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Abstract

We explore the implications of introducing an interest-bearing central bank digital
currency (CBDC) through commercial banks that differ in size. Banks of heterogeneous
sizes offer different convenience properties to depositors, which the CBDC adopts.
The large bank gives depositors a higher convenience value and hence possesses market
power. The interest rate on CBDC puts a lower bound on banks’ deposit interest rates,
which is particularly binding on the large bank. While a higher CBDC interest rate
enhances monetary policy pass-through by raising deposit interest rates, it reduces the
small bank’s deposit market share and its lending volume. By contrast, a CBDC that
delivers its own convenience value to users levels the playing field by shifting deposits
and lending from the large bank to the small one, although it can enhance or reduce
the transmission of monetary policy.
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“If all a CBDC did was to substitute for cash – if it bore no interest and came
without any of the extra services we get with bank accounts – people would
probably still want to keep most of their money in commercial banks.”
—Ben Broadbent, Deputy Governor of the Bank of England, in a 2016 speech

1 Introduction

A central bank digital currency (CBDC) “is a digital payment instrument, denominated
in the national unit of account, that is a direct liability of the central bank” (BIS 2020).
Since Ben Broadbent’s remarks (in the epigraph), policymakers have expressed increasing
interest in the possibility that a CBDC may pay a non-zero interest. In fact, the Committee
on Payments and Market Infrastructures defines interest bearing as one of five key design
features of CBDCs.1

In this paper, we propose a model of heterogeneous banks that we use to explore the
implications of an interest-bearing CBDC. The CBDC is offered through the infrastructure
of commercial banks and hence carries the same functionalities as regular bank deposits.
Under this design, the interest paid on the CBDC puts a lower bound on the deposit interest
rates of commercial banks. The model reveals how deposit interest rates and levels of deposits
in the banking system depend on two key policy rates set by the central bank: the interest
rate on reserves (IOR), which is paid to banks, and the interest on CBDC, which is paid to
agents holding the CBDC.2

The commercial banking sector in the economy consists of a large bank and a small bank,
both of which are strategic. The main distinction between them is that the large bank’s
deposit offers a higher convenience value than the small bank’s deposit. For example, a large
bank has a more expansive network of branches and ATMs. The difference in convenience
value has a probability distribution across a continuum of agents who deposit in either bank.
The higher convenience value of its deposit gives the large bank market power in the deposit
market. Hence, the large bank offers a lower deposit interest rate than the small bank in
equilibrium and yet has a larger market share.

The two commercial banks also lend to entrepreneurs who take on risky projects that
differ in their quality (i.e., expected returns). When a loan is made by either bank, the bank
creates a new deposit in the name of the entrepreneur as a new liability, which is exactly
balanced by the new loan as a new asset. The entrepreneur immediately pays a randomly
selected worker, and the deposit may flow out of the original bank to the other. For example,
if the entrepreneur originally takes a loan from the small bank but the worker she hired has
a high enough value for the convenience of the large bank, the deposit flows from the small
bank to the large one, resulting in a flow of central bank reserves in the same direction.

1The other four features are 24/7 availability, anonymity, transfer mechanism, and limits or caps.
2Since the financial crisis of 2008-09, interest on excess reserves has become the Federal Reserve’s main

policy tool to adjust interest rate. We do not model reserve requirements (there currently are none in
the United States) and hence we are effectively talking about excess reserves throughout the analysis. For
simplicity, however, we will just refer to excess reserves as reserves.
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Because the large bank has an inherent advantage in the deposit market, in equilibrium, the
large bank’s newly created deposit in the lending process has a high probability of staying
at the large bank. Thus, by lending out each dollar, not only does the large bank make a
profit on the loan, it also earns the interest on reserves with a high probability on the newly
created dollar of deposit. By contrast, the small bank is likely to lose the newly created
deposit and the associated interest on the accompanying reserves. Therefore, holding fixed
the quality of the entrepreneur’s project, the large bank earns a higher total profit by lending.
Put differently, the large bank is willing to lend to lower-quality projects due to the higher
expected profit of earning interest on reserves. This is a mechanism in which a deposit
market advantage translates into a lending market advantage.

Before assessing the impact of CBDC we demonstrate that our model with heterogeneous
banks captures key features of US deposit markets. We vary the IOR rate and examine its
impact on the deposit market interest rates. There are two cases. In the first case, the
zero lower bound on the deposit interest rate binds. When the IOR rate is sufficiently low,
the equilibrium deposit interest rates of the two banks are necessarily close to each other
because both rates are between zero and the IOR rate. Due to the convenience value of the
large bank’s deposit, the large bank pays depositors a zero interest rate and still retains the
lion’s share of the deposit market. When the lower bound is binding, an increase in the IOR
rate leads to a higher deposit interest rate at the small bank and increases its market share.
But because the large bank’s deposit interest rate remains at zero and it still dominates the
deposit market, the average deposit interest rate only rises by a small fraction of the IOR
rate.

Figure 1 shows the relationship between the interest rate paid on non-jumbo (i.e., less
than $100K) deposits by U.S. commercial banks and the IOR rate since May 2009. As
predicted by the model, the deposit interest rate does not respond to the increases in the
IOR rate that began in December of 2015. When questioned about this fact, Federal Reserve
Chair Jerome Powell said that deposit interest rates respond to changes in the IOR rate with
a lag. This seems to hold true in Figure 1, in the sense that deposit interest rates fell slowly
after the crisis in 2009, and rose slowly after lift-off began. The delayed response, however,
does not explain why the deposit interest rate remained much lower than the IOR rate after
it had time to catch up. Our model explains this fact without resorting to common frictions
such as search costs in the deposit market. Instead, it is the depositors’ value for convenience
that breaks the price competition and gives the large bank market power.

The second case of the equilibrium is when the zero lower bound on deposit interest rates
does not bind. This happens when the IOR rate is sufficiently high. Both banks’ deposit
interest rates are “interior” and have a constant spread between them, which is determined
by the distribution of convenience value among depositors. In this case, a change in the IOR
rate translates into the same change in deposit interest rates, but does not affect the banks’
market shares in the deposit market. As an illustration of the second case, Figure 2 shows
that before the 2008-09 crisis, consumer deposit interest rates tended to move proportionally
with the Fed Funds rate (the relevant benchmark before IOR was introduced in 2009) when
the Fed Funds rate was above approximately 3 percent. As in the post-crisis era, changes in
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Figure 1: Actual U.S. deposit interest rates from May 18, 2009 to February 1, 2021. Weekly
deposit interest rates for amount less than $100,000 are obtained from FDIC through FRED.
During this period, interest on reserves is taken to be the interest on excess reserves (IOER).
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Figure 2: Actual U.S. deposit interest rates from 1986Q1 to 2008Q2. Domestic deposit
interest rates are quarterly, calculated from call reports, as total interest expense on domestic
deposit divided by total domestic deposit, multiplied by 4. During this period, interest on
reserves is taken to be the actual Federal Funds rate.
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the deposit interest rate appear to lag behind changes in the fed funds rate.
For completeness, we also provide model predictions for how equilibria in the lending mar-

ket change as f varies. However, we have so far not attempted to confront the performance
of these predictions with the data.

We begin our analysis of CBDC by assuming that the CBDC is offered through commer-
cial banks, and that CBDC deposits inherit the convenience properties of the host institution.
This makes each bank’s deposit accounts perfect substitutes for the CBDC accounts offered
at their respective institution, and hence the CBDC interest rate becomes a lower bound
on the deposit interest rate at each bank. The two cases of equilibrium again apply here
analogously, and only the case where the lower bound is binding is relevant for our discussion
(in the other case, the CBDC has no impact because its interest rate is too low).

To analyze the impact of an interest-bearing CBDC, we consider the impact of increasing
the CBDC interest rate while holding the IOR rate fixed. This analysis mimics the type of
testing that was done with Overnight Reverse Repurchase rates when that facility was first
introduced by the Federal Reserve (see the discussion in section 5). When the lower bound
on the large bank’s deposit interest rate is binding, i.e., the large bank’s deposit interest
rate is equal to the CBDC interest rate, an increase in the CBDC interest rate increases the
large bank’s market share in the deposit market. Under certain conditions, a higher CBDC
interest rate also increases the small bank’s deposit interest rate.3

Turning to the lending market, under the same condition that induces a positive response
of the small bank’s deposit interest rate to increases in the CBDC interest rate, the small
bank’s loan quality threshold increase and its loan volume decreases in the CBDC interest
rate. On the other hand, because a higher CBDC interest rate increases the large bank’s
deposit market share but reduces its interest rate spread between IOR and the deposit
interest rate, the CBDC interest rate has an ambiguous impact on the large bank’s loan
market outcomes. The fact that the loan market is affected at all by the CBDC interest
rate, while holding the IOR rate fixed, is not mechanical. While bank lending in our model
is not restricted by the amount of deposits or reserves, it is affected by the opportunity cost
of capital, which, in turn, depends on the probability that a lent dollar returns to the lending
bank and earns interest on reserves. It is through the CBDC’s impact on deposit market
shares that the CBDC interest rate affects lending.

