBOR).
 - Market makers would bear some basis risk, but make expected profits. Their LIBOR exposure can be managed down later.

Encourage participation and bidding

- What if participants withhold bidding until the very end?
 - One "solution": Require that a bidder's demand to pay (receive) the spread cannot go up (down) if spread goes up.
 - Similar to the "activity rule" in FCC spectrum auctions
 - In open and close auctions in US equity markets, certain types of orders cannot be entered close to the auction ending time.

Summary

- Price discovery of a "SOFR yield curve" is a critical step in the transition from LIBOR to SOFR.
- I propose a "multi-maturity clock auction" to replace legacy LIBOR cash flows by new SOFR cash flows.
 - Multiple maturities are substitutes, and the auction produces spreads on all of them together.
 - Spreads are displayed, and adjust to supply/demand.
- The auction design should be carefully calibrated to maximize participation, efficiency and fairness.