Our final theoretical exploration is an alternative CBDC design that focuses on other
attributes that can complement a CBDC’s interest-bearing property, or that may make a
CBDC attractive even if it is non-interest bearing. This exploration is consistent with the
Banking for All Act put forward in the U.S. Congress, which argues that a CBDC should
provide a number of auxiliary services including debit cards, online account access, automatic
bill-pay and mobile banking. These features (in particular mobile banking which could give
access to a variety of platforms that customers of a particular bank might otherwise not have

3In general, because the large bank’s deposit interest rate increases with the CBDC interest rate one-
for-one when the lower bound in binding, the small bank could either increase its own rate to compete on
market share or reduce its own rate to maximize profit margin on its limited set of depositors. Under the
parameter conditions that we characterize, the small bank increases the deposit interest rate to compete.
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access to) could result in a CBDC with its own convenience value.4 Although the convenient
CBDC is also offered through commercial banks in our model, customers of a commercial
bank now enjoys the maximum of two convenience values: that of the commercial bank
deposit and that of the CBDC.

The decision to embed a CBDC with its own convenience properties has significant im-
pacts on overall market outcomes, but also on market composition. This is because a conve-
nient CBDC weakens the market power of the large bank by narrowing the convenience gap
between the two banks. For example, by hosting a convenient CBDC, a small community
bank partially “catches up” with large global banks in offering payment functionalities. The
most immediate implication is that a convenient CBDC results in a lower deposit rate at
the small bank, because the small bank does not have to compensate depositors as much
for foregoing the large banks convenience. At the same time, deposit interest rates at the
large bank remain unchanged (if constrained) or increase (if unconstrained). In the range
of low convenience values, where the large bank deposit rates are non-responsive, increasing
convenience weakens the transmission of monetary policy through IOR to the deposit mar-
ket. However, once the convenience value of the CBDC reaches a certain level that the large
bank’s interest rate is no longer at the lower bound, a further increase in CBDC convenience
increases monetary policy transmission by increasing the weighted average deposit interest
rate.

Interestingly, the overall impact of increasing CBDC convenience (and the corresponding
changes in equilibrium deposit rates) is that the small bank and the large bank start to
converge in deposit interest rates, deposit market shares, loan quality thresholds, and loan
volume. In other words, a convenient CBDC “levels the playing field” for bank competition
by chipping away the convenience advantage of the large bank and making the two banks
more similar. Monetary policy transmission and leveling the playing field are consistent with
each other if the CBDC convenience value is sufficiently high that the large bank is no longer
at the lower bound.

Overall, our analysis fleshes out the implications of introducing an interest-bearing CBDC
to U.S. financial markets, and relates this analysis to other design features that the affect
convenience of holding CBDC accounts. A key takeaway of our theoretical analysis is that
the design of an interest-bearing CBDC has important implications not only on the aggregate
deposit and lending markets, but also the distributional effect across large and small banks.
For example, in our model where the CBDC adopts the convenience of commercial bank
deposits, setting the CBDC interest rate too close to the IOR tends to further concentrate
deposits in large banks. Building a CBDC with its own convenience can reduce disparities
in deposit and lending markets, although the convenience value needs to be sufficiently high
to avoid weakening monetary policy transmission.

4In China, the central bank has experimented with its own CBDC mobile App in collaboration with
state-owned banks.
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2 Literature

Our work builds on previous literature that has modelled deposit and lending markets in the
current regime of large excess reserves. In Martin, McAndrews and Skeie (2013), a loan is
made if its return exceeds the marginal opportunity cost of reserves, which can be either the
federal funds rate or the IOR rate, depending on the regime. Our model differs in that we
have multiple banks and hence lent money may return to the same bank as new deposits.
Hence, our opportunity cost of lending is lower. Nevertheless, we share the conclusion that
the aggregate level of bank reserves does not determine the level of bank lending.

Our results on how changes in the federal funds rate affect deposit markets are connected
to the literature on monetary policy transmission. Drechsler et al. (2017) provide a model
in which increases in the federal funds rate give banks more market power in setting deposit
rates. As a result, increases in the federal funds rate lead to an increase in the spread between
the federal funds rate and deposit interest rates. Our model provides the same conclusion
at lower levels of the federal funds rate. In our case, the increase in spread is amplified by
the fact that in the constrained solution of our model with heterogeneous banks, the deposit
interest rates at the large bank are completely non-responsive to changes in the federal funds
rate.5 Drechsler et al. (2017) predict that a contraction in deposit supply induced by an
increase in the federal funds rate will cause a reduction in lending. This does not occur
in our model, since, in our model with large excess reserves, loans are not tied to deposit
levels. Nevertheless, we also find that loan volumes decrease in response to an increase in
the federal funds rate because of increased opportunity costs of lending.

There is now a growing literature that seeks to examine the impact of CBDC on deposit
and lending markets. The conclusions vary and depend upon the level of competition, the
interest rate on the CBDC, and other features (e.g., liquidity properties of CBDC and reserve
requirements). Keister and Sanches (2020) consider a competitive banking environment in
which deposit interest rates are determined jointly by the transactions demand for deposits
and the supply of investment projects. If the CBDC serves as a substitute for bank deposits,
then its introduction causes deposit interest rates to rise, and levels of deposits and bank
lending to fall.

In contrast, if banks have market power in the deposit market, the introduction of a
CBDC does not disintermediate banks, as banks can prevent consumers from holding the
CBDC by matching its interest rate. This lowers their profit margin, but does not lower the
level of deposits, and may even increase it. This is true in the model proposed by Andolfatto
(2020), where the bank is a monopolist. In that work, an interest bearing CBDC causes
deposit interest rates to raise and the level of deposits to increase. Likewise, in that work,
banks have monopoly power in the lending market, and, as in Martin, McAndrews and Skeie
(2013), lending is not tied directly to the level of deposits, Hence, a CBDC does not impact
the interest rate on bank lending or the level of investment.

Chiu et al. (2019) also consider banks with market power and show that an interest-

5The “stickiness” of deposit rates in the United State is also documented in Driscoll and Judson (2013),
who provide evidence that deposit interest rates respond less to increases in the federal funds rate than they
do to decreases.
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bearing CBDC can lead to more, fewer or no change in deposits, depending on the level of
the CBDC interest rate. In an intermediate range of rates, the CBDC impacts the deposit
market in a manner similar to Andolfatto (2020) in that banks offer higher deposit interest
rates and increase deposits. Since, similar to Keister and Sanches (2020), lending is tied to
the level of deposits, adding the CBDC results in increased lending.

Our work is closest to Andolfatto (2020). We do not specify the overlapping generations
framework that he uses to make money essential. However, like Andolfatto, in our model,
reserves are abundant, lending is determined by a performance threshold, and banks have
monopoly power in lending market. Hence, lending is determined not by deposit levels, but
instead by the opportunity cost of funds. In our model, this opportunity cost is lower than
the IOR rate, since we allow for the realistic feature that reserves come back to the lending
bank with a probability that depends on the deposit market share.

The main difference between our model and those of the above CBDC papers is that we
have heterogeneous banks. This allows us to look at the differential impact of the CBDC
interest rate on the competitive landscape of banks in the deposit market and the loan
market. The predictions regarding the large and small banks’ responses in deposit interest
rates and market shares can be tested in the data. Moreover, our heterogeneous bank setting
also implies that the design details of the CBDC matters for its impact. In particular,
depositors in our model put an extra convenience value on the large bank’s deposit, so
the CBDC cannot be a perfect substitute for large bank deposit and small bank deposit
simultaneously. The degree to which the CBDC intends to compete with the large bank, the
small bank, or a mix of the two is an active design choice.

The impact of adding a CBDC can be richer in the presence of other frictions. For
example, in a model with real goods and competitive banks, Piazzesi and Schneider (2020)
find that the introduction of CBDC is beneficial if all payments are made through deposits
and the central bank has a lower cost in offering deposits. However, they also find that the
CBDC can be harmful if the payer prefers to use a commercial bank credit line, but the
receiver prefers central bank money. In the latter case, a transaction leads to a flow of funds
from commercial banks to the central bank; if the liquid assets required to back up this flow
are sufficiently costly for the paying bank, the CBDC increases overall costs.

A CBDC may be welfare increasing but not Pareto improving in the presence of network
externalities. Agur et al. (2019) consider an environment where households suffer disutility
from using a payment instrument that is not commonly used. They examine trade-offs faced
by the central bank in preserving variety in payment instruments and show that mitigating
the adverse effects of CBDC on financial intermediation is harder to overcome with a non-
interest-bearing CBDC.

Fernández-Villaverde et al. (2020) extend the analysis of CBDC to a Diamond and
Dybvig (1983) environment in which banks are prone to bank runs. In this setting, the fact
that the central bank may offer more rigid deposit contracts allows it to prevent runs. Since
commercial banks cannot commit to the same contract, the central bank becomes a deposit
monopolist. Provided the central bank does not exploit this monopoly power, the first-best
amount of maturity transformation in the economy is still achieved.
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Brunnermeier and Niepelt (2019) and Fernández-Villaverde et al. (2020) derive conditions
under which the addition of a CBDC does not affect equilibrium outcomes. Key to their
result is the central bank’s active role in providing funding to commercial banks in order to
neutralize the CBDC’s impact on their deposits.

3 Model and Equilibrium

3.1 Setup

The economy has a large bank (L) and a small bank (S). There are X = XS + XL reserves
in the banking system, where XS denotes the reserve holding of the small bank and XL

denotes the reserve holding of the large bank.6 For simplicity, the banks start off with the
only assets being reserves, balanced by exactly the same amounts of deposits. Following
Martin, McAndrews and Skeie (2013), we assume that the level of reserves X is exogenously
determined by the central bank and is assumed to be sufficiently high that the demand curve
for reserves is flat at the exogenously determined interest rate f , which denotes the interest
rate the central bank pays on reserves (IOR).

In addition to the interest on reserve f that is paid only to the commercial banks, the
central bank also offers an interest-bearing CBDC that pays an interest rate s ≥ 0. The
CBDC is available to any customer of the commercial banks and is offered through them. In
the baseline model considered here, we assume that the CBDC has no inherent convenience
value of its own, but instead inherits the convenience value of the deposits at the commercial
bank that offers the CBDC. Therefore, the CBDC interest rate s becomes a lower bound on
commercial bank deposit interest rates.

There is a unit mass of agents. Each agent potentially plays three roles in the model:

• Entrepreneur: agent i ∈ [0, 1] is endowed with a project of quality (i.e., success prob-
ability) qi that has a cumulative distribution function Q. Project i requires $1 of
investment and pays A > 1 with probability qi and zero with probability of 1 − qi,
where A is a commonly known constant. The expected payoff per dollar invested is
thus qiA. Agent i can only borrow from the bank where she keeps her deposit (the
“relationship” bank).

• Worker: with some probability, an agent is randomly matched with an entrepreneur
who receives financing from a bank. The first agent plays the role of worker (contractor)
and gets paid the full $1 to work on the project. An entrepreneur who receives financing
can be a worker for another entrepreneur.

• Depositor: If an agent receives wage ($1), she deposits it in a bank, chosen endoge-
nously. The worker’s value for “convenience” of depositing at the large bank is δ, which

6We normalize the size of an individual loan to be $1, so reserves are in units of the standard loan size. For
example, if a loan size is $1 million and the actual reserve is $1 trillion, then in our model, X is interpreted
as $1 trillion/$1million = 106.
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is a nonnegative random variable with the cumulative distribution function G. The
convenience value of depositing at the small bank is normalized to be zero.

We will look for an equilibrium in which the market shares, in terms of deposits, of the
large bank and the small bank are αL > 0.5 and αS = 1 − αL < 0.5, both endogenously
determined.

The timeline of the model is as follows.

t = 0: The banks set the deposit interest rates rL and rS. As mentioned above, the CBDC
interest rate s is a lower bound on these interest rates, i.e., rL ≥ s and rS ≥ s. A
fraction mL of agents have existing deposits at the large bank and a fraction mS =
1 − mL of agents have existing deposits at the small bank. The deposit per capita
across agents is identical. This means mL = XL/X and mS = XS/X.

t = 1: Each agent is endowed with a project and goes to the relationship bank to borrow $1.
Therefore, the relationship bank prices the loan as a monopolist.

t = 2: If a loan is granted, a funded entrepreneur pays a randomly matched worker $1 as
wage. The worker chooses the bank to deposit and receives the bank’s deposit interest
rate. The project succeeds or fails. The banks earn interest on reserves and pay deposit
interest rates.

3.2 Bank deposit creation

For the purpose of illustration it is convenient to illustrate the deposit creation process by
considering a discrete set-up, in which we characterize the bank’s decision to make a single
loan. The condition on bank lending that we derive will be applicable to the continuum
model in which borrowers (i.e., the entrepreneurs) are infinitesimal.

The tables below show the sequence of changes in the large bank’s balance sheet in the
loan process. The changes in the small bank’s balance sheet in the loan process are entirely
analogous.

1. Before lending, the large bank starts with XL reserves. Its balance sheet looks like:

Asset Liability

Reserves XL Deposits XL

2. If the large bank makes a loan of $1, it immediately creates deposit of $1 in the name
of the entrepreneur. The balance sheet of the bank becomes:

Asset Liability

Reserves XL Deposits XL

Loans 1 New Deposits 1
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3. Eventually, the entrepreneur will spend her money to pay a worker. The large bank
anticipates that, in expectation, a fraction αS of the $1 new deposit will be transferred
to the small bank, leading to a reduction of reserves by the same amount. The fraction
αL remains in the bank because the worker has an account with the same bank. The
bank’s balance sheet becomes:

Asset Liability

Reserves XL − αS Deposits XL

Loans 1 New Deposits αL

If the large bank makes the $1 loan to entrepreneur i, and charges interest rate Ri, its
total expected profit, by counting all items in the balance sheet, will be

(XL − αS)f︸ ︷︷ ︸
Interest on reserves

+ [qi(1 +Ri)− 1]︸ ︷︷ ︸
Gross profit on the loan

− (XL + αL)rL︸ ︷︷ ︸
Cost of deposits

. (1)

If the large bank does not make the loan, then its total profit will be

XL(f − rL). (2)

The large bank’s marginal profit from making the loan, compared to not making it, is

πi = qi(1 +Ri)− (1 + f)︸ ︷︷ ︸
Net profit on the loan

+ αL(f − rL).︸ ︷︷ ︸
Profit on deposit

(3)

In the expression of πi, the net profit on the loan reflects the true opportunity cost of capital.
There are two cases of equilibrium, depending on whether the lower bound s on the

deposit interest rates is binding.

3.3 When the CBDC interest rate does not bind deposit interest
rates

In this case, rL > s and rS > s. We can solve the model backward in time.

Deposit market at t = 2. Faced with the two deposit interest rates rL and rS, an agent
with convenience value δ chooses the large bank if and only if

rL + δ > rS ⇒ δ > rS − rL. (4)

Therefore, the eventual market shares of the banks in the newly created deposits are

αL = 1−G(rS − rL), (5)

αS = G(rS − rL). (6)
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Loan market at t = 1. We have derived in the previous section the marginal profit of a
bank in making a loan. While the entrepreneur is infinitesimal here, the same expression (3)
still applies.

To derive the lending criterion, the monopolist position of each bank in the lending
market implies that a bank can make a take-it-or-leave-it offer to the entrepreneur. The
bank’s optimal interest rate quote would be Ri = A − 1 (or just tiny amount below), and
the entrepreneur, who has no alternative source of funds, would accept. The lending bank
takes the full surplus.

Hence, the large bank makes the loan if and only if

qiA− (1 + f) + αL(f − rL) > 0, (7)

or

qi > q∗L =
1 + f − αL(f − rL)

A
. (8)

Exactly the same calculation for the small bank yields the comparable investment threshold

q∗S =
1 + f − αS(f − rS)

A
. (9)

Choice of deposit interest rates at t = 0. Again, we start with the large bank. The
large bank makes profits in two ways. Because the large bank is a monopolist when lending
to its customers, its first source of profit is on the loans, mL

∫
q∗l

(qA − 1 − f)dQ(q). The

second source of the large bank’s profit is on the interest rate spread. The existing deposit
in the banking sytem is X = XL +XS. As discussed above, the lending process also creates
new deposits. The amount of new deposit created by the large bank is mL(1 − Q(q∗L), by
the normalization that each loan is of $1. Likewise, the small bank creates new deposit
mS(1 − Q(q∗S). When the two banks compete for depositors by setting the deposit interest
rates rL and rS, we already show above that a fraction αL = 1−G(rS− rL) of total deposits
end up with the large bank, enabling the large bank to collect a spread of f − rL per unit of
deposit held.

Adding up the two components, we can write the large bank’s total profit as

ΠL = mL

∫ 1

q∗L

(qA− 1− f)dQ(q) + [XL +XS +mL(1−Q(q∗L)) +mS(1−Q(q∗S))]αL(f − rL)

= mL

∫ 1

q∗L

[qA− (1 + f) + αL(f − rL)]dQ(q) + [XL +XS +mS(1−Q(q∗S))]αL(f − rL).

(10)

Assuming that ΠL is strictly quasi-concave in rL (for any given αL), the sufficient condition
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for a unique maximum of this function with respect to rL is

dΠL

drL
= mL(1−Q(q∗L))

d[αL(f − rL)]

drL
−mL [q∗LA− (1 + f) + αL(f − rL)]︸ ︷︷ ︸

=0

dq∗L
drL

+ [XL +XS +mS(1−Q(q∗S))]
d[αL(f − rL)]

drL
−mSαL(f − rL)Q′(q∗S)

dq∗S
drL

= [XL +XS +mL(1−Q(q∗L)) +mS(1−Q(q∗S))] · [(f − rL)G′(rS − rL)− 1 +G(rS − rL)]

−mSαL(f − rL)Q′(q∗S)
(f − rS)G′(rS − rL)

A
. (11)

Likewise, the small bank’s total profit is

ΠS = mS

∫ 1

q∗S

[qA− (1 + f) + αS(f − rS)]dQ(q) + [XL +XS +mL(1−Q(q∗L))]αS(f − rS).

(12)

The first-order condition of the small bank is

dΠS

drS
= [XL +XS +mL(1−Q(q∗L)) +mS(1−Q(q∗S))] · [(f − rS)G′(rS − rL)−G(rS − rL)]

−mLαS(f − rS)Q′(q∗L)
(f − rL)G′(rS − rL)

A
. (13)

For simplicity, let Q(·) be the uniform distribution on [0, 1]. And further impose a
“stationarity” condition that the market shares of deposit αj are identical to the starting
market share mj. The first-order conditions are simplified to

0 =
dΠL

drL
= [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − rL)G′(rS − rL)− 1 +G(rS − rL)]

− 1

A
αSαL(f − rL)(f − rS)G′(rS − rL), (14)

0 =
dΠS

drS
= [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − rS)G′(rS − rL)−G(rS − rL)]

− 1

A
αLαS(f − rL)(f − rS)G′(rS − rL). (15)

Proposition 1. Suppose that the profit function Πj is quasi-concave in rj, j ∈ {L, S}. Let
rL and rS solve equations (14)–(15). If rL > s and rS > s, then it is an unconstrained
equilibrium that the banks set rL and rS as their deposit interest rates. In this equilibrium:

1. The large bank sets a lower deposit interest rate (rL < rS) and has a larger market
share (αL > αS) than the small bank.

2. The large bank uses a looser lending standard than the small bank does (q∗L < q∗S).
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Further intuition of the equilibrium may be gained by considering the uniform distribution
of G. Suppose that G(δ) = δ/∆, where δ ∈ [0,∆] for a sufficiently large ∆. Then G′(·) =
1/∆. The two first-order conditions reduce to

f − rL
∆

= 1− rS − rL
∆

+B, (16)

f − rS
∆

=
rS − rL

∆
+B, (17)

where

B ≡
1
A∆
αLαS(f − rL)(f − rS)

X + αL(1− q∗L) + αS(1− q∗S)
> 0. (18)

As the total reserve X becomes large, B becomes close to zero. So the equilibrium deposit
interest rates of the two banks become approximately rL ≈ f − 2

3
∆ and rS ≈ f − 1

3
∆.

3.4 When the CBDC interest rate binds the banks’ deposit inter-
est rates

The second case of the equilibrium is if the CBDC interest rate s becomes binding for at
least one of the two banks. It is easy to show s cannot bind for both banks unless s = f .7

Thus, we look for a constrained equilibrium in which rS > s and rf = s.
The small bank’s profit function and first-order condition are as before:

dΠS

drS
= [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − rS)G′(rS − s)−G(rS − s)]

− 1

A
αLαS(f − s)(f − rS)G′(rS − s)) = 0. (19)

By contrast, the large bank’s first order condition takes an inequality because the con-
jectured optimal solution is at the left corner:

0 >
dΠL

drL

∣∣∣
rL↓s

= [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − s)G′(rS − s)− 1 +G(rS − s)]

− 1

A
αSαL(f − s)(f − rS)G′(rS − s). (20)

Proposition 2. Suppose that the profit function Πj is quasi-concave in rj, j ∈ {L, S}. Let
rS solve equation (19). If, at rS, equation (20) also holds, then it is a constrained equilibrium
that the large bank sets s and the small bank sets rS as their deposit interest rates. In this
equilibrium:

1. The large bank sets a lower deposit interest rate (s < rS) but has a larger market share
(αL > αS) than the small bank.

2. The large bank uses a looser lending standard than the small bank does (q∗L < q∗S).
7If rL = rS = s < f , then the small bank has market share G(rS − rL) = 0. It can profitably deviate by

raising the deposit interest rate by a tiny amount and capturing some of the interest rate spread f − rS .
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4 Impact of IOR on Market Outcomes

Before proceeding to examine the impact of CBDC policy, we first examine how well the
model captures monetary policy transmission in the current environment with large excess
reserves. In particular, setting the CBDC interest rate to 0, we compute the impact of
a change in the IOR rate on the deposit market. Key to this analysis is the recognition
that as the IOR rate increases from 0, we transition from a constrained equilibrium to an
unconstrained one.

4.1 Monetary policy transmission in the deposit market

As discussed in the introduction, deposit interest rates tend to be non-responsive to changes
in IOR rates at low levels, but are responsive at higher levels. These stylized facts are
captured in our comparative static results.

Proposition 3. For a sufficiently large X, the comparative statics with respect to f in the
deposit market are given in the following table.

Constrained Unconstrained
Large Small Large Small

Deposit interest rates rL and rS Flat ↑ ↑ ↑
Deposit market shares αL and αS ↓ ↑ Flat Flat
Weighted average deposit interest rate ↑ ↑

Figure 3 shows the deposit interest rates and market share of the two banks as functions
of the interest on reserves f for a uniform distribution G(δ) = δ/0.035. We observe that the
deposit interest rate offered by the large bank remains at zero until the IOR rises to a high
level (left panel), which in this case is approximately 2.33%. In addition, the market share
of the large bank is larger for IOR closer to zero (right panel).

These two properties combined produce predicted average deposit interest rates that are
lower and less responsive to changes in the IOR rate f when it is near zero. When f is near
zero, the share of deposits at the large bank is near 1 and the large bank offers a deposit
interest rate equal to 0. As f increases, the share of deposits held by the small bank increases
and the small bank offers a positive rate, so the the average deposit interest rate increases
slowly. Eventually, as f increases further, we move to the interior solution described in
Proposition 1, where deposit shares are constant (with respect to f) and deposit interest
rates rise proportionately with f .

We illustrate the predictive performance of our model using U.S. data on deposit interest
rates from 1986 to 2021. The opportunity cost of funds for banks is determined in part
by either the IOR rate or the federal funds rate, whichever is larger. In the period before
the 2008-09 crisis the relevant rate was the federal funds rate. Figure 4 shows actual and
predicted U.S. deposit interest rates from 1986Q1 to 2008Q2 relative to the federal fund
rate. The choice of the upper bound on the convenience value for deposits at the large bank
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Figure 3: Equilibrium deposit market. Model parameters: G(δ) = δ/0.035, A = 1.5, X =
10, s = 0.

is somewhat arbitrary, but 3.5% seems reasonable as a maximum value and the resulting
predicted data series seems to fit the actual data reasonably well. The main deviation of
the predicted series from the actual one is that our predicted rates respond too quickly (and
hence to much) to changes in the federal funds rate. This is expected since we do not build
in any ”stickiness” into the deposit interest rate that would be necessary to match the actual
data more closely. Given our assumed distribution for the convenience parameter for large
bank deposits, our predicted equilibrium involves a binding zero lower bound on the rate at
the large bank when the reference rate is less than about 2.33%. This is true in the data
during the pre-crisis period from 2001Q3 to 2004Q3. During this period we predict deposit
interest rates near zero, however actual deposit interest rates remained close to, and even
slightly above, the federal funds rate.

In the period after the crisis the relevant rate for computing the opportunity cost of
loaned funds was (generally) the IOR rate. Figure 5 shows actual and predicted U.S. deposit
interest rates from May 2009 to February 2021 relative to the IOR rate. This period is
characterized by a long stretch of near zero rates in the Federal Funds market and an IOR
rate of 25 basis points. Again consistent with the market-lag story, deposit interest rates fell
slowly during this period toward zero until the Fed began to raise rates in December 2015.
The Fed raised the IOR rate multiple time reaching a peak of 2.40% from December 2018
to April 2019, but deposit interest rate reacted very slowly. Again, our model reacts too
quickly to the changes in the IOR rate, but still our predicted rate stays quite low relative
to the increases in the IOR rate. This is because at the low IOR rates that existed up until
December 2018, the zero lower bound is binding in our model and hence average market rate
are determined largely by large bank deposit interest rates which are at zero.
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Figure 4: Actual and predicted U.S. deposit interest rates from 1986Q1 to 2008Q2. Domestic
deposit interest rates are quarterly, calculated from call reports, as total interest expense on
domestic deposit divided by total domestic deposit, multiplied by 4. During this period,
interest on reserves is taken to be the actual Federal Funds rate. The model-implied interest
rate is the weighted average of the large bank’s and the small bank’s deposit interest rates,
weighted by their market shares. Model parameters: G(δ) = δ/0.035, A = 1.5, X = 10, s = 0.

4.2 Monetary policy and bank lending

The impact of increasing IOR rate on the deposit market carries over to the lending market.
The most interesting case is the constrained case, which applies for lower IOR rates. In this
region, an increase in the IOR rate raises the opportunity cost of lending for both banks,
which leads to higher quality thresholds. At the same time it raises the deposit interest rate
at the small bank, but not the large bank, resulting in an increase in deposit market share
for the small bank. Both impacts on lending are negative for the large bank, but for the
small bank the impacts work in opposite directions: a higher IOR rate results in a higher
opportunity cost of lending and hence a higher quality threshold, but greater market share
results in more opportunities to lend. Hence, for the small bank, lending can increase or
decrease as the IOR rate rises. The overall effect on loan volume is unambiguously negative,
however, since, as the IOR rate rises, depositors move from the large bank to the small bank
where the quality threshold is higher. In the unconstrained case, which applies for higher
IOR rates, there is no change in market shares as the IOR rate rises. However, both banks
adopt higher quality thresholds and so both banks lend less, and total lending declines.

These features of the model are summarized in the following proposition.

Proposition 4. For a sufficiently large X, the comparative statics with respect to f in the
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Figure 5: Actual and predicted U.S. deposit interest rates from May 18, 2009 to February
1, 2021. Weekly deposit interest rates for amount less than $100,000 are obtained from
FDIC through FRED. During this period, interest on reserves is taken to be the interest on
excess reserves (IOER). The model-implied interest rate is the weighted average of the large
bank’s and the small bank’s deposit interest rates, weighted by their market shares. Model
parameters: G(δ) = δ/0.035, A = 1.5, X = 10, s = 0.

lending market are given in the following table.

Constrained Unconstrained
Large Small Large Small

Loan quality thresholds q∗L and q∗S ↑ unclear ↑ ↑
Loan volume αL(1− q∗L) and αS(1− q∗S) ↓ unclear ↓ ↓
Total loan volume, i.e., total deposit created ↓ ↓

Figure 6 shows the lending standard and loan volume of the two banks as functions of
the IOR rate f for a uniform distribution G(δ) = δ/0.035. In this example, loan quality
thresholds increase in f (left panel). But the small bank’s loan volume increases in f in the
constrained equilibrium, which means that positive impact of an increasing market share for
the small bank dominates the negative impact of a higher opportunity cost of funds. Once
the equilibrium transitions into the unconstrained region with f higher than approximately
2.33%, the market shares become invariant to f , and the small bank’s loan volume declines
in f .
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Figure 6: Equilibrium lending market. Model parameters: G(δ) = δ/0.035, A = 1.5, X =
10, s = 0.

5 CBDC Interest Rate Policy

When the federal reserve introduced the overnight reverse repo program (ON RRP) as a
temporary facility to support its IOR policy, it began by testing the facility by varying the
rate between 1 basis point and 10 basis points, while holding the IOR rate fixed at 25 basis
points. Here we examine how market outcomes change as s varies from a rate of 0 to f ,
while holding f fixed.

We focus on the case of low f where the constrained equilibrium applies. This case is most
relevant to the current economic environment in the United States. (In the unconstrained
equilibrium, market outcomes are invariant to the CBDC interest rate s by definition.)

Proposition 5. Suppose that G′′(δ) < G′(δ)/f for any δ ∈ [0, f ]. Then, in the constrained
equilibrium, for a sufficiently large X, an increasing CBDC interest rate has the following
impact on the deposit and lending markets:

As s increases
Large Small

Deposit interest rates rL and rS ↑ ↑
Deposit market shares αL and αS ↑ ↓
Weighted average deposit interest rate ↑

Loan quality thresholds q∗L and q∗S unclear ↑
Loan volume αL(1−Q(q∗L)) and αS(1−Q(q∗S)) unclear ↓
Total loan volume, i.e., total deposit created unclear

Moreover, if G′′(δ) ≤ 0 for all δ, then the total lending volume decreases in s.

19



5.1 Impact of the CBDC interest rate s on the deposit market

Figure 7 plots behavior in the deposit markets as the CBDC interest rate rises from 0 to
f = 2%. The charts are computed numerically using a uniform distribution for G. As we see
in the left panel of Figure 7, eventually deposit rates reach their maximum profitable level
for each bank at the fixed IOR rate f . The right panel of Figure 7 shows the corresponding
changes in market share, which are easily computed from (5) and (6). Since the large bank’s
deposit rate rises faster than the small bank’s, the market shares diverge. Once the deposit
rates are equal at f the large bank obtains the entire market of depositors.
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Figure 7: Impact of CBDC interest rate on deposit market. Parameters: G(δ) =
δ/0.035, A = 1.5, X = 10, f = 0.02.

5.2 Impact of the CBDC interest rate s on the lending market

The lending thresholds of the large and small bank given in and depend on the how deposit
interest rates rL and rS and market shares αL and αS change when we vary s.

Different from the IOR rate f , the CBDC interest rate s is not the opportunity cost
of funds; f is. Yet, the CBDC interest rate changes the incentives to make loans via the
expected profit on interest rate spread, αj(f − rj). Because, as established above, both αS
and f − rS decrease in s, so does αS(f − rS). Thus, the small bank’s loan quality threshold
and total loan volume decrease in the CBDC interest rate. The large bank’s loan market
outcome is generally ambiguous in s, although in this example, the large bank’s quality
threshold rises in s and its loan volume declines in s. The total loan volume also declines in
s in this example.

Figure 8 illustrates the impact of CBDC interest rate s on the lending market with a
uniform G. In this example, both banks’ lending standards go up in s. A higher CBDC
interest rate reduces the small bank’s lending but increases the large bank’s, and the net
result is lower amount of lending.
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Figure 8: Impact of CBDC interest rate on lending market. Parameters: G(δ) =
δ/0.035, A = 1.5, X = 10, f = 0.02.

6 A Convenient CBDC

So far, we have considered a scenario where the CBDC inherits the convenience value of the
commercial banks that “host” the CBDC accounts. A main effect of introducing such an
interest-bearing CBDC is that it tends to reduce the market share of the small bank. In this
section, we consider an independent CBDC that has its own convenience value.

6.1 CBDC with its own convenience value

Recall that the small bank’s deposits have a convenience value of zero and the large bank’s
deposits have a convenience value that varies across agents with distribution G. We assume
that the CBDC’s own convenience value is vCBDC , and it is the same across all agents.
The CBDC accounts are still offered by commercial banks, but if a depositor uses a CBDC
account hosted by bank j, the convenience value received by the depositor is max(vCBDC , vj),
where v means convenience value. Each agent has four choices now:

Large bank Small bank
Deposit CBDC Deposit CBDC

Convenience value max(δ, vCBDC) max(δ, vCBDC) vCBDC vCBDC
Interest rate rL s rS s

For agents with large-bank preference δ ≤ vCBDC , CBDC convenience dominates:
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For δ ≤ vCBDC Large bank Small bank
Deposit CBDC Deposit CBDC

Convenience value vCBDC vCBDC vCBDC vCBDC
Interest rate rL s rS s

For agents with large-bank preference δ > vCBDC , large bank still has more convenience:

For δ > vCBDC Large bank Small bank
Deposit CBDC Deposit CBDC

Convenience value δ δ vCBDC vCBDC
Interest rate rL s rS s

Obviously, the small bank’s deposit account attracts no depositors if rS < rL. So rS ≥ rL.
The CBDC interest rate s remains a lower bound for rL and rS, i.e., rS ≥ rL ≥ s. For this
reason, the CBDC is not used in equilibrium, so we still only compare the commercial bank
deposits. We look for an equilibrium with rS > rL. Given the tables above, agents with δ >
rS−rL+vCBDC use the large bank and others use small bank, i.e., αS = G(rS−rL+vCBDC).
Write vc as a shorthand for vCBDC , where c represents “central bank” and “convenience.”

6.2 Equilibrium and comparative statics

As before, the unconstrained equilibrium features rS > s and rL > s. The first-order
conditions are

0 =
dΠL

drL
= [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − rL)G′(rS − rL + vc)− 1 +G(rS − rL + vc)]

− 1

A
αSαL(f − rL)(f − rS)G′(rS − rL + vc), (21)

0 =
dΠS

drS
= [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − rS)G′(rS − rL + vc)−G(rS − rL + vc)]

− 1

A
αLαS(f − rL)(f − rS)G′(rS − rL + vc). (22)

From the above conditions we derive

(rS − rL)G′(rS − rL + vc) + 2G(rS − rL + vc) = 1 (23)

In the constrained equilibrium, the small bank’s optimal solution is interior and the large
bank’s is corner. The small bank and the large bank’s first-order conditions are, respectively,

0 = [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − rS)G′(rS − s+ vc)−G(rS − s+ vc)]

− 1

A
αLαS(f − s)(f − rS)G′(rS − s+ vc), (24)

0 > [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − s)G′(rS − s+ vc)− 1 +G(rS − s+ vc)]

− 1

A
αLαS(f − s)(f − rS)G′(rS − s+ vc). (25)
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The comparative statics with respect to vc is given by the next proposition.

Proposition 6. Suppose that G satisfies −G′(δ)/f < G′′(δ) < G′(δ)/f for any δ ∈ [0, f −
s+ vc]. For sufficiently large X, the impacts of increasing vc are given in the following table:

As vc increases Constrained Unconstrained
Large Small Large Small

Deposit interest rates rL and rS Flat(=s) ↓ ↑ ↓
Deposit market shares αL and αS ↓ ↑ ↓ ↑
Weighted average deposit interest rate unclear ↑ if 0 ≤ G′′(δ) < G′(δ)

f

Loan quality thresholds q∗L and q∗S ↑ ↓ ↑ ↓
Loan volume αL(1− q∗L) and αS(1− q∗S) ↓ ↑ ↓ ↑
Total loan volume, i.e., total deposit created unclear unclear

6.3 Impact of CBDC convenience value v on deposit market.

A convenient CBDC reduces the large bank’s convenience advantage and hence has an impact
even when its interest rate is zero. We illustrate the impact of a convenient CBDC by
considering this polar case in Figure 9. As v rises, the inconvenience disadvantage of the
small bank shrinks. As long as the large bank’s deposit interest rate remains at the floor
rate, the small bank can afford to lower its interest rate and still capture a growing market
share. Once v get large enough, the large bank responds by raising its interest rate; however,
the small bank can still afford to continue lowering its deposit interest rate for the same
reason that the convenience gap between the two banks continues to shrink. Throughout
this process the large bank loses market share and the small bank gains market share, albeit
at a slower rate once the large bank is no longer constrained. The overall impact of increasing
the CBDC convenience value is a “convergence” of the two banks in terms of deposit interest
rates and market shares. Note that we restrict parameters such that in equilibrium, rS > rL.

The interesting implication of this analysis is that in a constrained equilibrium, a con-
venient CBDC weakens the transmission of monetary policy to the deposit market through
IOR. For any given f a higher value of v results in a lower deposit interest rate when the large
bank’s deposit interest rate is at the lower bound. Once the economy transitions to an un-
constrained equilibrium, which occurs for a sufficiently large v, a higher CBDC convenience
value increases the average deposit interest rate, speeding up the transition of monetary
policy. Hence, in the unconstrained equilibrium, both monetary policy transmission and the
small bank’s market share in the deposit market increase in v.

6.4 Impact of CBDC convenience value v on loan market.

As discussed above, a salient feature of a convenience CBDC is that it shrinks the difference
between the large bank and the small bank, hence “leveling the playing field.” As v increases,
the two deposit interest rates and the deposit market shares get closer to each other. It is,
therefore, unsurprising that the loan quality thresholds and loan volume of the two banks
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Figure 9: Impact of CBDC convenience value on deposit market. Parameters: G(δ) =
δ/0.035, A = 1.5, X = 10, f = 0.02, s = 0.

are also getting closer to each other as v rises. See Figure 10. In this example, the total
lending volume is slightly decreasing in v but the magnitude is small that it looks most flat.
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Figure 10: Impact of CBDC convenience value on lending market. Parameters: G(δ) =
δ/0.035, A = 1.5, X = 10, f = 0.02, s = 0.

7 Concluding Remarks

Our objective in this study is to understand how an interest-bearing CBDC might impact
deposit and lending markets. Our institutional setup is most suited for the current envi-
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ronment in the United States, where there are large quantities of excess reserves and an
administered rate, the interest on reserves, that determines banks’ opportunity cost of lend-
ing. We construct a model that describes how banks set deposit interest rates and decide on
the project quality threshold for lending. In this regard we believe it is crucial to consider
multiple, heterogeneous banks. Heterogeneous banks are required to capture differences in
depositor preferences for banks of different sizes, where size is proxy for an array of preferred
services and economies of scale provided by larger banks. It turns out that this modelling
feature is key to understanding the impact of the zero lower bound, since differences in pref-
erences for deposits at banks of various sizes lead to an array of equilibrium scenarios that
differ in terms of whether or not the zero-lower bound is binding and how responsive deposit
interest rates are to changes in the IOR rate.

The first test of our model is its ability to capture a key feature of deposit interest rates:
the lack of responsiveness to changes in the IOR rate at low levels. This rigidity arises
in our model because banks have different opportunity costs of credit provision due to the
differing likelihoods that loan reserves will return as new deposits. This introduces a channel
through which changes in the opportunity cost of credit provision — federal funds rate or
IOR, whichever is higher — leads to changes not only in deposit interest rates at the small
and large banks, but also in the share of depositors at each bank.

Our initial approach to modelling a CBDC is to assume it would be offered via the
commercial banks and inherit the convenience of the host institution. In this setting, an
interest-bearing CBDC leads to a lower market share for small banks.Under some condi-
tions, all deposit interest rates increase in response to the introduction of an interest-bearing
CBDC, in which case the trade-off for loan market is the usual quality vs quantity one: A
higher CBDC interest rate will increase the quality of loan portfolios, but reduce quantity.

A CBDC could be designed so that CBDC accounts provided their own convenience
value. This case is interesting because it fits the proposal outlined in the Banking for All
Act. Here we identified an interesting trade-off. A CBDC can be designed that levels the
paying field for competition between banks, but in doing so can weaken the transmission of
monetary policy through the IOR rate. Surprisingly, a convenience CBDC can strengthen
the transmission of monetary policy if the CBDC convenience value is sufficiently high.

An interesting aspect of our results is that the provision of CBDC impacts equilibrium
outcomes even though the currency is not held in equilibrium. This is also true in Chiu
et al. (2019) and Garratt and Lee (2020), where the option to use CBDC changes the
equilibrium outcome even it is not exercised. An exception is Keister and Sanches (2020),
where the CBDC has specific liquidity benefits that leads to its use. The idea that a central
bank introduces a program to influence market rates by increasing the bargaining power of
lenders is not new. Early descriptions of the overnight reverse repurchase agreement facility
(ON RRP) that the Federal Reserve Bank of New York began testing in September 2013
indicated that “the option to invest in ON RRPs also would provide bargaining power to
investors in their negotiations with borrowers in money markets, so even if actual ON RRP
take-up is not very large, such a facility would help provide a floor on short-term interest
rates...” (Frost et al. 2015, p.7).
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The results of our paper could be extended in multiple directions. One possible extension
is to add short-term investment vehicles such as money market mutual funds and repurchase
agreements (repos) that typically pay higher interest rates than bank deposits but cannot be
easily used for processing payments. If the CBDC pays a sufficiently high interest rate, it is
possible that money would flow out of these short-term investment vehicles into the CBDC,
i.e., investors would earn returns from the Fed rather than short-term Treasury Bills. This
additional channel is unlikely to affect lending because money market investors do not make
loans anyway. Another possibility is to consider heterogeneous CBDC interest rates paid
to banks of different sizes, which adds yet another degree of freedom in the central bank’s
toolkit, in particular if the central bank wishes to fine-tune the competitive positions of large
and small banks. These extensions are left for future research.
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Appendix: Proofs

Proof of Proposition 1

Taking the difference of the two FOCs, we have (rS − rL)G′(rS − rL) = 1− 2G(rS − rL). If
rS ≤ rL, because the lower bound of G’s domain is zero, the left-hand side is nonpositive but
the right-hand size is 1, contradiction. So rS > rL, and both sides are positive in equilibrium.

Let

B ≡
1
A
αLαS(f − rL)(f − rS)G′(rS − rL)

X + αL(1− q∗L) + αS(1− q∗S)
> 0. (26)

The two FOCs are separately written as

(f − rL)G′(rS − rL) = αL +B, (27)

(f − rS)G′(rS − rL) = αS +B. (28)

So both rL and rS are below f . Take the ratio:

f − rL
f − rS

=
αL +B

αS +B
> 1 >

αS
αL
. (29)

Hence, (f − rL)αL > (f − rS)αS, and q∗L < q∗S.

Proof of Proposition 2

The proof of this proposition is similar to that of Proposition 1 and omitted.

Proof of Proposition 3

First consider the unconstrained case. We have shown before that αj is invariant to f . To
calculate drj/df , let Γj = dΠj/drj. By the second-order condition, Γj is decreasing in rj.
Take derivative of Γj with respect to f at the equilibrium values, we have

0 =
∂ΓL
∂f

+
∂ΓL
∂rL

drL
df

, (30)

where, writing total loan volume as V = αL(1− q∗L) + αS(1− q∗S), we have

∂ΓL
∂f

=

(
−αL

1− αL
A

− αS
1− αS
A

)
[(f − rL)G′(rS − rL)− 1 +G(rS − rL)]

+ (X + V )G′(rS − rL)− 1

A
αSαLG

′(rS − rL)(2f − rS − rL)

= − 2

A
αLαS

1
A
αSαL(f − rL)(f − rS)G′(rS − rL)

X + V

+ (X + V )G′(rS − rL)− 1

A
αSαLG

′(rS − rL)(2f − rS − rL). (31)
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By construction, 1/A, αL, and αS are all less than one. So

∂ΓL
∂f

> G′(rS − rL)

[
−2(f − rL)(f − rS)

X + V
+ (X + V )− (2f − rS − rL)

]
. (32)

For a sufficiently large X, the above expression is positive, so drL/df > 0. Likewise, drS/df >
0. The weighted average interest rate αSrS + αLrL increases in f because both rS and rL
increase in f and the market shares are invariant to f in the unconstrained equilibrium.

To calculate how rS is affected by f in the constrained case, take the total derivative of
(19) with respect to f :

0 =
∂ΓS
∂f

+
∂ΓS
∂rS

drS
df

. (33)

The second-order condition requires ∂ΓS/∂rS < 0. We have

∂ΓS
∂f

=

(
−αL

1− αL
A

− αS
1− αS
A

)
[(f − rS)G′(rS − s)−G(rS − s)] + (X + V )G′(rS − s)

− 1

A
αLαS(2f − s− rS)G′(rS − s)

= − 2

A
αLαS

1
A
αSαL(f − rS)(f − s)G′(rS − s)

X + V
+ (X + V )G′(rS − s)

− 1

A
αLαS(2f − s− rS)G′(rS − s) (34)

By the same argument as before, for a sufficiently large X > 0, we have ∂ΓS/∂f > 0, and
hence drS/df > 0. The weighted average interest rate αSrS + αLs increases in f because
d
df

(αSrS+αLs) = αS
drS
df

+ dαS

df
rS+ dαL

df
s = αS

drS
df

+(rS−s)dαS

df
> 0, as both terms are positive.

Proof of Proposition 4

In the unconstrained equilibrium, because rj increases in f ,
dq∗j
df

=
1−αj+αj

drj
df

A
> 0. Loan

volume issued by bank j is αj(1 − q∗j ). Because q∗j increases in f and αj is invariant to f ,
each bank’s loan volume decreases in f , and so does the total loan volume.

In the constrained equilibrium, q∗L = 1
A

[1+f−αL(f−s)]. So
dq∗L
df

= 1
A

[1−αL− dαL

df
(f−s)] >

0 because f − s ≥ 0 and dαL

df
< 0. Since αL decreases in f and q∗L increases in f , large bank’s

loan volume αL(1− q∗L) decreases in f .

For q∗S = 1
A

[1 + f − αS(f − rS)], we have
dq∗S
df

= 1
A

[1 − dαS

df
(f − rS) − αS(1 − drS

df
)] =

1
A

[1−G′(rS−s)drSdf (f −rS)−G(rS−s)(1− drS
df

)] = 1
A

[1−G(rS−s)+ drS
df

(G(rS−s)−G′(rS−
s)(f − rS))] = 1

A
[1 − G(rS − s) − drS

df
αLαS(f−s)(f−rS)G′(rS−s)/A
X+αL(1−q∗L)+αS(1−q∗S)

], where the last equality uses

the first-order condition of the small bank. If G′(·) is bounded, then one can choose a large
enough X to make q∗S increase in f as well; otherwise it is ambiguous. For the same reason,
the small bank’s loan volume α∗S(1− q∗S) may increase or decrease in f because α∗S increases
in f and 1− q∗S either decreases in f or is ambiguous.
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Total loan volume is αL(1 − q∗L) + αS(1 − q∗S) = 1 − αL 1+f−αL(f−s)
A

− αS 1+f−αS(f−rS)
A

=

1− 1+f
A

+
α2
L(f−s)+α2

S(f−rS)

A
. Its derivative with respect to f is − 1

A
+ 1

A
[2αL

dαL

df
(f − s) + α2

L +

2αS
dαS

df
(f − rS) +α2

S(1− drS
df

)] = −1−α2
L−α

2
S

A
+ 1

A
[−2αL

dαS

df
(f − s) + 2αS

dαS

df
(f − rS)−α2

S
drS
df

].

Because dαS/df > 0, αL > αS, and f−s > f−rS, the term −2αL
dαS

df
(f−s)+2αS

dαS

df
(f−rS)

is negative. The other two terms are also negative. Hence, total loan volume declines in f .

Proof of Proposition 5

Since the large bank is constrained by the lower bound, its deposit rate raises in step with
the CBDC interest rate s. Meanwhile, the small bank adjusts its equilibrium deposit interest
rate at a slower pace, continuing to balance its ability to maintain depositors while its profit
margin shrinks. To see how rS is affected by s, start with the expression

0 =
∂ΓS
∂s

+
∂ΓS
∂rS

drS
ds

. (35)

Because ∂ΓS/∂rS < 0, a sufficient condition for drS/ds > 0 is ∂ΓS/∂s > 0. We have

∂ΓS
∂s

=
(
−αL

αL
A

)
[(f − rS)G′(rS − s)−G(rS − s)] + (X + V )[−(f − rS)G′′(rS − s) +G′(rS − s)]

+
1

A
(f − rS)

∂

∂s
[αLαS(f − s)G′(rS − s)]. (36)

On any closed region of f and s, the first and third term are bounded, by G being differen-
tiable. So if X is sufficiently large, the second term dominates. Under the assumption that
G′′(δ) < G′(δ)/f for δ ∈ [0, f ], we have −(f−rS)G′′(rS−s)+G′(rS−s) > 0, so a sufficiently
large X would imply that ∂ΓS/∂s > 0, and so is drS/ds.

Next, we show that rS − s decreases in s. We have

∂Γs
∂rS

= X
∂

∂rS
[(f − rS)G′(rS − s)−G(rS − s)]

+
∂Γs
∂rS
{[αL(1− q∗L) + αS(1− q∗S)] · [(f − rS)G′(rS − s)−G(rS − s)]}

− ∂Γs
∂rS

[
1

A
αLαS(f − s)(f − rS)G′(rS − s)

]
. (37)

The second and the third term are bounded on any closed region of rS. The first term equals
X[(f − rS)G′′(rS − s)− 2G(rS − s)]. Hence,

drS
ds

= − ∂Γs/∂s

∂Γs/∂rS
→ (f − rS)G′′(rS − s)−G′(rS − s)

(f − rS)G′′(rS − s)− 2G′(rS − s)
, (38)

as X becomes sufficiently large. The condition G′′(δ) < G′(δ)/f implies that both the
numerator and the denominator are negative, and that the denominator is larger in magni-
tude. Hence, drS/ds < 1 and d(rS − s)/ds < 0 for sufficiently large X. This implies that
αS = G(rS − s) is decreasing in s.
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The weighted average interest rate is αSrS + αLs. Its derivative with respect to s is

d(αSrS + αLs)

ds
=
dαS
ds

rS+αS
drS
ds

+
dαL
ds

s+αL = [(rS−s)G′(rS−s)+αS]

(
drS
ds
− 1

)
+1. (39)

By the calculation earlier, as X becomes large, drS
ds
− 1 → G′(rS−s)

(f−rS)G′′(rS−s)−2G′(rS−s)
> − f

f+rS
,

where the inequality follows from G′′(δ) < G′(δ)/f for any δ ∈ [0, f ]. So, as X becomes
large,

d(αSrS + αLs)

ds
> 1− f

f + rS
[(rS − s)G′(rS − s) + αS] ≥ 1− f

f + rS
> 0, (40)

where the second last inequality follows from the large bank’s FOC that, limX→∞(f −
s)G′(rS − s) +G(rS − s) ≤ 1.

Now we turn to loan market outcomes. Since αS decreases in s and rS increases in
it, αS(f − rS) is decreasing in s and q∗S is increasing in s. The small bank’s loan volume,
αS(1− q∗S), is also decreasing in s.

But the impact of s on q∗L is ambiguous because αL increases in s but f − s decreases in
s. Also ambiguous is the impact of s on the large bank’s loan volume αL(1− q∗L).

The total loan volume is αL(1− q∗L) + αS(1− q∗S). Its derivative with respect to s is

1

A
[2αS(f − rS)− 2αL(f − s)]G′(rS − s)

(
drS
ds
− 1

)
− 1

A
α2
L −

1

A
α2
S

drS
ds

. (41)

While the first term is positive, the last two terms are negative. It is, however, possible to
show that this derivative is negative if G′′(δ) ≤ 0 and X is sufficiently large. As X becomes
large, the two first-order conditions imply that

lim
X→∞

(f − s)G′(rS − s)− (1−G(rS − s))︸ ︷︷ ︸
αL

≤ 0,

lim
X→∞

(f − rS)G′(rS − s)−G(rS − s)︸ ︷︷ ︸
αS

= 0. (42)

Multiplying αL to the first equation and αS to the second equation, we have

lim
X→∞

αL(f − s)G′(rS − s)− α2
L ≤ 0,

lim
X→∞

αS(f − rS)G′(rS − s)− α2
S = 0. (43)

Plugging this in Equation (41), we have, as X becomes large,

lim
X→∞

d

ds
(αL(1− q∗L) + αS(1− q∗S)) ≤ 1

A
(2α2

L − 2α2
S)

(
1− drS

ds

)
− 1

A
α2
L −

1

A
α2
S

drS
ds

=
1

A

[(
1− 2

drS
ds

)
α2
L +

(
drS
ds
− 2

)
α2
S

]
, (44)
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where the substitution of αL(fs)G
′(rS − s) uses the fact that drS

ds
− 1 < 0. Because drS

ds
< 1,

(drS
ds
− 2)α2

S < 0. If G′′ ≤ 0 and X is sufficiently large, we know from the expression of drS
ds

above that drS
ds
≥ 1

2
. That means (1 − 2drS

ds
)α2

L ≤ 0 as well. So the total loan is decreasing
in s in the limit. Because the limit is strictly negative, it is also negative for finite but large
enough X.

Proof of Proposition 6

We proceed in two steps, first the unconstrained equilibrium and then the constrained one.

The unconstrained equilibrium

The equilibrium is characterized by two FOCs:

0 = [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − rL)G′(rS − rL + vc)− 1 +G(rS − rL + vc)]

− 1

A
αSαL(f − rL)(f − rS)G′(rS − rL + vc), (45)

0 = [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − rS)G′(rS − rL + vc)−G(rS − rL + vc)]

− 1

A
αLαS(f − rL)(f − rS)G′(rS − rL + vc). (46)

Call the two FOCs ΓL and ΓS, respectively. When X is sufficiently large, we know that
f > rL, f > rS, since otherwise the two FOCs must be negative. As in the case when CBDC
does not carry its own convenience value, we know rL < rS < f , and αS < αL.

To calculate how rL and rS are affected by vc, we take derivative of ΓL and ΓS at the
equilibrium values and obtain

0 =
∂ΓL
∂vc

+
∂ΓL
∂rL

drL
dvc

, (47)

0 =
∂ΓS
∂vc

+
∂ΓS
∂rS

drS
dvc

. (48)

The second-order condition implies that ∂Γj/∂rj < 0. When X is sufficiently large,
the term X[(f − rL)G′′(rS − rL + vc) + G′(rS − rL + vc)] dominates ∂ΓL

∂vc
. And the term

X[(f − rS)G′′(rS − rL + vc)−G′(rS − rL + vc)] dominates ∂ΓS

∂vc
. When −G′(y)/f < G′′(y) <

G′(y)/f , (f − rL)G′′(rS − rL + vc) + G′(rS − rL + vc) is positive, so drL
dvc

> 0. Also, (f −
rS)G′′(rS − rL + vc)−G′(rS − rL + vc) is negative, so drS

dvc
< 0. So rL is increasing in vc, and

rS is decreasing in vc.
For deposit market share αS = G(rS − rL + vc), we take the difference of the two FOCs,

and have

(rS − rL)G′(rS − rL + vc) + 2G(rS − rL + vc) = 1. (49)
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Write y = rS − rL + vc, and take derivative of the above equation with respect to vc, then
we have

[3G′(y) + (rS − rL)G′′(y)]
dy

dvc
−G′(y) = 0 (50)

When −G′(y)/f < G′′(y) < G′(y)/f , we know that 3G′(y) + (rS − rL)G′′(y) > 0, hence
dy

dvc
> 0. So αS is increasing in vc, and αL is decreasing in vc.

The weighted average deposit interest rate is αSrS + αLrL = αS(rS − rL) + rL. Its
derivative with respect to vc is

d(αSrS + αLrL)

dvc
=
dαS
dvc

(rS − rL) + αS
d(rS − rL)

dvc
+
drL
dvc

(51)

>
dαS
dvc

(rS − rL) +
1

2

d(rS − rL)

dvc
+
drL
dvc

=
dαS
dvc︸︷︷︸
>0

(rS − rL) +
1

2

d(rL + rS)

dvc
,

where the inequality follows from αS <
1
2

and rS − rL decreasing in vc. As X becomes large,

d(rS + rL)

dvc
→ (f − rL)G′′(y) +G′(y)

(f − rL)G′′(y) + 2G′(y)
− (f − rS)G′′(y)−G′(y)

(f − rS)G′′(y)− 2G′(y)

=
(rL + rS − 2f)G′′(y)G′(y)

[(f − rL)G′′(y) + 2G′(y)][(f − rS)G′′(y)− 2G′(y)]
. (52)

The denominator is negative as G′′(y) < G′(y)/f , and rL + rS − 2f < 0. So if G′′(y) ≥ 0, we

have d(rL+rS)
dvc

≥ 0, and hence αSrS + αLrL increases in vc.
For loan quality thresholds, since αL is decreasing in vc and rL is increasing in vc, q

∗
L is

increasing in vc. Since αS is increasing in vc and rS is decreasing in vc, q
∗
S decreasing in vc.

For loan volumes, αL(1−q∗L) is decreasing in vc, since αL is decreasing and q∗L is increasing.
Similarly, αS(1− q∗S) is increasing in vc.

Total loan volume equals αL(1 − q∗L) + αS(1 − q∗S) = 1 − 1+f
A

+
α2
L(f−rL)+α2

S(f−rS)

A
. Its

derivative with respect to vc is

1

A

{
[2αS(f − rS)− 2αL(f − rL)]

dαS
dvc
− α2

L

drL
dvc
− α2

S

drS
dvc

}
. (53)

We know that 2αS(f − rS) − 2αL(f − rL) < 0, dαS

dvc
> 0, drL

dvc
> 0, and drS

dvc
< 0, so the

equation is ambiguous. We know −α2
L
drL
dvc
− α2

S
drS
dvc

< −α2
S
d(rL+rS)

dvc
. When X becomes large,

d(rL+rS)
dvc

→ (f−rL)G′′(y)+G′(y)
(f−rS)G′′(y)+2G′(y)

− (f−rS)G′′(y)−G′(y)
(f−rS)G′′(y)−2G′(y)

= (rL+rS−2f)G′′(y)G′(y)
[(f−rS)G′′(y)+2G′(y)][(f−rS)G′′(y)−2G′(y)]

. We

know the denominator is negative, (rL + rS − 2f) < 0, so if G′′(y) ≥ 0, we have −α2
L
drL
dvc
−

α2
S
drS
dvc
≤ 0, and so Equation (53) is negative. If G′′(y) < 0, however, the sign of the equation

is ambiguous.
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The constrained equilibrium

The constrained equilibrium is characterized by two FOCs:

0 > [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − s)G′(rS − s+ vc)− 1 +G(rS − s+ vc)]

− 1

A
αSαL(f − s)(f − rS)G′(rS − s+ vc), (54)

0 = [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − rS)G′(rS − s+ vc)−G(rS − s+ vc)]

− 1

A
αLαS(f − s)(f − rS)G′(rS − s+ vc). (55)

To calculate how rS is affected by vc, we take derivative of ΓS at the equilibrium values
and obtain

0 =
∂ΓS
∂vc

+
∂ΓS
∂rS

drS
dvc

. (56)

When X is sufficiently large, the term X[(f − s)G′′(rS − s+ vc)−G′(rS − s+ vc)] dominates
∂ΓS

∂vc
. Since G′′(δ) < G′(δ)/f , we know that ∂ΓS

∂vc
< 0. Hence drS

dvc
< 0, i.e., rS is decreasing in

vc.
For deposit market share αS = G(rS − s + vc), when X becomes sufficiently large, we

have

drS
dvc

= −∂ΓS
∂vc

/
∂ΓS
∂rS
→ − (f − rS)G′′(rS − s+ vc)−G′(rS − s+ vc)

(f − rS)G′′(rS − s+ vc)− 2G′(rS − s+ vc)
. (57)

We know that

d(rS − s+ vc)

dvc
=
drS
dvc

+ 1 =
−G′(rS − s+ vc)

(f − rS)G′′(rS − s+ vc)− 2G′(rs − s+ vc)
, (58)

where the numerator and the denominator are both negative. So d(rS−s+vc)
dvc

> 0, and αS is
increasing in vc.

For loan quality thresholds, since αL is decreasing in vc and rL is increasing in vc, q
∗
L is

increasing in vc. Since αS is increasing in vc and rS is decreasing in vc, q
∗
S decreasing in vc.

For loan volumes, αL(1−q∗L) is decreasing in vc, since αL is decreasing and q∗L is increasing.
Similarly, αS(1− q∗S) is increasing in vc.

Total loan volume equals αL(1−q∗L)+αS(1−q∗S) = 1− 1 + f

A
+
α2
L(f − s) + α2

S(f − rS)

A
.

Its derivative with respect to vc is

1

A

{
[2αS(f − rS)− 2αL(f − s)]dαS

dvc
− α2

S

drS
dvc

}
. (59)

Its sign is ambiguous for a similar same reason as the unconstrained case.
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